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T he study of detection and attribution of climate
change addresses the issue of whether, and to
what extent, human-induced increases in green-

house gases have caused climate changes. Communi-
cation of the science and role of uncertainties on this
issue has been hindered by the lack of explicit formal
approaches for making overall conclusions on detec-
tion and attribution. We have developed a protocol
to quantify uncertainties in each component of the de-
tection and attribution process and to provide a struc-
tured way to make overall conclusions (Risbey et al.
2000). Here we describe results from use of the pro-
tocol with a set of climate experts.

Studies of detection and attribution of climate
change have focused first on “detecting” climate
change against the background of natural variability,

and further on “attributing” any detected signal to
increases in greenhouse gases or other possible causes
(Hasselmann 1998; Hegerl et al. 1997; Santer et al.
1996a; Zwiers 1999). Summary assessments of the
detection and attribution issue have tended to take a
qualitative approach to characterizing uncertainties
(Santer et al. 1996a; Barnett et al. 1999; Mitchell et al.
2001). This study outlines some of the major uncer-
tainties in detection and attribution, uses expert
judgements to quantify them, and gives an overall
quantitative assessment of detection and attribution
of climate change.

In making overall assessments on detection and
attribution of climate change, a variety of scientific
judgements are called for. These relate to the quality
of the underlying data needed to monitor climate
changes, to the quality of models used to assess pos-
sible causes of those changes, to the ability to moni-
tor the forcing of the earth system, and to model fu-
ture consequences. The probability-based protocol
employed here makes many of these underlying
judgements explicit. The protocol breaks the detec-
tion and attribution problem up into its component
steps and allows for uncertainties on each of these
judgements to be represented quantitatively via prob-
ability density functions (pdfs). The protocol was
completed by a set of 19 experts working in the field
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of detection and attribution studies (see Table 1). Note
that the order of experts has been scrambled in pre-
senting results to prevent identification with particu-
lar experts. Twenty-three experts were approached to
complete the protocol and four declined to do so. The
experts were selected to provide depth and diversity
in a range of different areas. For example, some were
data specialists, some modelers, some focused on
methods in detection and attribution, some were from
the Intergovernmental Panel on Climate Change
(IPCC) detection and attribution groups (Santer et al.
1996b; Mitchell et al. 2001), and some were not in
those groups. Further, they entertained a range of
views about the likely magnitude of greenhouse cli-
mate change. This sample of 19 experts is considered
to be indicative, but not exhaustive.

The first step in the detection and attribution pro-
cess is the determination of a set of lines of evidence,
Ei, i = 1, I, which serve as signifiers of climate change.
For each expert the protocol elicits lines of evidence
that are relatively independent in order to minimize
redundant information.1 The expert must then evalu-
ate the magnitude and uncertainty in each line of evi-
dence, since each will be associated with some uncer-

tainty deriving from incomplete and
biased datasets. This is done by eliciting
the pdf, f(Ei), for the observed change
over a specified period for each line of
evidence from the expert. The detection
step entails discriminating forced cli-
mate changes (Shine and Forster
1999) from internal natural variability
(Pelletier 1997). This requires an elici-
tation of the pdf, f(Ni), for natural vari-
ability in each line of evidence over the
same time period. The distributions,
f(Ei) and f(Ni) can then be compared
using statistical tests to see how similar
they are.

Following (Bell 1986) and (Zwiers
1999), the detector, Di , is defined as
Di = N(0, σ2

ni) when S = 0 (null hypoth-
esis); Di = N(S, σ2

si) when S ≠ 0 (alterna-
tive hypothesis), where D ~ N(µ, σ2) in-
dicates that D is normally distributed
with the mean, µ, and variance, σ2. The
null hypothesis of no climate change is
rejected at the p × 100% significance
level using a one-sided z test if the value
of the detector exceeds a critical value
Dc = Z1–pσ

2
ni, where Z1–p is the (1 – p)

quantile of the standard normal distri-
bution. The signal is “detected” when

the null hypothesis is rejected. The power of the test
or probability of detecting the signal when it is present
is given by
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The conventional form of detection described above
uses only information on the critical percentile of
f(Ni), and may be sensitive to the choice of critical
percentile. For that reason we perform detection tests
for a range of values of the critical percentile (1%, 5%,
10%, 20%). Detection implies rejection of the null
hypothesis at the critical percentile. This does not
identify the cause of any climate change or the con-
tribution of natural variability to observed changes.
It merely identifies the likelihood that the change ex-
ceeds the critical threshold.

