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ABSTRACT

Boundary value problems are ubiquitous in the atmospheric and ocean sciences. Typical settings include
bounded, partially bounded, global, and limited area domains, discretized for applications of numerical models
of the relevant fluid equations. Often, limited area models are constructed to interpret intensive datasets collected
over a specific region, from a variety of observational platforms. These data are noisy and they typically do not
span the domain of interest uniformly in space and time. Traditional numerical procedures cannot easily account
for these uncertainties. A hierarchical Bayesian modeling framework is developed for solving boundary value
problems in such settings. By allowing the boundary process to be stochastic, and conditioning the interior
process on this boundary, one can account for the uncertainties in the boundary process in a reasonable fashion.
In the presence of data and all its uncertainties, this idea can be related through Bayes’ theorem to produce
distributions of the interior process given the observational data. The method is illustrated with an example of
obtaining atmospheric streamfunction fields in the Labrador Sea region, given scatterometer-derived observations
of the surface wind field.

1. Introduction

Spatial models, both deterministic and stochastic, are
used in atmosphere and ocean sciences in applications
such as state estimation, diagnostic analyses, syntheses
of field observations from intensive field programs, data
assimilation, and process modeling. Considering that
data typically exhibit measurement error and bias, and
that physical assumptions are often approximate, there
has been growing interest in both the statistics and at-
mospheric–ocean science communities regarding sto-
chastic models that utilize physical information.

The Bayesian paradigm is useful for combining dif-
ferent sources of information (e.g., physics and data)
and accounting for uncertainty. However, for compli-
cated geophysical processes, it is often difficult to spec-
ify realistic models and implement them from the Bayes-
ian perspective. Recently, it has been shown that hier-
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archical approaches to such models provide an ideal
framework in which to include physically based prior
information for certain geophysical processes (e.g., Wi-
kle et al. 1998, 2001; Royle et al. 1999). However, in
such studies the treatment of boundary or edge effects
is problematic and is often somewhat ad hoc.

This paper describes methods for the incorporation
of realistic boundary models in a hierarchical Bayesian
framework. The methodology is illustrated with the
problem of generating distributions of atmospheric
streamfunction fields over limited spatial domains, giv-
en incomplete satellite observations of surface wind
over the Labrador Sea. While atmospheric streamfunc-
tion at the surface might not be a quantity that is often
employed in traditional analysis methods relevant to air–
sea dynamics, we use it here for two reasons. First, the
surface streamfunction is a scalar field that relates di-
rectly to the surface vector wind observations from scat-
terometer. Second, in a later paper, we extend the Bayes-
ian hierarchical model methods introduced here to dem-
onstrate a coupled air–sea model wherein surface
streamfunction plays a significant role (Berliner et al.
2003).
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The next section describes the hierarchical Bayesian
modeling approach in general, and then relative to the
boundary value problem. A simple illustration is in-
cluded to show how the methodology can be applied.
Section 3 contains the application of this methodology
to the problem of finding the distribution of atmospheric
streamfunction fields near the surface, given satellite
observations of surface winds over a limited area in the
Labrador Sea. Finally, section 4 contains a discussion.

2. Methodology

The Bayesian statistical paradigm is based in prob-
ability theory (e.g., Berger 1985; Bernardo and Smith
1994). Assume we are interested in some process y and
we have observational data for this process, denoted by
z. Furthermore, there are parameters associated with our
physical–statistical representation of the y process, as
well as the statistical model for the observations. The
collection of these parameters is denoted by u. A Bayes-
ian hierarchical analysis develops a joint probability
model for all these variables as the product of a sequence
of distributions; formally,

[z, y, u ] 5 [z | y, u ][y | u ][u ], (1)

where the brackets [ ] denote probability distribution
and vertical bars | identify conditional dependencies for
a given process upon other processes and/or parameters.
For example, [z | y, u ] denotes the distribution of the
data z conditional on the process y and parameters u.
Updating or learning about the unknown quantities of
interest relies on the probability relationship (Bayes’
theorem):

[y, u | z] } [z | y, u ][y | u ][u ]. (2)

