Water is essential to life on Earth, and precipitation is the hydrologic cycle's key process by which the fresh-water supply gets regenerated. It comes at no surprise, therefore, that substantial research has been conducted toward a better understanding of precipitation formation and its distribution in space and time. Despite a great wealth of papers published in the literature, however, there aren't many textbooks focused on precipitation per se. The book by Ian Strangeways attempts to fill this void. *Precipitation: Theory, Measurement and Distribution* promises to cover a lot of ground in educating the reader about past and present theories of precipitation (discussed in parts 1 and 2), the challenges of measuring precipitation (part 3), and the global distribution of precipitation (part 4). The last section of the book (part 5) discusses envisioned future developments.

Journal articles and textbooks tend to teach us understanding in a straightforward manner. In reality, the path of learning and gaining insights rarely occurs in linear fashion, but instead is littered with dead-ends, detours, and failures of making progress. Strangeways's book presents a refreshing account of knowledge acquired by trial and error throughout many centuries. The historical aspects provide an interesting collection of schools of thought and the journey of discovery across the past few thousand years from the Greeks to the present, and these recollections are nicely spiced up with quotes ranging from ancient philosophers to modern-day researchers.

Strangeways's discussion of the current understanding of precipitation processes, the measurement of precipitation, and the global distribution of precipitation touches on the relevant points, but at a cost of limited depth. The book provides for easy, descriptive reading, but remains qualitative with essentially no analytical or mathematical treatment (e.g., I counted only 13 equations throughout the entire book). Clearly, Strangeways opted for covering breadth rather than depth, which is understandable in light of the vast subject matter (and probably a page limitation imposed by the publisher). However, it would have been helpful to get more pointers for further in-depth reading (i.e., textbooks or review papers that cover key aspects in more detail).

The book draws heavily upon the author's experience of measuring precipitation, which is particularly reflected in chapter 8 (part 3), on "Measuring Precipitation with Rain gauges." It is surprising, though, that Strangeways doesn't include an in-depth discussion of lysimeters, which would be highly educational as the ultimate (albeit expensive) tool to simultaneously measure precipitation, evaporation, and runoff, and discuss their interplay as part of the hydrologic cycle. In chapter 9 ("Measuring Snow"), the book misses the opportunity to introduce the Hotplate Total Precipitation Sensor (see Rasmussen et al. 2005), manufactured and marketed by Yankee Environmental Systems Inc., which represents an intriguing and innovative recent development in precipitation measurement that avoids problems associated with traditional volumetric or weighing rain gauges. In particular, the Hotplate's "sensor head consists of two isolated plates warmed by electrical heaters. During storms, it measures the rate of rain or snow by how much power is needed to evaporate precipitation on the upper plate and keep its surface temperature constant. The second plate, positioned directly under the evaporating plate and heated to the same temperature as the top, is used to factor out cooling from the wind" (quoted from the manufacturer's description: www.yesinc.com/products/data/tps3100/TPS-3100ds.pdf).
The book sketches the mean, trends, and variability of precipitation at the global climate scale (part 4); however, it falls short by not providing a discussion of the great spatial and temporal variability encountered at the meso- and smaller scales, which directly affect our daily lives (e.g., through impacts of severe weather; heavy rainfall and flooding; or freezing rain, snow, and ice). Addressing precipitation variability and extremes across the full range of relevant space and time scales would provide valuable and practical information for observing network and other design purposes (i.e., a topic one could have elaborated on in the book).

In his final section (part 5), Strangeways emphasizes the important need for improved observing capabilities. This is definitely in line with the findings from a 2009 report of the National Research Council titled “Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks,” which provides an assessment of our observational limitations and needs (focused on the United States, but also relevant elsewhere). Unfortunately, Strangeways misses the opportunity in his book to lay out key unanswered scientific questions that need to be addressed in order to make progress in our understanding of precipitation processes and how climatic changes might affect them. It is only through improved process understanding (which arguably requires good observations, but also analytical insights and skillful modeling) that we may be able to learn how to adapt to climate change and provide human society with enough food, fresh water, energy, and safe transportation on the ground, in the air, and in space. In fact, dwelling on that would be a really beneficial topic deserving its own book. Burroughs’s (1997) Does the Weather Really Matter? provides for thought-provoking reading along those lines.