1 For example, changes in global mean sea level are not consid-
ered because they are a fairly direct consequence of changes in
global mean temperature, which is a chosen line of evidence.
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For the attribution step, responsibility in explain-
ing observed trends (Ei) is partitioned out among
competing causes. These causes can include natural
variability as well as a range of various forcing pro-
cesses. The attribution step requires the experts to
identify this set of forcings, and to characterize their
patterns and magnitude. The set of forcings consid-
ered include changes in greenhouse gas forcing, aero-
sol forcing, solar forcing, volcanic forcing, and ozone
forcing. The uncertainty in each of the j forcings rel-
evant to a line of evidence, i, can also be represented
by a pdf, f(Fi,j). Once the forcings have been charac-
terized, the next step is to elicit pdfs attributing frac-
tional responsibilities from 0 (no responsibility) to 1
(complete responsibility) for each forcing in explain-
ing the detected signal. Note that any given forcing
could explain a vanishingly small fraction of the de-
tected signal with high probability or almost all of the
signal with vanishingly low probability. Calculation of
the attribution to each forcing requires a convolu-
tion of the forcing pdf and attribution pdf. This step
can be simplified for the expert elicitation process by
discretizing the range of values that each forcing, f(Fi,j)
can take, and by eliciting just the expected fraction,
Qi,j, of the detected signal for line of evidence, i, ac-
counted for by each forcing, j. These fractions pro-
vide a breakdown of the contributions of only those
forcings that could have caused a change in Ei in the
direction expected. For example, when the change in
Ei is positive, the Qi,j fractions provide a breakdown
of the total positive forcing (Σj Qi,j = 1).

The attribution model described here presupposes
a linear-additive model of the forcing, which is not
necessarily the case (Ramaswamy et al. 2001). Our
approach differs from more conventional approaches
to attribution described in (Zwiers 1999) in that we
do not explicitly compare model outputs to observa-
tions to make attributions to given forcings. That ap-
proach measures consistency between forced model
runs and observations, but could still yield high at-
tributions in the case where there was no signal
present—that is, the forced run is similar to observa-
tions, but the observations are dominated by natural
variability. In the present approach, the experts pro-
vide assessments of contributions from different
forcings, conditioned on the uncertainties in those
forcings. That is, the signal is partitioned on the basis
of estimates of the relevant forcing.

The final share of responsibility accorded to each
of the forcings (Ai,j) in partitioning changes in Ei in
the expected direction is adjusted to allow for contri-
butions from natural variability (Ai,nv), such that Σj Ai,j
+ Ai,nv = 1. In a hypothetical world in which we had

many realizations of climate change over the recent
period, the expected contribution from natural vari-
ability to the observed change would be zero. But since
we have only one real observed period to draw from,
it is possible that there were long-term excursions of
natural variability during this particular period that
contributed to the observed change. As for the forc-
ing, natural variability can only contribute when it has
the same sign as the expected change. The fractional
contribution of natural variability is calculated from
those cases where natural variability makes a contri-
bution to the expected change and is given by the ra-
tio Ni/Ei. Sampling from f(Ei) and f(Ni) in this way
leads to an expected contribution from natural vari-
ability, Ai ,nv, which can range from 0 to 1. Note that
when f(Ei) and f(Ni) are identical distributions, Ai,nv
= 1, and natural variability is responsible for all of the
observed change.

The results presented here for each step in the
above process were obtained in a set of detailed per-
sonal interviews (lasting between 4 and 8 h each)
where the experts offered probabilistic judgements as
well as the underlying rationale for their judgements.
Though results included attributions to all potentially
significant forcings, we isolate only outcomes for
greenhouse forcing here. Greenhouse forcing is po-
tentially most problematic among the forcings be-
cause of its magnitude and expected persistence
(Hansen and Lacis 1990; Hansen et al. 1998; Kasting
1998).

RESULTS. Lines of evidence. Four primary lines of
evidence resulting from the protocol are the
following:

M: The century-long trend in global mean surface
temperature (Jones et al. 1999);

V: The past 30-yr trend in vertical pattern of tem-
perature (Santer et al. 1996a; Tett et al. 1996;
Folland et al. 2001);

G: The past 30-yr trend in geographical pattern of
surface temperature (Santer et al. 1996b);

D: The past 30-yr trend in diurnal temperature range
over land (Karl et al. 1993; Folland et al. 2001).

The latter three lines of evidence use the shorter time
period because that is the period over which more
reliable observations are available and on which most
detection studies of these lines of evidence have been
carried out (Santer et al. 1996b; Mitchell et al. 2001).
For the detection and attribution exercise each line
of evidence is quantified using a single metric. The
vertical pattern of temperature is quantified as the
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temperature change at 50 hPa. This choice was made
because the stratospheric component is the aspect of
the vertical pattern that discriminates it from the sur-
face temperature change, and because we found that
experts had difficulty operating on the difference of
temperature between the stratosphere and lower tro-
posphere. The geographical pattern was quantified
as the temperature difference between land and
ocean areas (Karoly and Braganza 2001). This choice
does not capture all features of the geographical pat-
tern, but it is one of its more salient components.
These lines of evidence are fairly distinct (as judged
by expert assessments of the dependence among
them) and rely on a range of underlying physical
processes in response to greenhouse and other cli-
mate forcing.

