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1. Introduction

To discern whether a physical process is dynami-
cally important in any particular situation, meteorolo-
gists introduce scales of motion. The presence of
various scales of motion in time series of meteorologi-
cal and air quality variables can complicate analysis
and interpretation of data. Separation of time series of
ozone and meteorological data into synoptic, seasonal,

and long-term components is necessary since the pro-
cesses occurring at different frequencies are caused by
different physical phenomena: the synoptic-scale com-
ponent is attributable to weather and short-term fluc-
tuations in precursor emissions, seasonal scale to
variation in the solar angle, and long-term scale to
changes in climate, policy, and/or economics (Rao and
Zurbenko 1994; Rao et al. 1995; Porter et al. 1996).
Spatial and temporal information in ozone and meteo-
rological data, obscure prior to separation, may be-
come clear afterward.

Episodes of exceedances of ozone standards may
be viewed as particular realizations of the ozone pro-
cess. Whereas each episode is a unique event with little
predictability, the ozone process in total has well-
defined spatial and temporal scales that permit accu-
rate prediction of average conditions and probablistic
statements about ozone concentrations at particular
times and places. Separation of the temporal scales in
ozone is also important when assessing changes due
to pollution control actions or climate changes. Such
changes may be quite small and invisible unless they
are separated from weather and seasonality. An addi-
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tional reason for separately analyzing temporal com-
ponents of ozone is that short-term phenomena con-
tain information related to the transport of ozone and
conditions conducive to ozone accumulation. Seasonal
components, on the other hand, lend little insight to
pollutant transport issues.

The purpose of this paper is to illustrate the tem-
poral and spatial information available in spectrally
decomposed ozone and temperature data. The
Kolmogorov–Zurbenko (KZ) filter (Zurbenko 1986)
is used to separate data into short-term, seasonal, and
long-term processes. Characteristics of the KZ filter,
including parameter choices given a cutoff frequency,
and its transfer function are described in detail. This
method is used because it provides effective separa-
tion of frequencies (Eskridge et al. 1997) and because
it does not require special treatment for missing data.
The anomaly (perturbation) method was not used be-
cause noticeable amounts of energy from all parts of
the spectrum are present in every component (Eskridge
et al. 1997). The wavelet transform method described
by Lau and Weng (1995) has very low leakage be-
tween temporal components (Eskridge et al. 1997) but
requires special considerations for missing data.

Analysis of 437 sites in the United States for the
period 1983–94 indicates that only about 2% of the
total ozone variance is in the long-term component,
with the remainder divided roughly equally between
short-term and seasonal components. The variance of
short-term and seasonal components varies consider-
ably across the United States.

Temporal and spatial scales for ozone components
are described in terms of the decay of the process cor-
relation in time (serial correlation) or space (correla-
tions between different stations as a function of
distance) to a value of 1/e. Process correlations for
temporal and spatial scales follow a Markov process
and exponential decay, respectively. The 1/e index of
scale has also been used by the National Climatic Data
Center to design monitoring networks (Wallis 1996).
Whereas raw ozone data exhibit very slow decay in
serial correlations, serial correlation in the short-term
component alone decays in 1 to 3 days to that expected
for white noise. The resemblance between short-term
ozone and white noise suggests that ozone events can
be simulated by superimposing “noise” (computer-
generated random numbers) over the baseline (defined
as the sum of long-term and seasonal components)
(Rao et al. 1996). Similarly, Eskridge et al. (1997)
suggest that time series of temperature data can also
be represented as the sum of “noise” and baseline

components. Reproduction of the synoptic (stochas-
tic) component around the baseline will also re-cre-
ate exceedances (Rao et al. 1996). Thus, ozone air
quality management efforts can be addressed in
baseline terms.

The correlations among baseline components of
meteorological variables are much stronger than those
among their short-term components. Baseline ozone
retains global information on the scale of more than 2
months in time and about 300 km in space. Short-term
ozone is highly correlated in space, retaining 50% of
short-term information at distances ranging from 350
to 400 km. The correlation structure of short-term
(weather related) ozone permits accurate predictions
of ozone concentrations up to distances of 600 km
from a monitor. In contrast to baseline and short-term
ozone, the information available in exceedance events
is only about 15 km.