In summary, Strangeways’s book is written from an observational perspective, but lacks depth in terms of facilitating quantitative understanding of precipitation processes. It may be appealing to an audience of generally interested readers, undergraduate students, and possibly science historians. The book might foster a better appreciation of the variety of sources of precipitation data and what it entails to measure precipitation by in situ and remote sensing. However, because of its rather qualitative discussions, this book is not recommended as a text for a graduate course in atmospheric or hydrologic sciences, and it may be of limited value as a reference to professionals needing further practical details. Instead, instructors, students, and researchers looking for an in-depth treatment of precipitation may be better

NEW PUBLICATIONS

ADVANCED NUMERICAL MODELS FOR SIMULATING TSUNAMI WAVES AND RUNUP

This volume includes five review papers on various numerical models: a review of the theoretical background for depth-integrated wave equations; a description of high-resolution finite volume methods for solving nonlinear shallow water equations; and discussions of three recently introduced advanced 3D numerical models. The book also contains 11 extended abstracts submitted by participants at the Third International Workshop on Long-Wave Runup Models.

GLOBAL WARMING: THE COMPLETE BRIEFING (FOURTH EDITION)

The new edition of this textbook, written for undergraduate students across a wide range of disciplines, is now in full color and includes the latest IPCC findings. It explores numerous questions relating to the science and impacts of global climate change, including: Is there evidence for climate change due to human activities? How do we account for recent extremes of weather and climate? Can global electricity provision and transport ever be carbon free? And why should we be concerned?

CLOUDS

This book, which dedicates a chapter to each of the 10 major cloud types, combines science with art. It presents approximately 100 diverse cloud photographs in full color, with captions that help to explain the science behind the pictures. Additionally, a fully illustrated scientific overview at the back of the book helps to explain how to recognize the different cloud types and discusses their significance for Earth’s climatic regulation.

—MATTHIAS STEINER

Matthias Steiner is deputy director of the Hydrometeorological Applications Program at the Research Applications Laboratory (RAL) of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado.

FOR FURTHER READING

In recent years, the accessibility of electronic publishing has led to a rapid increase in the number of publications that we might call popular interest local books. Most are small paperbacks, with copious black and white illustrations and a rather short text written in a breezy style, delving into some aspect of local history or environment. Great Hurricanes of North Carolina is a representative of this genre, and has its typical strengths and weaknesses. The strength is that it introduces the readership to the reality of hurricanes as major destructive forces along the North Carolina coast. Written in a straightforward manner by an historian, the emphasis is on the impact of these events on people and property, inevitably emphasizing death and destruction. The book starts with a brief historical overview of hurricane frequency and impact along the Carolina coast, and our evolving observation and understanding of these storms. Thereafter, a chronological approach is adopted, starting with the storm of 1775. For that event and the five storms of the succeeding century somewhat subjectively defined as “great,” most of the information presented consists of quotes from reports or letters based on eyewitness accounts. This commonly leads to statements about the names and number of people or vessels lost at sea, and a few comments about land-based destruction. This rather fragmentary evidence is not synthesized to give character to each individual storm, and so they all begin to blend together. The situation improves in the late nineteenth century as observations, both instrumental and human, increase. Wind speeds, storm surge, and barometric pressure values begin to appear, and there is more regard for the track, both prior to and upon landfall in North Carolina. Although these are often given as seemingly random facts, these later chapters do contain basic considerations of hurricane character, such as the nature of the eye and eyewall, the importance of the right front quadrant, or the impact of the speed of movement. The final chapter is a brief look at the storms of the late twentieth century, which leads to an epilogue stressing the fact that these storms have always been with us, and will continue to arrive. Concern is expressed here that the region is now much more heavily populated, and should one of the major storms described earlier in the book come ashore now, disaster is more or less guaranteed. The entire book in many ways seems to be working to that final set of statements. That probably is its greatest strength.

Looking back at the Bulletin of November 1927:

Meteorological Robots

The New York Times for Sunday, October 23, 1927, contained a vivid account of the possible uses to which the “Electrical Man” recently invented by R. J. Wensley, of the Westinghouse Company, might be put. Actually the “Televox” has been designed to perform certain duties in automatic substations, and is already in use recording the height of water in Washington reservoirs. But the illustrator, with soaring imagination, pictured a box-like creature with the arms of a man, turning on an electric light, lighting the oven, sounding with a pole in a mountain reservoir, and recording with a pencil temperatures in a notebook. It is this last that suggests the Weather Bureau of the future. Gone are the Section Directors, Assistant Meteorologists, and Junior Observers who at present draw munificent salaries from a generous government. Instead there are thousands of meteorological robots distributed throughout the country, and in Washington a Chief who can sing, because it is music that strikes a responsive chord in the robot breast. Thus at the appointed time the Chief at his Washington desk lifts the receiver from his phone and sings “tum tum ti ta” (How’s the weather in Tonopah?), and back comes the requisite data without a hitch. Besides the benefit to the tax payers of such an army of robots drawing no salaries and eating no food, there would be the added advantage of a calm and contented citizenry. No longer would a irate citizen call up a station to know why it is raining when the forecast said fair. If he did he would be met by a dignified silence.