Most experts are comfortable with the selection of
M, V, G, and D as core lines of evidence. While there
is a high level of agreement among the experts on the
appropriate lines of evidence to use to detect climate
change and differentiate greenhouse forcing, the se-
lection of lines of evidence is still a potential source
of bias. That is because lines of evidence were chosen
partly on the basis that they would be useful for find-
ing evidence of greenhouse climate change. Experts
tend to select lines of evidence that are already in the
literature, and such lines of evidence become estab-
lished in the literature because they are considered
indicative of greenhouse forcing. Were lines of evi-
dence chosen more generically to differentiate
nonspecified sources of climate change, a different set
might have been selected and results may be less in-
dicative of a greenhouse forcing signal.

Some experts did add other lines of evidence, but
the additional lines are rarely ranked high in terms
of utility for detection and attribution of greenhouse
climate change. The global mean, M, is generally
ranked first on the basis that it provides a good fit to
a priori estimates of greenhouse and aerosol-induced
climate change for a relatively long data record. It is
often coupled with the millennial timescale proxy
temperature record (Mann et al. 1998; Briffa and
Osborn 1999) on the basis that the latter highlights
the uniqueness of the trend in the century-scale
record. The vertical pattern, V, is generally ranked
second on the basis that it provides some ability to
discriminate between greenhouse and solar forcing at
upper levels where the expected signal direction is
opposed. The importance of V is diminished on the
basis that the data record is short (less than 40 yr), and
the stratospheric temperature signal is strongly con-
founded by changes in ozone concentration over the
period. Some point out that this confound is less im-

portant in the Tropics, where ozone-induced cooling
is likely to be less important than that due to green-
house gases. While many experts note that the geo-
graphical pattern, G, could be an important discrimi-
nator of greenhouse climate change, it is usually
ranked below V. This is because the observational
record for which broadscale global coverage exists is
relatively short, there is an overlap of data with the
global mean temperature, and there are few model
runs exploring the geographical pattern response to
a wide range of different forcing combinations. The
diurnal cycle, D, generally ranks last among the pri-
mary lines of evidence. This is because there is no clear
expectation about what signal to expect in response
to greenhouse or other forcing. Virtually all experts
cite the critical role of cloudiness in controlling
changes in D, and point to the fact that little is known
about controls on long-term (low frequency) cloudi-
ness changes.

Among the additional lines of evidence cited by
only a few experts, no single selection dominates.
Some cite changes in the annual cycle over the last
century, which shows more warming in winter than
summer (Karoly and Braganza 2001). This may help
discriminate between greenhouse and solar forcings,
since greenhouse forcing tends to reduce the annual
cycle, whereas solar forcing is concentrated in sum-
mer and would act to enhance it. Some experts sug-
gested that extreme events may eventually provide
opportunity for increasing signal-to-noise ratios for
detection, but that the existing observational records
are too short (Wigley 1999). Examples cited included
increases in precipitation intensity in the upper decile
of the precipitation distribution (Karl and Knight
1998). Another line of evidence cited is the concen-
tration of warming in dry, cold anticyclones in north-
ern winter (Michaels et al. 2000), which act as a
marker of greenhouse warming in regions with re-
duced water vapor feedback.

Sources and assessments of natural variability. Experts
tended to cite similar processes when asked to account
for the major sources of natural internal variability in
each line of evidence. For example, the major sources
of variability cited for M were: upper-ocean air–sea
exchanges (e.g., ENSO); deep-ocean circulation in-
cluding the thermohaline circulation; large-scale os-
cillations (natural modes) in the atmosphere [e.g., the
North Atlantic Oscillation (NAO)]; land surface pro-
cesses and changes (soil moisture, vegetation, land
use, hydrology); and snow and sea ice cover changes.
Experts were also asked to assess confidence in un-
derstanding and modeling of each of these processes
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as they relate to characterization of each line of evi-
dence. Responses were made on a qualitative five-
point scale following Moss and Schneider’s (2000)
characterization from “very high confidence” to “very
low confidence.” There was little agreement among
experts, with responses (for each process) ranging
from high to low confidence on assessments of un-
derstanding and the ability to model these processes.
In some cases experts noted that while understand-
ing of processes was reasonable, the appropriate
mechanisms had not yet been incorporated in climate
models, thereby diminishing confidence in the model
simulations.