2. Spectral decomposition of time series
data

a. Database
Hourly concentrations of ozone (in ppb) at all

monitoring stations in the United States were extracted
from the Environmental Protection Agency’s (EPA)
Aerometric Information Retrieval System (AIRS) for
the 1983–94 period. Also, temperature data (in °F) for
the same time period were obtained from the nearest
and most representative National Weather Service sta-
tions. From this dataset, time series of daily maxima
of hourly ozone and temperature were constructed and
analyzed here.

b. Conceptual model
Concentrations of atmospheric ozone depend on

atmospheric variables and precursor concentrations
that have strong seasonal and synoptic components
(Rao and Zurbenko 1994). Successful analysis of the
ozone problem requires a careful separation of sea-
sonal and synoptic components. Therefore, time series
of ozone and temperature data will be represented by

O(t) = e(t) + S(t) + W(t); T(t) = e′(t) +S′(t) + W′(t), (1)

where O(t) is the natural logarithm of the original
ozone time series and T(t) is the temperature time se-
ries, e(t) is the long-term (trend) component, S(t) is
seasonal change, W(t) is short-term variation, and t is
time. Whereas, O(t) is log-transformed with a view that



2155Bulletin of the American Meteorological Society

statistical analysis can be performed successfully, T(t)
is not log-transformed since it already follows an ad-
ditive model; the components of this additive model,
W′(t), S′(t), and e′(t) have the same meanings as the
ones in the first equation. Long-term, seasonal, and
synoptic components are described by completely dif-
ferent physical and chemical processes.

c. Separation techniques
The choice of separation techniques is crucial.

Anomaly techniques based on monthly, seasonal, and
annual averages are far from adequate because 5%
of the energy and 22% of the amplitude of each
component is mistakenly attributed to the others
(Eskridge et al. 1997). Such poor separation com-
pletely destroys the possibility of drawing accurate

inferences through anomaly-based models. In this
paper, components in the data due to different scales
of motion are separated using the KZ filter (Zurbenko
1986, 1991). Among the several high-resolution fil-
ters available, the KZ filter is distinguished by its
simple algorithm and the preservation of true infor-
mation when applied in a nonequally spaced and/or
missing data environment (Zurbenko et al. 1996;
Eskridge et al. 1997).

The KZ(m,k) filter is defined as k applications of a
simple moving average of m points. The moving av-
erage can be expressed as

Y
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X t st
s m

m

= +( )
=− −( )
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1 2
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FIG. 1. Absolute value of the transfer function of the KZ filter.

FIG. 4. Same as Fig. 2 for KZ(15,5) and a β-level interval.FIG. 3. Same as Fig. 2 for KZ(15,5) and KZ(365,3).

FIG. 2. Kernels (absolute value if k is odd) for several sets of
filter parameters.
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where X is the original time series and t is time (in
days). The series Y

t
 becomes the input for the second

pass, and so on. The time series produced by k itera-
tions of the filter described by (2) is denoted Y

t
(k).

The square transfer function of the KZ(m,k) [see
Eskridge et al. (1997) for details on the transfer func-
tion] is given by
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where ω has units of cycles per day (frequency).
Equation (3) shows, among other things, that the KZ
is a low-pass filter (Fig. 1).

The parameter k controls the level of noise sup-
pression. For example, if a value for k is chosen such
that the height of the additional peaks in the squared
transfer function are to be less than 10−5, the resulting
value for k will be ≥ 4 (Fig. 1). Once k is fixed, m is
chosen such that
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where ω
0
 is the desired separating fre-

quency. The right side of (4) is the ap-
proximate solution to the equation
|φ

m,k
(ω)|2 = 1/2.
Thus far, these values of m and k are

only approximations; their accuracy
should be checked by solving the equa-
tion |φ

m,k
(ω)|2 = 1/2 for ω [which we call

the cutoff frequency of the KZ(m,k) filter]
and assess its proximity to ω

0
, the desired

cutoff frequency. A computer program
that solves the above equations for any
values of m and k is available from the
authors. The results of the program have
been tabulated (Table 1) so that one can
easily find the cutoff frequency given (m,k).