—Bull. Amer. Meteor. Soc., 8, 174
My major concern is that there are some weaknesses that may prevent the reader from penetrating far enough to get the full impact and validity of that final message. The text is often repetitive in words and phrases. There are few illustrations—fewer than is usual for this type of book—and several for the various early storms also seem somewhat interchangeable. To differentiate storms, and to reinforce the final warning, we need to be made more aware—through maps and diagrams—of the different tracks hurricanes can take. Some mention of the tracks of hurricanes occurring between the “great” ones would give some context on how a small difference in track can have a major difference in impact. Somewhat fuller references to impacts inland of the coast, currently given mostly in passing, would reinforce this idea. Only then can we really appreciate the changing potential for damage, not just from track changes but also from social changes within the state. The scattering of such ideas through the text would at least make the dire warning of the final section a logical conclusion to the narrative.

From a meteorological perspective, these comments suggest that a final editing of the text was needed. Like many books of this genre, I get a feeling of superficiality. The general outline is reasonable, and there seems to be little wrong with the facts, but the work doesn’t go beyond a simple collection of facts. Each storm is treated as an isolated, largely independent event. The author has made no attempt at a synthesis, so we don’t have insights into the nature of hurricanes, or into the nature of the people who sailed on and lived near the waters where the storms have an impact—or into the disaster waiting to happen. Taken together, the few references to atmospheric processes scattered throughout the work do describe the basic meteorological features of hurricanes. But without an index, there is no possibility of tracking them down.

Who, then, is the intended audience? There is already a well-received and well-established comprehensive study of coastal hurricanes in North Carolina (Barnes 2001), meeting the needs of local residents and interested visitors alike. The audience for most books of the genre involved here seems to be local residents who will readily connect with the stories and pictures in the book. In this case they will need a detailed knowledge of the location of settlements—even small settlements—all along the North Carolina coast, and of the previous and current names of these places. The book contains few pictures, and there don’t seem to be many connection points for local people. The small format and brevity of the book seem to suggest the work is more likely to appeal to the casual visitor to the state rather than the permanent resident. Indeed, I envision a reader sitting on the beach on a sunny summer day immersed in past events that couldn’t possibly happen to him or her in modern times. Or could they?

—PETER J. ROBINSON

Peter J. Robinson, CCM, is professor of geography at the University of North Carolina, Chapel Hill, and director of the NOAA Southeast Regional Climate Center.

FOR FURTHER READING

AMS MEMBERS RECEIVE DEEP DISCOUNTS ON ALL TITLES!

MID-LATITUDE WEATHER SYSTEMS

Syntopic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders
EDITED BY LANCE F. BOSART AND HOWARD B. BLUESTEIN
Sixteen articles from authors including Kerry Emanuel, Robert Burpee, Edwin Kessler, and Louis Uccellini cover the evolution of the fields of forecasting, weather analysis, synoptic meteorology, and climatology. © 2008, HARDCOVER, 416 PAGES
MM VOL. 33, NO. 55
LIST $120 MEMBER $80

Northeast Snowstorms
(Volume I: Overview, Volume II: The Cases)
PAUL J. KOCIN AND LOUIS W. UCCELLINI
The most comprehensive treatment of winter storms ever compiled: two volumes of case studies, insights, historic photos, 200 color figures, and a DVD with high-resolution digital model-based data for all storms. © 2004, TWO HARDCOVER VOLS, 818 PGS
MM VOL. 32, NO. 54
ISBN 978-1-878220-64-6, AMS CODE: MM54
LIST $100 MEMBER $80 STUDENT MEM. $60

Mid-Latitude Weather Systems
T. N. CARLSON
A fusion of the mathematical and descriptive fields of meteorology that integrates a discussion of synoptic and dynamic approaches. An invaluable course text and reference source describing the underlying processes and behavior of mid-latitude weather patterns. © 1998, PAPERBACK, 507 PAGES
LIST $52 MEMBER $42 STUDENT MEM. $32