For each line of evidence, respondents were asked
to make judgements about whether the natural vari-
ability was typically underestimated in models (less
than half the true natural variability), about right in
models (between half and one and a half times the
true natural variability), or overestimated in models
(greater than one and a half times the true natural
variability). For the global mean, M, little probabil-
ity mass was given to possible model overestimates
of natural variability. Experts typically assigned about
seven-tenths of the probability mass to “about right”
and the balance to “model
underestimated.” The excep-
tions were one expert who
reversed this allocation, and
one who assigned almost all
the probability mass to about
right. For the vertical pat-
tern, V, experts were less
consistent with one another
in assigning probability
masses, and tended to in-
crease the allocation of prob-
ability mass to the model un-
derestimate category. Some
experts placed the majority
of the probability mass in
this category, citing the fact
that climate models have
truncated stratospheres (re-
duced in vertical extent and
capped by a lid) with coarse
resolution. These experts
had low confidence in mod-
els simulating sufficient vari-
ability near the lid, and cited
the failure to generate a
quasi-biennial oscillation
(QBO) in the models. For
the geographical pattern, G,

most experts tended to allocate nearly equal probabil-
ity masses to models underestimating and being
about right. In general, the responses indicate that
model estimates of natural variability would be biased
on the underestimate side of about right (consistent
with Barnett 1999). Depending on the expert, this
bias may be moderate, or quite severe. The more se-
vere this bias, the more the detection studies would
overestimate levels of detection when drawing esti-
mates of natural variability from climate model
simulations.

Detection. The probability distributions characteriz-
ing century-long changes in global mean surface tem-
perature and natural variability for each expert are
shown in Fig. 1a. Experts are in good agreement on
the size of the century-long trend, with the smallest
95% confidence band expressed encompassing the
mean of almost all the other experts. The agreement
on the expected value of the trend in internal natural
variability over the period is not meaningful as that
would be close to zero by definition—the expected
value of any large ensemble of 100-yr periods should
tend toward zero in the absence of external forcing.

FIG. 1. The 95% confidence bands for each expert on the trend and natural
variability in (a) global mean surface temperature, (b) vertical temperature
pattern (50 hPa), (c) geographical pattern, and (d) diurnal temperature range.
The solid lines refer to the trend and the dashed lines refer to natural vari-
ability. Some distributions are missing because the expert felt the relevant
available data was too sparse to allow a reasonable assessment of the
distribution.
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The variation in expert assessment of the size of the
95% confidence band in natural variability spans a
factor of 5.

The probability of detection for the global mean
line of evidence M [denoted P(DM)] calculated from
these distributions [ f (EM) and f (NM)] is given in
Table 2 for the 5% level of significance. Detection
probabilities were also calculated for the 1%, 10%, and
20% significance levels (not shown). Results are some-

what sensitive to the significance level selected, with
detections increasing slightly as the level relaxes, as
would be expected. Bearing that in mind, we discuss
results for the 5% significance level. For the global
mean, M, a majority of experts reject the null hypoth-
esis of no climate change, thereby suggesting a near
consensus among experts for detection of climate
change as measured by the change in global mean
surface air temperature. The median probability of
detection for experts is high (~0.95) and the spread
across experts is relatively low. For the vertical pat-
tern, V, (Fig. 1b) detection probabilities are generally
higher (than for M) with even less spread across ex-
perts, though two experts did not provide data for this
line of evidence, citing low confidence in existing
observations and model results.

Results for the geographical pattern, G, and diur-
nal cycle, D, show far less support for detection of
climate change based on these lines of evidence. For
G, less than half the experts reject the null hypoth-
esis (detection) at 5% and 10% levels of significance.
For the diurnal cycle there is even less support for
detection. Five of the experts declined to provide an
assessment on the diurnal cycle. The rest are almost
evenly split between accepting the null hypothesis and
rejecting it. For the experts who do reject the null
hypothesis, the probabilities of detection are lower
than for M and V. For the geographical pattern and
diurnal cycle lines of evidence, expert judgements
tend to reflect both a lack of confidence in the avail-
able data and uncertainty on their role in detection
of climate change.