Usually the problem appears in re-
verse: analysis of a periodogram indi-
cates the separating frequency; knowing

1/2 5 4 0.046405

1/2 11 5 0.018605

1/2 13 3 0.020205

1/2 15 5 0.013619

1/2 11 8 0.014748

TABLE 1. Cutoff frequency for given m, k, and α.

ααααα m k Cutoff frequency

1/2 0.001 11 8 0.01474

1/2 0.001 13 5 0.01573

1/2 0.001 15 4 0.01520

1/2 0.001 17 3 0.01543

1/2 0.001 11 7 0.01576

TABLE 2. Parameters m and k that give cutoff frequency
0.01492 with precision 0.001.

Cutoff
ααααα Precision m k frequency

FIG. 5. Comparison of short-term components for original and log ozone at
Cliffside Park.
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this, we have to find the pair (m,k) that will produce a
cutoff frequency closest to the separating frequency.
A program that takes as input a number (correspond-
ing to the separating frequency) and returns pairs (m,k)
that will produce KZ(m,k) filters having cutoff fre-
quencies within a given interval around the input fre-
quency is also available (see Table 2 for an example).

The above analysis was also done for an arbitrary
level of reduction (substitute one-half with arbitrary
α between 0 and 1) and tables with results for other
values of α are available from the authors.

d. Criteria for the effectiveness of separation
techniques
The energy of separated processes should be con-

centrated at different frequencies (spectral domain)
and the information in the natural physical processes
that cause these energies should be independent of
each other. The degree to which this is accomplished
is evident in the filter’s squared transfer function
(gain), which shows the transfer of energy to each
component affected by a separation technique (see
Eskridge et al. 1997). A good separation technique is
characterized by a gain function that concentrates en-
ergy at the timescale of interest and does not mix en-
ergies from different timescales.

The squared transfer function (gain) gives us in-
formation about the transfer of energy to resulting
components. It does not tell us whether these energies
are mixed. More precisely, we want to have a measure
of the correlation between resulting components of the
KZ filter. This is important when making inferences
about the general process, having reasoned only on a
specific component.

Calculation of the covariance between the result of
KZ filtration and the residual, [1 − KZ], gives

R f dm k m k= ( ) ( ) − ( )[ ]∫ ω φ ω φ ω ω, ,1 . (5)

Therefore, the kernel for the covariance between KZ
and [1 − KZ] is given by

k m k m kω φ ω φ ω( ) = ( ) − ( )[ ], ,1 . (6)

There is high correlation between filtered data and
residuals for small values of k (Fig. 2); also, the width of
the kernel gets smaller as m and k increase. The asymp-
totical convergence of the correlation to 0 is given by
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The frequencies ω
c
, at which k(ω) is concentrated, have

been tabulated. The interval around ω
c
, inside which

the kernel takes values bigger than β/4, where β is

5 4 (0.023174, 0.10683) 0.065002

11 5 (0.009274, 0.04297) 0.026126

13 3 (0.010107, 0.04636) 0.028233

15 5 (0.006786, 0.03146) 0.019124

11 8 (0.007336, 0.03419) 0.020766

TABLE 3. β-level interval for β = 0.3 (30%).

m k Interval Kernel center

FIG. 6. Raw periodogram of log ozone at Cliffside Park, New
Jersey.

FIG. 7. Same as Fig. 6 except smoothed with Daniell smoother.
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an arbitrary number between 0 and 1, have also been
tabulated (Table 3). We call this the β-level interval.
Approximations for the end points of the β-level in-
terval can easily be calculated using the estimate of the
cutoff frequency given above. Figure 3 shows the ker-
nels used to separate high-frequency (short term) and
low-frequency (long term) components in ozone (m,k
= 15,5 and 365,3, respectively).