We can make use of physical relationships to aid in
the specifications of the ‘‘prior distributions’’ [y | u ] and
[u ]. Our interest is with the left-hand side (lhs) of (2),
the so-called posterior distribution, which is the focus
of Bayesian analysis. This distribution of the process
and parameters given the data updates the prior for-
mulations in light of the observed data. For instance, if
the process consists of winds u, v, and pressure P, we
could exploit the geostrophic relationship, which would
allow us to write a stochastic model for the wind field
given the pressure field, [u, v | P, u ]. Note that this is
a stochastic relationship (i.e., a distribution), which
quantifies a source of variability with respect to devi-
ations from the gradient relationship (e.g., u } ]P/]y, y
} ]P/]x). We can model additional uncertainty by spec-
ifying distributions for the parameters u as well. For
example, the geostrophic model suggests a parameter
(to be included as an element of the vector u) that is
proportional to the inverse product of the density times
the Coriolis term. One might specify this as the prior
expected value. A variance about this expected value is
then prescribed to generate a distribution for this pa-
rameter. The net result is that with relatively simple

physical and stochastic representations in the sequence
of conditional models [e.g., rhs of (1)], we can obtain
a posterior distribution that has very complicated spatial
structure; one that, through the quantification of uncer-
tainty, can ‘‘adapt’’ to a wide variety of observations
and our prior knowledge of the geophysical system (e.g.,
Royle et al. 1999).

a. Hierarchical boundary value problem

We are interested in some spatial process {c (s) : s ∈
D}, where s is a spatial location in D, a bounded subset
of d-dimensional Euclidean space. We assume that some
physical model gives a good approximation to the be-
havior of this process:

g(c (s)) 5 Q ({z (r) : r ∈ D}),s (3)

where g is a known function and Q is some known
functional of a spatial process, {z (r) : r ∈ D}, that is
thought to be related to c (s). In our illustrations, c
represents streamfunction while z includes a variable
essentially equivalent to relative vorticity. Not surpris-
ingly, physical arguments relate the two (e.g., Poisson’s
equation). However, our fundamental motivation is that
we believe the relationship (3) to be approximately cor-
rect, rather than exact. In general, such lack of exactness
might result from physical simplifications and/or dis-
cretization. Furthermore, since the domain D is bound-
ed, we require information about the spatial processes
at the domain boundary. In certain physical systems,
boundary conditions can be critical and often are not
known with certainty. The Bayesian strategy for ac-
counting for a variety of uncertainties arising in the
modeling, as well as to efficiently incorporate obser-
vational data into the analysis, is to model all unknowns
as random variables.

In this article, inference is focused on a c process
defined on a finite lattice in D. We partition this lattice
into two pieces: the interior, I, and the boundary, B.
This leads to two vectors, denoted by cI and cB, of
primary interest. We develop a prior probability model
for the gridded c process [cI, cB | u ]. Hierarchical
thinking suggests that this model be formed from two
components:

[c , c | u ] 5 [c | c , u ][c | u ],I B I B B (4)

where u represents other uncertain, but relevant vari-
ables such as z in (3), as well as unknown parameters
introduced in the modeling. Note that while the notation
and role of randomness may be different from those of
the traditional treatment of deterministic boundary value
problems, there is a common intuition. In particular, the
model [cI | cB, u ] prescribes the distribution of interior
solutions for fixed boundary conditions.

Using a specified prior distribution for u, we seek the
posterior distribution:

[c , c , u | z] } [z | c , c , u ][c , c | u ][u ],I B I B I B (5)
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where z refers to ‘‘data.’’ This relationship serves as the
basis for inference.

b. A simple illustration

To demonstrate how one can incorporate hierarchical
stochastic boundary processes, we consider a very sim-
ple illustration. Assume that over some one-dimensional
spatial domain D, c follows approximately a Poisson
equation on the interior:

2d c
ø z. (6)