Attribution. The first part of the attribution process
entailed an assessment of uncertainty in the key
forcings for each line of evidence. The pdfs represent-
ing forcing uncertainty are discretized and then at-
tributions are made for each of the combinations of
discrete forcing cases. To keep the number of such
combinations manageable, solar and aerosol forcing
pdfs are represented by a “low” and “high” range only.
In the case of the global mean temperature line of
evidence, M, solar forcing low and high are defined
by less or more than 1 W m−  2 over the century and
aerosol low and high are defined by less or more nega-
tive forcing than 1.5 W m−  2. Experts produced a wide
range of estimates of the probability mass in each cat-
egory for each of the forcings. There is more expert
agreement in the case of solar forcing, with only five
experts allocating more than 30% of the probability
mass to solar forcing > 1 W m−  2, and all experts allo-
cating 50% or more probability mass to solar forcing
< 1 W m−  2. For aerosol forcing, all of the experts allo-

1 φ — φ φ

2 0.97 φ φ φ

3 0.99 0.99 φ φ

4 0.71 0.99 0.81 0.71

5 0.99 0.70 φ φ

6 0.99 0.99 0.70 0.95

7 0.99 0.99 φ —

8 0.77 0.99 φ 0.72

9 0.99 0.99 0.95 0.64

10 0.91 φ 0.80 φ

11 0.80 0.99 φ φ

12 0.78 0.87 φ φ

13 0.99 0.99 0.75 —

14 φ — φ 0.89

15 φ 0.99 φ —

16 0.64 0.98 φ φ

17 0.98 0.99 0.94 —

18 0.82 0.99 φ 0.75

19 0.93 0.91 0.72 —

median 0.95 0.99 0.80 0.73

c.v. ( )s
m 0.13 0.08 0.12 0.15

TABLE 2. Probability of detection for each line of
evidence [P(Di)]. In cases where the null
hypothesis is rejected (detection), the probabil-
ity of detection is given. Otherwise, acceptance
of the null hypothesis is indicated by “φφφφφ.....”
A “—” indicates that the expert declined to
provide an assessment. For the diurnal cycle
(D) this was typically because the expert did
not feel sufficiently well acquainted with the
data and/or did not have clear expectations
about what signal to expect.

Expert P(DM) P(DV) P(DG) P(DD)
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cate 50% or more of the probability mass to aerosol
forcing < 1.5 W m− 2, but fewer than half of the experts
allocate more than 70% of the probability mass to this
range. The low ranges of aerosol and solar forcing
above encompass most of the uncertainty range for
estimates of these forcings in (Shine and  Forster
1999) and (Ramaswamy et al. 2001)—that is, the so-
called low ranges here correspond to the more con-
ventional views of the forcings. The considerable
spread of probability mass across the low and high
forcing ranges for most experts is consistent with the
“low confidence” afforded aerosol and solar forcing
estimates in (Shine and Forster 1999) and
(Ramaswamy et al. 2001).

The fraction of the signal attributed to greenhouse
forcing, Qi,gh, for each line of evidence, i, is shown in
Table 3. The fraction 1–Qi,gh is the fraction attributed
to all other forcings. For both the global mean, M, and
geographical pattern, G, greenhouse forcing explains
more than half of the signal for most experts. For the
vertical pattern, V, and diurnal temperature range, D,
the fraction of responsibility attributed to greenhouse
forcings is much lower and the spread across experts
is higher. The median fraction of greenhouse respon-
sibility ascribed for V is only 0.2, reflecting the belief
that changes in ozone are more directly responsible
for recent stratospheric temperature changes.

The fractional attributions to greenhouse gases
reported in Table 3 represent averages over the un-
certainty in the relevant forcings. For example, the
attribution of greenhouse forcing to global mean tem-
perature, M, is a probability weighted average of the
attributions for low and high forcing combinations of
solar and aerosol forcing (described above). The ef-
fect of forcing uncertainty on attribution can be de-
termined by placing the entire probability mass in
either the low or high forcing case (i.e., assuming one
of these cases is true) and comparing the resulting
attribution values to those in Table 3. The results of
such an analysis for M are discussed below.

The effect of solar forcing uncertainty on global
mean temperature, M, is consistent across all experts.
Fractional attribution values assessed for the low so-
lar forcing assumption are within a few percent of the
weighted-average values in Table 3 for most experts.
For the high solar forcing case, most experts increased
the fractional attribution to solar forcing and de-
creased the attribution to greenhouse forcing, typi-
cally by about 10%. The results for aerosol forcing
uncertainty are more subtle and depend on whether
the expert considers attribution to be more sensitive
to uncertainty in forcing or to climate sensitivity. In
the former case, higher aerosol forcing (negative)

must be balanced by greater positive forcing. This
tends to increase attribution to nongreenhouse
forcings because they are typically less well known
than greenhouse forcing, and many believe they are
more plausible candidates for adjusting upward to
balance the increased negative forcing. If uncertainty
in climate sensitivity is considered more important
than uncertainty in forcing, then higher negative forc-
ing does not need to be balanced by higher positive
forcing to explain the observed trend. In this case the
trend can be explained by lower net positive forcing
and higher climate sensitivity. Experts making this
argument typically did not adjust attributions for the
high aerosol case. In either case the effect of aerosol

TABLE 3. Expected fraction attributed to
greenhouse forcing for each line of evidence
(Qi ,gh). The Qi,j = ΣΣΣΣΣkQi, j,kPk , where Pk = ∏∏∏∏∏     J

j =1, Pj ,k,
and Pj,k are the probability masses assigned to
each of the k discrete forcing cases.