What is the meaning of this β-level interval? We
choose β (depending on the physics of the process)
such that we can assume k(ω) = 0 outside the β-level
interval. Now, if the frequency interval we are inter-
ested in is outside the β-level interval, the components
are not correlated and we can perform further analy-
ses. Otherwise, a retuning of the parameters m and k
may be needed using, for example, Table 3. Figure 4
shows an example of a β-level interval for the kernel
of the KZ(15,5) filter.

e. Log scale for ozone
We will denote the natural logarithm of ozone

O(t,x,y), where t is time and x,y is the monitor loca-
tion. Log scales are as essential to the clear separa-
tion of the components of ozone as the choice of
separation technique. The effect of working in the log
scale can be illustrated using both raw and log-trans-
formed ozone concentrations at Cliffside Park, New
Jersey. Filtration of raw ozone concentrations leaves
a short-term component, W(t), that is clearly seasonal
(Fig. 5a). Filtration of log-transformed ozone, on the
other hand, leaves a short-term stationary variable that
is nearly independent of seasonal influences (Fig. 5b).
The statistical analyses of short-term components pre-
sented later in this paper would be extremely difficult,

if not impossible, were the short-term components
seasonal. In addition, without a log transformation, all
higher-order nonlinear terms and effects in ozone data
are not separated and quantile–quantile (QQ) plots of
the short-term component are nonlinear.

Separation of O(t,x,y) in time by KZ filtration (with
appropriate parameter choices) provides baseline (OB)
and short-term or synoptic (OS) components defined
by

O(t,x,y) = OB(t,x,y) + OS(t,x,y). (8)

Equation (8) is practically realizable only when OB and
OS components are cleanly separated. Poor separation
leaves together in each component completely differ-
ent physical phenomena. Even when working only with
summer season ozone observations, which have
smaller variation in the baseline relative to a complete
year, separation is needed to provide the correct short-
term component.

f. Partition of variability
The ozone time series data for 437 stations located

across the United States, extracted from the EPA’s
AIRS for the 1983–94 time period (daily maximum
1-h ozone concentrations in ppb and daily maximum
temperature in °F), were separated into high-frequency
(weather related) and low-frequency components (sea-
sonal and long term) using the KZ filter. Baseline
ozone is defined as the sum of the seasonal and long-
term components:

baseline(t) = e(t) + S(t). (9)

Rao et al. (1996) simulated ozone time series data as

FIG. 9. Standard deviation of adaptively smoothed peri-
odogram; Cs = 0.008%.

FIG. 8. Same as Fig. 6 except adaptively smoothed; Cs
= 0.008%.
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O t t N o( ) ≅ ( ) + ( )baseline 0 2,σ , (10)

where N is the normally distributed random variable
with a zero mean and variance of σ

o
2. Similarly,

Eskridge et al. (1997) were able to recreate the tem-
perature time series data as

T t t N T( ) ≅ ( ) + ( )baseline 0 2,σ , (11)

where σ
0
 and σ

T
 are the standard deviations of the high-

frequency processes (the short-term component) in the
ozone and temperature time series data, respectively.

An estimate of the baseline was provided by the fil-
tered ozone or temperature:

estimate of baseline(t) = KZ
15,5

, (12)

where KZ
15,5

 refers to five passes of a simple moving
average of width 15 days. The effective filter width is
approximately 15(51/2) days, or approximately 33.5
days, which results in an approximate separation fre-
quency of 0.5/[15(51/2)] = 0.0149, or separation time of
approximately 67 days. From Table 1, we see that the
exact time of separation for KZ(15,5) is 1/0.0136
= 73.5 days. The baseline contains phenomena that
have a period longer than 73.5 days, and the residuals
of the filter, [O(t) − KZ

15,5
] or [T(t) − KZ

15,5
], contain

high-frequency processes.
One might ask why KZ

15,5
 rather than some other

choice of parameters. For any set of parameters, one
might also consider how well the synoptic variation
is separated from the baseline; that is, are the result-
ing components independent or is there some correla-
tion left between them (and, therefore, mixed energies)?
To answer these two questions, we will follow the
procedures outlined in sections 2c and 2d above.