2dx

Let D be some bounded interval D [ [0, L] with non-
homogeneous Dirichlet boundary conditions c (0) and
c (L). Although (6) and the boundary conditions can be
solved analytically in simple domains (e.g., Haberman
1987), for illustrative purposes we consider first a de-
terministic numerical solution of this equation. In par-
ticular, we discretize the interval D, considering equally
spaced locations {x0 5 0, x1, . . . , xn, xn11 5 L} and
use the finite-difference approximation:

2d c c(x 1 h) 2 2c(x) 1 c(x 2 h)
ø , (7)

2 2dx h

where h 5 xi11 2 xi. Setting c i [ c (xi) and z i [ z (xi)
and applying (7), finite-difference approximations to (6)
can be written as

c 2 2c 1 ci11 i i21 5 z , i 5 1, . . . , n. (8)i2h

Given boundary conditions c0 5 c (0), cn11 5 c (L),
and {z i : i 5 1, . . . , n}, a solution to the equations (8)
is readily obtained. However, such a solution is subject
to uncertainty due to the discretization of the continuous
spatial processes. That is, the equations ci 5 c (xi) are
really only approximations. Indeed, such discretization
impacts are but one of several sources of uncertainty.
Others include (i) our lack of absolute certainty about
the use of Poisson’s equation for the c process; (ii)
computational, roundoff errors; and (iii) uncertainty in
boundary conditions. In response to such issues, we
model the true values of the processes of interest as
random variables. We then view basic equations such
as the Poisson equation and its approximations [e.g.,
(8)] as providing information about the probability dis-
tributions of the true values. Before proceeding, we
point out a potentially confusing, though standard, abuse
of notation. Since gridding is so common, we typically
maintain notation such as c i 5 c (xi), where now ci

simply reflects a convenient notation for the gridded,
true values of the process, rather than the computed
numerical solutions to an approximation of the system.

Pursuing the Poisson equation example, our attention
is now directed to the development of the joint probability
distribution of {c0, c1, . . . , cn, cn11}. Further, z is also
modeled as a random variable. Let the c process at interior

and boundary locations be denoted cI [ (c1, . . . , cn)9
and cB [ (c0, cn11)9, respectively, where 9 denotes the
transpose operation. We develop a probability model [e.g.,
for the second term on the rhs of (5)]:

[c , c | z ] 5 [c | c , z ][c | z ].I B I B B (9)

The first distribution on the rhs of (9) can be specified
to reflect the physical prior information. We can rewrite
(8), moving the boundary points to the rhs:

2 2(c 2 2c )/h ø z 2 c /h2 1 1 0

2(c 2 2c 1 c )/h ø z3 2 1 2

_ _
2(c 2 2c 1 c )/h ø z (10)n n21 n22 n21

2 2(22c 1 c )/h ø z 2 c /h , (11)n n21 n n11

or, in matrix notation,

Gc ø z 1 G c ,BI B (12)

where

22 1 0 · · · 

1 22 1 0 · · · 1 0 1 22 1 0
G [ , 2h 5

· · · 0 1 22 1 
· · · 0 1 22 

21 0 

0 0 1
G [ _ _ . (13) B 2h

0 0 
0 21 

Thus, it is reasonable that [cI | cB, z ] has a mean or
expected value given by the solution of (12), E(cI | cB,
z ) 5 G21(z 1 GBcB). Due to the various sources of
uncertainty discussed earlier, we quantify anticipated
variability about this mean via specification of a distri-
bution such as

21c | c , z ; N(G (z 1 G c ), S ),BI B B c (14)

where ; is read ‘‘is distributed as’’ and N(m, S) in-
dicates a multivariate normal (or Gaussian) distribution
with mean m and covariance matrix S.1 In this case, Sc

is the covariance matrix of the random component of
variability not accounted for by the approximate solu-
tion of (12). Finally, to complete the probability model
(9), we must specify a distribution reflecting our un-
certainty about the boundary conditions, say,

1 The statement ‘‘the conditional distribution of X given Y equal
to y is Gaussian (normal) with mean m and covariance S’’ can be
written in three ways: X | y ; N(m, S), [X | y] is N(m, S), and X
5 m 1 e, where e ; N(0, S).
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FIG. 1. NSCAT data and study domain area.

c | z ; N(m , B),B B (15)

where, in general, mB and B can depend on z. In some
cases we may assume that mB and B are known. In this
framework, the fixed boundary, often used for deter-
ministic numerical solutions, corresponds to B as a ma-
trix of zeros (i.e., no variance). We delay comment on
the appropriateness of the normal distributions until the
following section.