1 0.84 0.04 0.77 0.78

2 0.75 0.15 0.77 0.23

3 0.75 0.25 0.72 0.50

4 0.63 0.20 0.44 0.40

5 0.71 0.40 0.71 0.78

6 0.70 0.20 0.70 0.39

7 0.72 0.20 0.61 —

8 0.65 0.20 0.56 0.30

9 0.82 0.25 0.60 0.30

10 0.75 0.20 0.70 0.60

11 0.60 — 0.60 0.30

12 0.61 0.15 0.47 0.59

13 0.61 0.45 0.50 —

14 0.50 — 0.50 0.80

15 0.80 0.20 0.80 —

16 0.40 0.40 0.42 0.60

17 0.74 0.20 0.75 —

18 0.77 0.50 0.49 0.30

19 0.74 0.50 0.77 —

median 0.72 0.20 0.61 0.45

c.v. ( )s
m 0.16 0.51 0.20 0.41

Expert QM,gh QV,gh QG,gh QD,gh
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forcing uncertainty on greenhouse attributions is
modest. For these experts then, the attributions set by
weighting the fractional attributions by the probabil-
ity masses assigned to each forcing range (as in
Table 3) are not substantially different from those that
would be obtained if the high or low forcing cases
alone were considered.

Overall attributions to each cause take into account
the role of natural variability as well as climate
forcings. Figure 2 provides a bar plot summary of the
expected contributions of greenhouse forcing, all
other forcing, and natural variability to the change in
each line of evidence. It shows the consistent (across
experts) high attributions to greenhouse forcing for
M (and to a lesser extent, G), the dominant role of
“all other forcings” in explaining changes in V, and
the large spread of expert assessments of the green-
house forcing contribution to changes in D. The fig-
ure also indicates a typically small role for contribu-
tions of natural variability to explain changes in M and
V, with more substantial contributions across experts
for G and D. There are some exceptions to this pat-
tern in each case. While most experts attribute nearly
all the responsibility for changes in M (and V) to forc-
ing, a few of the experts apportion larger
roles for natural variability. These experts
allow broader distributions for natural
variability (see Fig. 1). For both G and D
there are substantial contributions from
each  of greenhouse forcing, all other forc-
ing, and natural variability across experts
such that no one cause dominates.

After levels of attribution have been
determined for each line of evidence, it is
desirable to assess the implications of that
for a more general picture of climate
change than afforded by each line of evi-
dence alone. One such picture of climate
change is obtained by considering the set
of lines of evidence.2 These can be aggre-
gated in a variety of different ways. One
way is to set thresholds for the overall at-
tributions to each potential cause. For
example, a threshold of 0.5 would imply
that the cause must be responsible for half
or more of the change in each given line
of evidence. With that threshold, inspec-
tion of Fig. 2 indicates that greenhouse
forcing exceeds the threshold for some

lines of evidence for some experts. For the global mean
surface temperature line of evidence the threshold is
exceeded for all but three experts, while for the verti-
cal temperature pattern it is not satisfied for any of
the experts (see Table 4). The level at which such
thresholds are set can be modified to match the level
of responsibility deemed important, which is in part
a value judgement (Schneider 1989). Attribution
studies can evaluate the potential contributions from
different causes, but they cannot set the burden of re-
sponsibility required, since that entails broader social
judgements.

CONCLUSIONS. Among a varied sample of 19 ex-
perts engaged in studies of detection and attribution
of climate change, there are a number of issues on
which there is general agreement and a number on
which there is a broad spread of expert judgement.
Caution must be used in interpreting these results,
since expert agreement does not necessarily imply low
uncertainty (all experts may be wrong), just as expert
disagreement does not necessarily imply high uncer-
tainty (some experts may simply know better than
others). Nonetheless, on a contentious issue like de-

FIG. 2. Responsibility attributed to greenhouse forcing (black seg-
ment) [Ai,gh], all other forcing (medium gray segment) [Ai,oth], and
natural variability (light gray segment) [Ai,nv] in explaining the
change in (a) global mean surface temperature, (b) vertical tem-
perature pattern (50 hPa), (c) geographical pattern, and (d) di-
urnal temperature range for each expert. Note that Ai,gh = (1 –
Ai,nv)Qi,gh, where Ai,nv = m/nΣΣΣΣΣlN>0E>0 Nl /El , where l represents ran-
dom draws from f(Ni) and f(Ei), and m and n are the number of
draws where N and E are greater than 0, respectively, for posi-
tive trends.