Typically, one would find the separating frequency
(cutoff frequency) from the power spectrum. In the
case of ozone data, however, it is difficult to find the
frequencies at which the energy is concentrated
(Figs. 6 and 7). The classical solution to this inconve-
nience is to smooth the periodogram, which we have
done using the algorithm (DZ algorithm) constructed
by DiRienzo and Zurbenko (1997) and DiRienzo et al.
(1997). When there is information about {X

t
} at ω, it

is reflected by a sharp change in the spectra at ω, mo-
tivating one to construct a spectral estimate with vari-
able window width selected as follows. At each point
of estimation ω

k
, extend the width of the spectral win-

dow Φ
N
(•) until the local squared variation of the pe-

riodogram I
N
(•) within reaches a prespecified constant

value C
s
. This amounts to considering spectral esti-

mates  ˆf
N
(ω

k
):

ˆ ,

, , ,

f
r

I

k N N

N k
k

N k j
j r

r

k

k

ω ω( ) =
+ ( )

= − +

+
=−
∑1

2 1

2 1 2K
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where 2r
k 
+ 1 is the length of the window of the adap-

tive smoothing procedure, chosen such that r
k
 is the

largest integer satisfying:

I I CN k j N k j S
j r

r

k

k

ω ω+ + +
=−

−

( ) − ( )[ ]∑ 1

2
1

p . (14)

FIG. 10. Kernel for KZ(15,5) for (a) cut = 0.0136, Cs = 0.008%;
(b) cut = 0.0136, Cs = 0.004%.
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The adaptively smoothed periodogram uses a
spectral window that varies with location (different
from the S-plus smoothing procedure of Fig. 7, which
uses a modified Daniell smoother that has a fixed
value throughout the periodogram); the spectral win-
dow width is proportional to the local variation of the
periodogram. Variation in the periodogram is an in-
dication of information present in the data at that fre-
quency; in order not to destroy this information by
oversmoothing, we need to control the width of the
spectral window. We compute the total variation (TV)
of the periodogram, and we smooth on intervals where
its variation does not exceed a given constant C

s
. This

constant is better understood as a percentage of the
total variation, that is, C

s
/TV%. Therefore, at a given

frequency, we extend the spectral window until
the local variation reaches the value C

s
; this results in

averaging few points around frequencies with high
energies (information present) and averaging over

large sets of points where there is low energy (noise
present).

Following the DZ algorithm (DiRienzo et al. 1997;
DiRienzo and Zurbenko 1997), we produced an
adaptively smoothed periodogram that clearly shows
the high energy frequencies (Fig. 8). The baseline and
short-term components are clearly identified in the
adaptively smoothed periodogram, making selection
of the cutoff frequency an easy task. It is obvious from
Fig. 8 that the energy concentrated at the first peak
(mostly seasonal) is significant, but we are also con-
cerned with whether the second group of peaks at
about 20 days contains any information or should be
thought of as noise. Therefore, we computed the stan-
dard deviation for the adaptively smoothed peri-
odogram (Fig. 9) and compared the height of the
20-day peak (5 × 105) with the standard deviation at
that period (1.25 × 105). The proportion of the two (the
height of the peak is approximately 4 times larger than

its standard deviation) is very strong evi-
dence that the level of energy at that
period is significant, indicating the pres-
ence of some information in the short-
term component. Although several of the
peaks in the short-term component ap-
pear to be significant, from Fig. 8 we
observe that the energy is not concen-
trated at a single location. Further, the
magnitudes of energies decrease expo-
nentially (see Fig. 10b), an indication of
a Markov process. While this informa-
tion may be significant, it represents only
a small portion (about 2%) of the total
variation of the short-term component at
this location.

Figures 10a and 10b show the cutoff
frequency for the KZ

15,5
 and also the ker-

nel function as a measure of the correlation
between resulting components of the filter
KZ

15,5
. Because the two frequency regions

responsible for most of the variation in
the data are clearly outside a β-level in-
terval (with small β), we can conclude
that there will be very low correlation be-
tween resulting components of KZ

15,5
.

One would not go too far wrong if
they used filter parameters (15,5) for all
ozone monitoring sites. However, the
procedure outlined above for choosing
filter parameters will lead to slight dif-
ferences among ozone (and temperature)

FIG. 11. Variance of the ozone seasonal component for (a) year-round
monitoring and (b) 120-day summer season (15 May to 15 September).
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time series and, hence, should be repeated to assure
optimal results.