3. Hierarchical stochastic boundary model
application

Air–sea interaction in the Labrador Sea region has
been the focus of recent attention from climate scientists
because of its role in the ocean deep convection process
(e.g., Lab Sea Group 1998; Renfrew et al. 1999). Pre-
conditioning for and eventual triggering of ocean deep
convection in the Labrador Sea is associated with the
formation and propagation of polar lows—intense, local
mesocyclone systems that are poorly resolved in surface
analyses from weather centers (Renfrew and Moore
1999; Pagowski and Moore 2001). Of particular interest
are the surface wind fields that modulate air–sea fluxes
of momentum, heat, and moisture, driving the ocean
deep convection process.

In recent years, satellite-borne scatterometer instru-
ments have been able to provide high-resolution, yet
spatially and temporally incomplete, wind observations
over the world’s oceans. In particular, wind estimates
from the National Aeronautics and Space Administra-
tion (NASA) Scatterometer (NSCAT) provided high-
quality surface wind data during its operational lifetime
(15 September 1996–29 June 1997). Wind data from
NSCAT occurred in swaths on either side of the polar-
orbiting satellite ground track. The orbital passes oc-
curred at approximately 100-min intervals, precessing
westward. Different portions of the Labrador Sea were
covered by successive orbits two times in a 24-h period:
ascending passes near 0000 UTC, and descending passes
near 1400 UTC. Within the subregion of the NSCAT
swath, observations are reported at 50-km spatial res-
olution. Here we continue to use the NSCAT-1 dataset
that was used by Royle et al. (1999).2

Consider the NSCAT data shown in Fig. 1 for 26
December 1996. Our problem is to predict (spatially)
high-resolution (approximately ½8 in latitude and lon-
gitude) surface streamfunction fields in the Labrador Sea
region given spatially incomplete surface wind data
from NSCAT observations. That is, we seek to predict
the distribution of the geophysical process (atmospheric
streamfunction) at specified spatial locations, given
noisy data (wind) over portions of a limited area domain
of interest.

2 These data have been superseded by a 25-km resolution product
as reported by the NASA Scatterometer Project (1998), but the in-
creased spatial resolution is not important to the topic of this paper.

a. Hierarchical modeling of streamfunction

The Poisson equation arises in many applications in
atmospheric science (e.g., Holton 1992, p. 386, p. 448).
For example, to calculate streamfunction from winds,
one might first calculate vorticity from the wind field
and then solve the Poisson equation numerically, given
appropriate boundary conditions. Our problem is com-
plicated by the need to specify boundary values for c
on the edges of a limited area domain given incomplete
nonuniform observations of wind, and measurement er-
ror in the observed winds. A natural solution to these
problems would be to interpolate the winds onto a reg-
ular grid and specify an arbitrary boundary condition.
Although such a procedure is plausible, it does not ac-
count for the random errors from the various sources of
uncertainty in the observations, the discretization, and
the interpolation procedure. That is, with ad hoc pro-
cedures, one cannot characterize the errors associated
with the estimate of the streamfunction. Through a hi-
erarchical boundary-value specification, we can account
for these errors and obtain realistic spatial prediction
errors for the streamfunction field. Furthermore, we can
obtain realizations from the distribution of streamfunc-
tion, given the satellite observations. Of course, the pre-
diction errors and realizations depend on the prior spec-
ification. It is important to recognize, however, that one
is effectively specifying a prior when ‘‘solving’’ the
traditional boundary value problem with fixed bound-
aries. The Bayesian approach simply allows one to ac-
count for the uncertainty that one might have about the
boundary specification.
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1) BASIC HIERARCHICAL MODEL

We develop distributions for cI and cB (interior and
boundary streamfunction, respectively) given the data
U, V. Specifically, cI is an nI 3 1 vector of stream-
function values at nI spatial locations within the pre-
diction grid of interest; cB is an nB 3 1 vector of stream-
function values at the nB boundary locations. The data
vectors U, V are both of dimension m 3 1 where the
m locations correspond to the NSCAT observation lo-
cations as shown in Fig. 1.