2 The process of combining lines of evidence is
implicit in statements such as the “balance of
evidence suggests . . .” (Santer et al. 1996b).
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tection and attribution, it is useful to know where ex-
perts agree or disagree and why, along with some in-
dication of whether the disagreements are conse-
quential or not.

Expert agreement is strongest on some aspects of
the detection phase of the detection and attribution
problem. The characterization of natural variability
is the largest source of uncertainty at the detection
step, and there is a general belief that it has been un-
derestimated in model-based detection studies.
Experts are in agreement on selection of the key lines
of evidence that signify climate change, and there is
broad agreement that changes in the global mean (M)
and vertical pattern (V) are unlikely to be the result
of natural variability alone. For the geographical pat-
tern and diurnal cycle lines of evidence, there is much
more disagreement across experts.

Expert assessments of uncertainty in key forcings
of the different lines of evidence vary quite a bit. For
the global mean temperature (M) line of evidence, the
main forcing uncertainties assessed were aerosol and
solar forcing. One consistency that emerges is that
most experts allocate substantial probability mass
to  values of the forcings outside the conventional un-
certainty ranges for these forcings. The assessed ef-
fect of uncertainty in these forcings on greenhouse at-
tribution values is fairly modest, however.

In attributing causes to the observed changes, ex-
perts allocate the lion’s share (typically about 60%) of
the responsibility to greenhouse forcing for the glo-
bal mean surface temperature. Solar and all other
forcings and natural variability together account for
the minority of responsibility for this line of evidence.
For both the vertical pattern of temperature change
and the change in diurnal temperature range the re-
sponsibility allocated to greenhouse forcing is typi-
cally much lower. However, for these lines of evidence
the spread across experts is higher and several experts
declined to make assessments. In the case of the ver-
tical pattern, the low greenhouse forcing attributions
are largely due to ozone forcing in the stratosphere.
While these results suggest that the vertical pattern
is not very useful for discriminating a greenhouse sig-
nal at present, it may play a bigger role in the future
as the confounding effects of ozone forcing in the
stratosphere gradually diminish. For the diurnal tem-
perature range, experts point to higher uncertainty in
the expected response to greenhouse forcing, citing
key unknowns related to changes in cloudiness. This
high uncertainty may allow for a greater role for the
diurnal temperature in discriminating among differ-
ent forcings as more is known about the processes
governing its response.

Some of the details of the results reported here will
undoubtedly change as the evidence and science un-
derlying detection and attribution progresses. Expert
levels of confidence will change, new lines of evidence
will be added, and some will fall from favor. However,
it is interesting to note that as of circa 2000, there is a
high level of confidence in detection of climate change
based on changes in global mean temperature and in
the vertical pattern of temperature change. There is
also general agreement that points to a substantial role
for greenhouse forcing in contributing to global mean
surface temperature changes, and scattered support
for a greenhouse role for the other lines of evidence
examined. The change in global mean surface air tem-
perature appears to be the single most important line
of evidence in the detection of climate change and
attribution to anthropogenic causes.

1 ◊ — — —

2 ◊ — — —

3 ◊ — ◊ —

4 ◊ — — —

5 ◊ — — ◊

6 ◊ — ◊ —

7 ◊ — — —

8 ◊ — — —

9 ◊ — ◊ —

10 ◊ — ◊ —

11 ◊ — — —

12 ◊ — — —

13 ◊ — — —

14 — — — ◊

15 — — — —

16 — — — —

17 ◊ — ◊ —

18 ◊ — — —

19 ◊ — ◊ —

TABLE 4. Cases where the fractional contribu-
tion of greenhouse forcing to changes in each
given line of evidence exceeds an arbitrary
threshold of 0.5—indicated by “◊◊◊◊◊.....”

M V G D
 Expert ∆∆∆∆∆Tsurface ∆∆∆∆∆T50hPa ∆∆∆∆∆Tland-ocean ∆∆∆∆∆ DTR



1326 SEPTEMBER 2002|

ACKNOWLEDGMENTS. This work was funded by the
NOAA Climate and Global Change Program. We are grate-
ful to the set of experts listed in Table 1 for their participa-
tion and feedback. Thanks are also due to Peter Reichert,
Peter Reinelt, Urmila Diwekar, Benoit Morel, and Karl
Braganza.

REFERENCES
Barnett, T., 1999: Comparison of near-surface air tem-

perature variability in 11 coupled global climate
models. J. Climate, 12, 511–518.

——, and Coauthors, 1999: Detection and attribution of
recent climate change: A status report. Bull. Amer.
Meteor. Soc., 80, 2631–2659.

Bell, T. L., 1986: Theory of optimal weighting of data to
detect climate change. J. Atmos. Sci., 43, 1694–1710.