Sample estimates of individual components were
obtained as follows:

estimate of W(t) = O(t) − KZ
15,5

, (15)

estimate of e(t) = KZ
365,3

, (16)

estimate of S(t) = KZ
15,5

 − KZ
365,3

. (17)

The total variance of O(t) can be written as a sum
of the variances and covariances of the ozone compo-
nents separated by the filter:

σ2(O) = σ2(e) + σ2(S) + σ2(W) + 2 cov(e,S)
+ 2 cov(e,W) + 2 cov(S,W). (18)

The sum of covariance terms was typically less than 2%
of the total variance, indicating good separation of com-
ponents, as described above.

For data at 437 U.S. stations, long-
term fluctuations are a small fraction of
the total. More than 90% of year-round
and 95% of summer season monitoring
sites have long-term components that are
less than 10% of the total variation.
Median values (fraction of total variance
in the long term component) for year-
round and summer season fractions are
2.4% and 3.6%, respectively. Summer
season data have a greater relative con-
tribution of long-term and synoptic fluc-
tuations because the seasonal component
is reduced by about half.

Seasonal fluctuations account for up to
73% and 60% of the total variance in year-
round and summer season data, respec-
tively, with median values of 51% and
12%. Seasonal variance patterns are quite
different for year-round and summer sea-
son data. For year-round monitoring, sea-
sonal variance is lowest near coastal areas
and highest in a band from the Midwest
to the East Coast (Fig. 11a). For summer
season–only monitoring, there is no clear
pattern to seasonal variance. Values tend
to be highest on the West Coast and in the
Midwest, and low in the Southeast. How-
ever, sites with low seasonal variance can
be found throughout the United States.

Median synoptic (short term) fluctuations are 45%
and 77% for year-round and summer season data, re-
spectively. In relative terms, synoptic fluctuations tend
to be low in the Midwest and high in coastal areas. For
sites monitoring year-round or summer season–only,
areas of high short-term variance include the Northeast
and parts of the Gulf Coast (Fig. 12).

Taken together, Figs. 11 and 12 illustrate the
amount of energy associated with seasonal and syn-
optic processes across the United States. Long-term
variances are small in both relative and absolute
senses. Seasonal forces increase relative to synoptic
forces in a northeasterly direction. In an absolute sense,
the Northeast is a high energy region, having large
seasonal and synoptic variances.

g. Analysis of short-term (synoptic) component
As previously noted, ozone data are log-trans-

formed prior to filtering. Variance stabilization does
not lead automatically to normalization, however, and
the synoptic components are negatively skewed for

FIG. 12. Variance of the ozone short-term component for (a) year-round
monitoring and (b) 120-day summer season (15 May to 15 September).
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nearly every monitoring station (Fig. 13), probably at-
tributable to the variability in the synoptic-scale pro-
cesses responsible for the ozone accumulation and
removal. Other transformations, such as Box–Cox,
square root, etc., may produce W(t) that closely ap-
proach normality at every location. However, each
monitoring station would require a slightly different
transformation.

The independence of the W(t) were assessed by
analyzing their correlograms, which are consistent
with an ARMA(2,1) or ARMA(1,1) model:

[O(t) − KZ(15,5)] = Θ e(t − 1) + Φ
1
W(t − 1)

+ Φ
2
W(t − 2) + e(t) (19)

e ~ IID (0,σ2),

where IID  refers to independent and identically dis-
tributed random variables. The moving average com-
ponent is due to the moving average filtration [since

the estimate of W(t) is a difference be-
tween O(t) and a moving average], while
the autoregressive component is attribut-
able to correlation in day-to-day weather
phenomena. One-day lag correlations
ranged from 0.20 to 0.5, with a median
value of 0.35.

The filter effect is illustrated by
Fig. 14a, which shows the expected
correlogram of independent random
numbers subject to the KZ

15,5
. Significant

negative serial correlation extends to
about half the effective filter length. A
purely autoregressive process produces a
correlogram resembling Fig. 14b. The
correlograms of the estimated W(t) for
nearly all stations resemble Fig. 14c.

A few stations have very strong
weekly cycles, which produce significant
autocorrelations every 7 days. One might
also notice the resemblance between the
spectra of short-term ozone at a typical
site (Fig. 15a) and that for a Markov pro-
cess subject to filtration (Fig. 15b). The
decay in the height of the peaks follows
a similar pattern in both figures.