Following steps like those of section 2b, except that
the domain of interest is two- rather than one-dimen-
sional, and making explicit reference to the wind data
as well as relative vorticity computed from a wind field,
we are led to a hierarchical model with the following
component distributions:

U, V | u, v ; N(K[u9v9]9, S ), (16)e

21c | c , u, v ; N(G (D v 2 D u 1 G c ), S ), (17)x y BI B B c

c ; N(m , B), and (18)B B

u, v ; N([m 19m 19]9, S ), (19)u y uy

where u, v are (nI 1 nB) 3 1 vectors denoting the true
wind process at the interior and boundary prediction
grid locations. In (17) Dx, Dy correspond to the matrix
operators for centered first-difference calculations; thus,
Dxv 2 Dyu provides a numerical estimate of relative
vorticity. The matrices G, GB are the two-dimensional
analogs to (13), and Sc is the conditional covariance of
the streamfunction interior given the streamfunction
boundary and the winds. The data model (16) is based
on the assumption that all observations within a grid
box centered at a prediction location are assumed to be
noisy observations of the true process at that prediction
location. This is represented using (i) a 2m 3 2(nI 1
nB) incidence matrix (a sparse matrix of ones and zeros)
K, and (ii) a measurement error covariance matrix, Se.
Note that more complicated expressions relating obser-
vations to the process are possible, leading to more com-
plicated forms for K (e.g., Wikle et al. 1998, 2001). The
distribution (18) requires specification of parameters mB

and B, the prior mean and covariance matrix, respec-
tively, for the streamfunction boundary process. This
specification relies on the simplifying assumption that
the boundary process is not directly related to the wind
process. Although unrealistic in the present example,
this assumption makes possible the analytical derivation
of the posterior distribution. Thus, although the method
can easily accommodate the more general boundary as-
sumption, we have made the simplifying assumption to
facilitate illustration of the approach. Finally, in (19)
mu, my are the wind component prior means, Suy is the
wind process prior covariance matrix, and 1 is a vector
of ones. Additional discussion of these distributional
parameters is given below.

Our choices of Gaussian distributions for each of the
random variables of interest merit discussion. In the case

of the data model (16), we emphasize that it is the mea-
surement errors conditioned on the true wind process
that are modeled as Gaussians. This assumption is at
least partially justified in the case of NSCAT data by
Freilich and Dunbar (1999). The Gaussian assumption
for the conditional model on cI may be reasonable since
it is the deviation from the Poisson relation that is as-
sumed to be Gaussian, not the cI process itself. The
bivariate Gaussian spatial model on the true wind pro-
cess (19) is consistent with traditional spatial analysis
models (e.g., Daley 1991), although in certain situations
one may have to choose the covariance matrix Suy care-
fully. Perhaps the least justifiable assumption in the
model is the assumption that the boundary process fol-
lows a Gaussian spatial model. However, we do not
believe such an assumption is unreasonable. Finally, we
note that the hierarchical methodology described here
is still viable with non-Gaussian distributions, but the
Gaussian assumptions allow for analytically tractable
calculations of the posterior distribution.

2) BAYESIAN ANALYSES

Direct application of Bayes’ theorem provides the
posterior distribution

[c , c , u, v | U, V]I B

} [U, V | u, v][u, v][c | c , u, v][c ]. (20)I B B

While complete details of the probabilistic calculations
are not central to this article, a clarifying calculation is
presented. Note that the constant of proportionality (re-
ferred to as a normalizing constant) in Bayes’ theorem
is given by the integral of the rhs with respect to all
variables not in the condition of the lhs. That is, to
convert the proportionality to an equality, we divide the
rhs of (20) by

[U, V | u, v][u, v][c | c , u, v][c ] dc dc du dvE I B B I B

5 [U, V | u, v][u, v] du dv. (21)E
The form of the rhs of (21) is special for this model.
The result follows from the previously mentioned sim-
plifying assumption that cB is independent of the winds,
and hence, [cB] is unaffected by the observational data.