Briffa, K. R., and T. J. Osborn, 1999: Seeing the wood
from the trees. Science, 284, 926–927.

Folland, C., and Coauthors, 2001: Observed climate vari-
ability and change. Climate Change 2001: The Scien-
tific Basis, J. T. Houghton et al., Eds., Cambridge
University Press, 99–181.

Hansen, J., and A. Lacis, 1990: Sun and dust versus
greenhouse gases: An assessment of their relative
roles in global climate change. Nature, 346, 713–719.

——, M. Sato, A. Lacis, R. Ruedy, I. Tegen, and
E. Matthews, 1998: Perspective: Climate forcings in the
industrial era. Proc. Natl. Acad. Sci., 95, 12 753–12 758.

Hasselman, K., 1998: Conventional and bayesian ap-
proach to climate-change detection and attribution.
Quart. J. Roy. Meteor. Soc., 124, 2541–2565.

Hegerl, G., K. Hasselmann, U. Cubasch, J. F. B. Mitchell,
E. Roeckner, R. Voss, and J. Waszkewitz, 1997: On
multi-fingerprint detection and attribution of green-
house gas- and aerosol-forced climate change. Cli-
mate Dyn., 13, 613–634.

Jones, P. D., M. New, D. Parker, S. Martin, and I. Rigor,
1999: Surface air temperature and its change over the
past 150 years. Rev. Geophys., 37, 173–199.

Karl, T., and R. Knight, 1998: Secular trends of precipi-
tation amount, frequency, and intensity in the United
States. Bull. Amer. Meteor. Soc., 79, 231–241.

——, and Coauthors, 1993: Asymmetric trends of daily
maximum and minimum temperature. Bull. Amer.
Meteor. Soc., 74, 1007–1023.

Karoly, D. J., and K. Braganza, 2001: Identifying global
change using simple indices. Geophys. Res. Lett., 28,
2205–2208.

Kasting, J., 1998: The carbon cycle, climate, and the long-
term effects of fossil fuel burning. Consequences, 4,
15–27.

Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998:
Global-scale temperature patterns and climate forc-
ing over the past six centuries. Nature, 392, 779–
787.

Michaels, P. J., P. C. Knappenberger, R. C. Balling Jr.,
and R. E. Davis, 2000: Observed warming in cold
anticyclones. Climate Res., 14, 1–6.

Mitchell, J., and Coauthors, 2001: Detection of climate
change and attribution of causes. Climate Change
2001: The Scientific Basis, J. T. Houghton et al., Eds.,
Cambridge University Press, 695–738.

Moss, R., and S. H. Schneider, 2000: Towards consistent
assessment and reporting of uncertainties in the
IPCC TAR: Initial recommendations for discussion
by authors. Intergovernmental Panel on Climate
Change Tech. Report, IPCC Guidance Paper, 35 pp.

Pelletier, J., 1997: Analysis and modeling of the natural
variability of climate. J. Climate, 10, 1331–1342.

Ramaswamy, V., and Coauthors, 2001: Radiative forc-
ing of climate change. Climate Change 2001: The Sci-
entific Basis, J. T. Houghton et al., Eds., Cambridge
University Press, 349–416.

Risbey, J. S., M. Kandlikar, and D. J. Karoly, 2000: A pro-
tocol to articulate and quantify uncertainties in cli-
mate change detection and attribution. Climate Res.,
16, 61–78.

Santer, B., and Coauthors, 1996a: A search for human
influences on the thermal structure of the atmo-
sphere. Nature, 382, 39–46.

——, T. M. L. Wigley, T. Barnett, and E. Anyamba,
1996b: Detection of climate change and attribution
of causes. Climate Change 1995: The Science of Cli-
mate Change, J. T. Houghton et al., Eds., Cambridge
University Press, 407–443.

Schneider, S. H., 1989: The greenhouse effect—Science
and policy. Science, 243, 771–781.

Shine, K., and P. de F. Forster, 1999: The effect of hu-
man activity on radiative forcing of climate change:
A review of recent developments. Global Planet.
Change, 20, 205–225.

Tett, S., J. F. B. Mitchell, D. Parker, and M. Allen, 1996:
Human influence on the atmospheric vertical tem-
perature structure: Detection and observations. Sci-
ence, 274, 1170–1173.

Wigley, T. M. L., 1999: The science of climate change:
Global and U.S. perspectives. Tech. Report, Pew
Center on Global Climate Change, Arlington, VA,
48 pp.

Zwiers, F. W., 1999: Climate Change Detection: A re-
view of Techniques and Applications. Anthropo-
genic Climate Change. Proceedings of the First GKSS
Spring School on Environmental Research, H. Storch,
E. Raschke, and G. Flöser, Eds., Springer Verlag,
161–203.