The Life Cycles of Extratropical Cyclones
EDITED BY MELVYN A. SHAPIRO AND SIGBJORN GRUNNTE
A collection of the expanded versions of papers presented at the International Symposium on the Life Cycles of Extratropical Cyclones, held in Bergen, Norway, in June/July 1994. This monograph is of interest to historians of meteorology, researchers, and forecasters. © 1999, HARDCOVER, 359 PAGES
LIST $75 MEMBER $55

CONVECTIVE PROCESSES & SEVERE STORMS

Severe Convective Storms
EDITED BY CHARLES A. DOWELL III
A collection of 13 review papers that together provide a summary of the current scientific understanding of convective storms and the weather they produce. Outstanding illustrations. © 2001, HARDCOVER, 570 PAGES
MM VOL. 28, NO. 50
LIST $110 MEMBER $90 STUDENT MEM. $75

Mesoscale Meteorology and Forecasting
EDITED BY PETER S. RAY
A collection of papers given at the Intensive Course on Mesoscale Meteorology and Forecasting in 1984. Includes mesoscale classifications, observing techniques and systems, internally generated circulations, mesoscale convective systems, externally forced circulations, modeling, and short-range forecasting techniques. © 1986, HARDCOVER, 753 PAGES
AMS CODE: MESOMET
LIST $76.25 MEMBER $66.25 STUDENT MEM. $56.25

REMOTE SENSING

Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas
EDITED BY ROGER M. WAKINOTO AND RAMESH SRIVASTAVA
This gathering of papers written by the field’s most distinguished scientists for a symposium in honor of Dr. Atlas will stimulate the next generation of radar meteorologists and serve as a comprehensive resource for scientists and educators alike. © 2003, HARDCOVER, 270 PAGES
MM VOL. 30, NUM. 52
ISBN 978-1-878220-57-8, AMS CODE: MM52
LIST $100 MEMBER $80

Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference
EDITED BY DAVID ATLAS
This fully illustrated volume covers the history of radar meteorology, discusses issues in the field from both the operational and the scientific viewpoint, and looks ahead to future challenges and opportunities. © 1990, HARDCOVER, 806 PAGES
LIST $111 MEMBER $91 STUDENT MEM. $75

ORDER TODAY! GOTO amsorder@ametsoc.org CALL 617-227-2426 ext. 686 OR use the order form in this magazine
The AMS Weather Book: The Ultimate Guide to America's Weather

JACK WILLIAMS

WITH FOREWORDS BY RICK ANTHEIS, PRESIDENT OF NCAR, AND STEPHANIE ABRAMS OF THE WEATHER CHANNEL

Former USA Today Weather Page editor Jack Williams has written the most comprehensive, up-to-date guide to the weather and atmosphere, covering everything from daily weather patterns to air pollution and global warming. This book serves as a primer on the science behind the weather, and shows how integral oceanic and atmospheric science are to navigating our place in the physical world. It is also the ultimate reference for anyone working in the fields of meteorology and climatology.

LIST $35 MEMBER $25

CLIMATE CHANGE

The Forgiving Air: Understanding Environmental Change, 2nd edition

RICHARD C. J. SOMERVILLE

This perfectly accessible little book humanizes the great environmental issues of our time... and gets timelier by the minute. Richard Somerville, Coordinating Lead Author for the IPCC's recent report, presents in clear, jargon-free language the remarkable story of the science of global change, including the atmospheric phenomena of the ozone hole, changes in the greenhouse effect, acid rain, and air pollution.

©2008, PAPERBACK, 224 PAGES
LIST $22 MEMBER $16
ASK ABOUT THE HISTORIC ARCHIVE OF CALLENDAR'S PAPERS AVAILABLE ON DVD.

The Callendar Effect: The Life and Work of Guy Stewart Callendar (1898-1964)

JAMES RODGER FLEMING

A "must read" for understanding the history of climate change science, this award-winning biography of unsung scientist G. S. Callendar describes both his defense-related work during the World Wars and how, in the intervening years, he quietly laid the foundation for the anthropogenic theory of climate change.