Some improvement in the simulation
of W(t) would result from using (19) but
at a cost of increasing complexity. In
particular, (19) requires four parameters,
whereas (10) and (11) need only 1.

The e-folding distance (the distance
at which the correlation drops to the 1/e value) for
short-term (synoptic forcing) ozone is on the order of
600 km. One can address the timescale for the short-
term component either by applying a mean wind speed
to the spatial scale or by examining the temporal (se-
rial) correlation in the short-term ozone time series
data. Based on the former, mean wind speeds in the
range of 8–20 km h−1 lead to timescales of about 1–3
days for ozone. For the latter approach, the short-term
component was assumed to follow an AR(1) process.
The e-folding times in the autocorrelation coefficient
of an AR(1) process were then calculated at 437 ozone
and 270 temperature monitoring stations in the United
States (Fig. 16). After accounting for the effects of fil-
tration, the e-folding times for short-term ozone were
found to range from about 0.5 to 2.5 days (Fig. 16b).
Ozone timescales are shorter in the Northeast than in
the Southeast. Examination of the timescales for short-
term (weather induced) surface temperature in

FIG. 13. Coefficient of skewness of the ozone short-term component for
(a) year-round monitoring and (b) 120-day summer season (15 May to 15
September).
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Fig. 16a suggests that ozone is associated with slower-
moving synoptic patterns in the Southeast and faster-
moving weather systems in the Northeast. High ozone
levels in the eastern United States are often associated
with a slow-moving high pressure system, a Bermuda
high, which results in near stagnant and disorganized
flow conditions conducive to the ozone accumulation
in the Southeast (Vukovich 1995). When the flow be-
comes organized as the high pressure system ad-
vances, the Northeast might then receive ozone, and
its precursors from transport around the high pressure
system and the flow could be fairly rapid in the North-
east. These results are consistent with those derived
from time-lagged intersite correlation analyses by
Brankov et al. (1997).

3. Space scales in baseline, short term,
and exceedances

a. Spatial information in baseline and short-term
components
Spatial correlations among the baseline compo-

nents in ozone remain relatively unchanged over a

distance of 300 km, indicating similar seasonal influ-
ences over this scale (Fig. 17a). Synoptic ozone
[Os(t,x,y)] contains a very precise spatial law related
to the directional decay of their spatial correlations
(Rao et al. 1995); that is there is a strong exponential
decay relationship in the correlation between two
monitors m

0
 and m′ and their distance of separation,

d, in direction φ:

correlation[OS(t,m
0
), OS(t,m′)] (20)

≈ exp[−a(m
0
, φ)d + b],

where “a” depends on reference monitor location
(x

0
,y

0
) and spatial direction φ (Fig. 17b). Stated in other

words, there is a Markov relationship between short-
term (synoptic) components in space.

Obvious in a physical sense is that a station m′′
downwind of station m′ does not have information
about m

0
: ozone transported to m′ or produced there

cannot be distinguished farther downwind at m′′. The
Markov property for a Gaussian process yields

OS(t,m′) = exp{−a d + b} OS(t,m
0
)

+ Oloc(t,m′), (21)

FIG. 14. Correlograms for (a) Gaussian white noise residuals
of KZ[N(0,1), 15,5] and (b) AR(1) process; (c) AR(1) process after
KZ(15,5) and typical of 1-h daily maximum ozone.

FIG. 15. Spectrums of (a) short-term ozone and (b) Markov
process.
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where Oloc(t,m′) is a local contribution portion at the
location m′. Therefore, (21) separates the transport
portion of Os(t,m′) from m

0
 to m′ and local production.

At distances of about 300 km, correlations in baselines
exceed 90% and contain about 60% of total process
energy. Figure 17b displays a 50% decline at distances
of about 400 km produced by (21) in the direction of
the prevailing wind (maximum transport direction).

Spatial correlations among short-term components
initially have a much greater rate of decay than is in-
dicated by the exponential relationship in Fig. 17b
(distances less than 15 km.). Fifteen kilometers
represents the scale of “direct” transport of ozone, as
well as the scale at which the exceedances (concen-
trations exceeding a given threshold) in combination
with deterministic models can yield accurate predic-
tions. Unfortunately, a monitoring network with sta-
tions every few kilometers is practically impossible.

