Based on research showing that in the case of a strong aerosol forcing, this forcing establishes itself early in the historical record, a simple model is constructed to explore the implications of a strongly negative aerosol forcing on the early (pre-1950) part of the instrumental record. This model, which contains terms representing both aerosol–radiation and aerosol–cloud interactions, well represents the known time history of aerosol radiative forcing as well as the effect of the natural state on the strength of aerosol forcing. Model parameters, randomly drawn to represent uncertainty in understanding, demonstrate that a forcing more negative than −1.0 W m−2 is implausible, as it implies that none of the approximately 0.3-K temperature rise between 1850 and 1950 can be attributed to Northern Hemisphere forcing. The individual terms of the model are interpreted in light of comprehensive modeling, constraints from observations, and physical understanding to provide further support for the less negative (−1.0 W m−2) lower bound. These findings suggest that aerosol radiative forcing is less negative and more certain than is commonly believed.

special icon Denotes Open Access content.

Corresponding author address: Bjorn Stevens, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail:
June 2015 Publication Cover

Share this Article

Share |

Featured Collections

LatMix -BAMS, JPO, JTECH
PANDOWAE -MWR, JAS, WAF, JTECH

All Special Collections

Most Read JCLI Articles
(past 12 months)

Most Cited (past 12 months)