Noting that the posterior of the wind process is written

[U, V | u, v][u, v]
[u, v | U, V] 5 , (22)

[U, V | u, v][u, v] du dvE
we use (21) and (22) to rewrite the posterior distribution
(20) as the equality:

[c , c , u, v | U, V]I B

5 [u, v | U, V][c | c , u, v][c ]. (23)I B B
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To obtain the posterior distribution of the interior and
boundary streamfunction conditional on the wind data,
we integrate out the wind process:

[c , c | U, V]I B

5 [c ] [c | c , u, v][u, v | U, V] du dv. (24)B E I B

More often, we are interested in the posterior of the
interior process given the data, [cI | U, V], in which
case cB is integrated out of (24). In general, such in-
tegrations are intractable and must be evaluated with
Monte Carlo methods. However, in this example, the
choice of distributions (16)–(18) allows analytic deter-
mination of this posterior as follows.

Step 1. The posterior of the wind process given the
satellite observations [u, v | U, V] can be shown3

to be a multivariate normal distribution N(muy | UV,
Suy | UV), where

21m 5 S (K9S [U9 V9]9uy | UV uy | UV e

211 S [m 19 m 19]9) and (25)uy u y

21 21 21S 5 (K9S K 1 S ) . (26)uy | UV e uy

Step 2. Facts from probability theory4 yield the pos-
terior distribution [cI | cB, U, V], which is a mul-
tivariate normal distribution N(mc | UV,B, Sc | UV,B)
with

21 21m 5 G Dm 1 G G c and (27)Bc | UV,B uy | UV B

21 21S 5 S 1 G DS D9G , (28)c | UV,B c uy | UV

where D [ [2Dy Dx].
Step 3. Finally, we may integrate out the boundary,

yielding the final posterior on the interior stream-
function: [cI | U, V]. The result is again a multi-
variate normal distribution N(mc | UV, Sc | UV) with

21 21m 5 G Dm 1 G G m and (29)Bc | UV uy | UV B

21 21S 5 S 1 G G BG G . (30)9B Bc | UV c | UV,B

3) EXAMPLES

The characterization of uncertainty is directly related
to the choice of prior specification. Below, we illustrate

3 The calculation is accomplished by combining the exponents of
the relevant Gaussian density functions and completing the square.
In general, if z | y ; N(Ay, Sz | y) and y ; N(my, Sy), then completing
the square gives the posterior distribution y | z ; N(Sy | z [A9 z21S z | y

1 my], Sy | z), where Sy | z 5 (A9 A 1 )21 (e.g., Berger21 21 21S S Sy z | y y

1985).
4 The theoretical ‘‘facts’’ that imply these results are (i) if y | x has

mean Hx and covariance Sy | x and x has mean m and covariance Sx,
the unconditional (i.e., integrating out x) mean and covariance of y
are Hm and Sy | x 1 H Sx H9, respectively; and (ii) if the conditional
distribution of y | x is normal; x enters that conditional distribution
only in the mean and linearly in the mean; and if the marginal dis-
tribution of x is normal, then the marginal distribution of y is normal.

with three cases the effect of prior assumptions on the
posterior mean, standard deviation, and realizations.

We begin with specification of the parameters for the
distributions in the model hierarchy. For the Labrador
Sea problem we let Se 5 I, where the satellite mea-2se

surement error variance is 5 1.7 m2 s22, based loose-2se

ly on the study by Freilich and Dunbar (1999). Fur-
thermore, we let Suy 5 Suy J Ruy , where Suy is a 2 3
2 covariance matrix between the u and y wind com-
ponents; Ruy is an (nI 1 nB) 3 (nI 1 nB) spatial cor-
relation matrix; and J represents the Kronecker product
operation. For the elements of Suy , we let the covariance
between u and y be 12 m2 s22 and variance of u and y
be 213 and 55 m2 s22, respectively. These values were
based on data analysis of scatterometer data in the Lab-
rador Sea region.