FIG. 16. E-folding timescales (in days) for (a) surface temperature and (b) ozone.

At short distances (< 80 km), the decline
in a correlation plot determined by “b”
from (21) is related to the very short sur-
vival time of ozone (Hales 1996; Loibl
et al. 1994) and can be examined sepa-
rately if spatially dense ozone data are
available.

The exponential term in (21) is re-
lated to the synoptic transport of the
pollution, weather conditions, and the
emissions that created ozone. The coef-
ficient a (φ,x,y) smoothly depends on
(φ,x,y) and can be plotted in space using
a spatial filter [see for example Rao et al.
(1995) and Zurbenko et al. (1995)].
Correlations in the short-term compo-
nent for the same distance are about 70%
and contain about 40% of total process
energy. Since the baseline and short-term
components are nearly orthogonal, the
spatial prediction error in total ozone
over a distance of about 150 km will be
less than 20%. The decay of correlations
among short-term (synoptic) compo-
nents in temperature data is evident in
Fig. 17d. The exponential decay of
the correlations with distance along
the direction of the prevailing wind at
Charlotte, North Carolina, and Cincin-
nati, Ohio, presented in Fig. 18, reveal
e-folding distances (scales) for ozone
that are similar to those extracted from
the data in the Northeast.

b. Spatial relationship among ozone exceedances
Spatial correlations for exceedances (ozone con-

centrations exceeding the 0.12-ppm level) were cal-
culated from

correlation
t
{ E(t,x

0
,y

0
), E(t,x′,y′)} = C

E
(d,φ), (22)

where E(t,x,y) is an indicator of exceedances on day t
at location x,y; E(t,x,y) = 1 when an exceedance oc-
curs and 0 otherwise; d is the distance between m

0
 and

m′; and φ is direction. Correlations for exceedances
in space are calculated in the same way as for the syn-
optic component. Spatial correlations for exceedances
extend information only about 15 km and are indis-
tinguishable from zero for distances of more than
50 km (Fig. 17c). There are many examples where the
3-yr total exceedances are completely different within
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the range of 15 km. A plausible expla-
nation for the rapid decay of correlations
for ozone exceedances may be the spa-
tial inhomogeneity in the NOx levels in
an urban area and the importance of
chemical lifetime of ozone relative to the
advective time. Such high spatial vari-
ability necessarily requires a monitoring
density on a scale of about 5 km to cap-
ture all the exceedances. Thus, the space
and time scales associated with the
ozone exceedance metric render its use
as a control variable impractical.

4. Summary

In this paper, we have demonstrated
the need for separating the various spec-
tral components of ozone time series.
Separation leads to a clearer understand-
ing of ozone and its relationships to me-
teorological and precursor variables.
Any spectral-decomposition technique
(e.g., a wavelet transform) capable of
creating statistically independent short-
term, seasonal, and long-term compo-
nents will achieve the goal of providing
a better understanding of the underlying
physical processes that affect ambient
ozone concentrations.

Among the useful results of this
analysis are descriptions of spatial–
temporal information in ozone data,
needed for ozone management efforts. This informa-
tion, unavailable in a meaningful form from raw ozone
data, can be clearly displayed in the separated com-
ponents. In addition, baseline ozone retains global in-
formation on the scale of more than 2 months in time
and about 300 km in space. The short-term ozone
component, attributable to weather fluctuations, is
highly correlated in space, retaining 50% of the short-
term information at distances ranging from 350 to
400 km; in time, short-term ozone resembles a
Markov process with 1-day lag correlations ranging
from 0.2 to 0.5. Furthermore, the correlation structure
of short-term ozone permits highly accurate predic-
tions of ozone concentrations up to distances of about
600 km from a monitor. The ozone timescales in the
United States range from approximately 1 to 2.5 day
depending upon the monitoring location.

The geographical variation in the timescales for
ozone and temperature reveal that ozone in the South-
east is associated with slow-moving synoptic conditions
and fast-moving weather systems in the Northeast. The
timescale of approximately 1–2.5 day and the space scale
of about 600 km in ambient ozone data imply that ozone
in the eastern United States is a regional-scale problem.
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