© 2007, HARDCOVER, 176 PGS
LIST $34.95 MEMBER $24.95

HISTORY & BIOGRAPHY

Lewis and Clark: Weather and Climate Data from the Expedition Journals

EDITED BY VERNON PRESTON

The Lewis and Clark Expedition of 1803-06 experienced a wide range of weather and climate—and systematically recorded their data as they went. This collection of data from their journals is organized by date and includes descriptions of where the expedition was in their 4,162-mile journey as they experienced the weather and climate. A compelling resource for weather, history, geography, and Lewis and Clark buffs alike, as well as for scientists looking back at weather and climate in the early 1800s U.S.

LIST $90 MEMBER $70

A Half Century of Progress in Meteorology

EDITED BY RICHARD H. JOHNSON AND ROBERT A. HOUZE JR.

Through a series of reviews by invited experts, this monograph pays tribute to Richard Reed's remarkable contributions to meteorology and his leadership in the science community over the past 50 years.

LIST $80 MEMBER $60

Railroads and Weather: From Fogs to Floods and Heat to Hurricanes

STANLEY A. CHANGNON

This award-winning "must read" for weather and railroad buffs is the first book to cover the impacts of major storms of the last hundred years on this massive American industry. Includes 120 historic and color train photos and special Katrina coverage.

© 2006, HARDCOVER, 136 PAGES
LIST $29.95 MEMBER $24.95

FREE DOMESTIC SHIPPING!
$15 SURCHARGE APPLIES TO ALL INTERNATIONAL ORDERS.
SHIPPING POLICY SUBJECT TO CHANGE.
For a complete list of AMS Books go to ametsoc.org/pubs/books
CALL FOR
AMS LECTURE
NOMINATIONS

DUE BY OCTOBER 1, 2009

The STAC Committee(s) responsible for the selection process (highlighted in the terms of references listed below) are currently seeking sponsors to nominate qualified candidates for the 2011 Lectures.

A Lecture nomination form, along with a list of previous Lecturers, is available on the AMS Web site at www.ametsoc.org/awards/awarddescriptions.html.

You are encouraged to submit nominations for your colleagues to Chair, Awards Oversight Committee, AMS, 45 Beacon Street, Boston, MA 02108 or e-mail Roger Wakimoto, STAC Commissioner (wakimoto@ucar.edu).

The Robert E. Horton Lecturer in Hydrology

The Robert E. Horton Lecturer in Hydrology is selected in recognition of eminence as a scientist, or for outstanding research on topics of interest to both hydrologists and meteorologists. The purpose of the lectureship is to encourage and foster an interchange of ideas between meteorologists and hydrologists. It is named for Robert E. Horton (1875–1945), whose career was distinguished by important assignments involving intricate hydrometeorological problems and by contributions to the sciences of meteorology and hydrology embracing all phases of the hydrologic cycle. The lecture, which may be either a general overview or a summary of recent work conducted in an area of particularly current interest, is presented at an AMS Annual Meeting or at an appropriate topical meeting. The lecture may be recorded for broader dissemination and, if desired by the author, a written version of the lecture will be posted as part of the BAMS online. The Lecturer is presented with a certificate. Recommendation of a Lecturer is made by the Committee on Hydrology.

The Bernhard Haurwitz Memorial Lecturer

The Bernhard Haurwitz Memorial Lecturer is selected in recognition of significant contributions to the understanding of atmospheric and oceanic fluid dynamics, the circulation of the middle atmosphere, or the dynamics of climate. The lecture is presented at the AMS Annual Meeting or at an appropriate topical meeting. The lecture may be recorded for broader dissemination and, if desired by the author, a written version of the lecture will be posted as part of the BAMS online. Recommendation of a Lecturer is made by a five-person panel selected by the STAC Commissioner, which consists of the Commissioner (as chair) and two members from the Atmospheric and Oceanic Fluid Dynamics Committee, one member from the Middle Atmosphere Committee, and one member from the Committee on Climate Variability and Change.

The Walter Orr Roberts Lecturer in Interdisciplinary Sciences

The Walter Orr Roberts Lecturer in Interdisciplinary Sciences is selected in recognition of significant contributions to the understanding of atmospheric processes through the effective interchange of knowledge between atmospheric science subdisciplines or between atmospheric scientists and scientists of other disciplines. The lecture is presented at an AMS Annual Meeting or an appropriate specialized conference. The lecture may be recorded for broader dissemination and, if desired by the author, a written version of the lecture will be posted as part of the BAMS online. Recommendation of a Lecturer is made by a panel composed of the chairpersons of the STAC committees providing nominations and a chair appointed by the STAC Commissioner. Nominations are solicited annually from the STAC committees by the STAC Commissioner.