The spatial correlation matrix Ruy was assumed to be
isotropic and from the Matérn class (Matérn 1986;
Handcock and Wallis 1994):

u22dÏu 2dÏu1 2 2
r(d) 5 K ,u2u 21 1 2 1 222 G(u ) u u2 1 1

where d is the distance between spatial locations, G is
the gamma function, and is the modified BesselK u2

function of the third kind and order u2. This class of
correlation functions is useful because of the wide range
of behaviors that can be modeled and the interpretability
of the parameters. Specifically, u1 . 0 is a spatial scale
parameter related to the range of dependence and u2 .
0 is related to the smoothness of the spatial field. For
example, if u2 5 1/2, then the correlation function sim-
ply reduces to an exponential model; as u2 → `, the
function approaches a ‘‘Gaussian’’ correlation function.
In general, the correlation function is u2 2 1 times
mean-squared differentiable, where  is the integer ceil-
ing function. In our case, given that we would like the
wind fields to be differentiable in principle, we let u2

5 2.5. Furthermore, we set u1 5 0.0337 km21, which
corresponds to observed Labrador sea wind component
length scales of approximately 270 km (Milliff et al.
2003). Note that the Matérn class does not allow neg-
ative correlations. This is not generally a problem for
the small domain of interest in the current application
(Milliff et al. 2003). However, with a larger domain it
would be more realistic to consider a spatial correlation
function that allows negative correlations (e.g., Thie-
baux 1975). Note that one must be careful in the spec-
ification of the spatial covariance function for the wind
process. As discussed by Bennett and Budgell (1987),
there are regularity conditions for this spatial structure
such that the covariance function must be sufficiently
smooth (e.g., differentiable) to guarantee that the second
moment of the streamfunction distribution exists as the
grid spacing goes to zero. This requirement is satisfied
with the correlation model chosen above.

Given our expectation that the variance of the con-
ditional interior streamfunction is small with spatial de-
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TABLE 1. Modeling scenarios.

Scenario mB s 2
B

Case I
Case II
Case III

Spatially varying, e.g., Figs. 2e, 3e
Same as case I
Constant, mB 5 23.5 3 105 m2 s21

1.1 3 1012 m4 s22

1.0 m4 s22

1.1 3 1012 m4 s22

pendence over relatively small length scales, we let Sc

5 Rc, where 5 1010 m4 s22, and Rc follow a2 2s sc c

Matérn model with smoothness parameter equal to 2.5
and spatial dependence parameter 0.0566 km21. Again,
as discussed in Bennett and Budgell (1987), one must
be careful with the specification of this covariance func-
tion as grid spacings go to zero. Regularity conditions
suggest that there should be a nontrivial spatial structure
in this field under such conditions.

Finally, we will specify mB and let B 5 RB, where2s B

RB is based on a Matérn correlation model with spatial
smoothness parameter 3.5 and spatial dependence pa-
rameter uB 5 0.0471 km21, reflecting a moderate
amount of spatial dependence.

We now investigate the sensitivity of the stream-
function posterior distribution to choice of mB and .2s B

We consider three cases, as outlined in Table 1. In case
I, mB is specified to match (subjectively) the suggested
domain inflow and outflow based on visual inspection
of the wind data plot (Fig. 1). The resulting boundary
mean is shown in Figs. 2e and 3e (note that the posterior
mean of cB and the prior mean are the same for the
model presented here). Since the determination of the
appropriate boundary process by such visual inspection
of the noisy and incomplete winds is uncertain, we spec-
ify the boundary process prior variance as 5 1.1 32s B

1012 m4 s22. In general, this is meant to represent the
situation where we might have a rough idea of the
boundary condition (say, from an analysis field), but
allow for substantial uncertainty in that knowledge. Fig-
ure 2 shows the posterior mean, standard deviation, and
realizations from the posterior distribution of the stream-
function field in this case. Note that the posterior mean
streamfunction field is reasonable, with flow across the
boundary (as suggested by the intersection of the con-
tours with the boundary) and a strong cyclonic circu-
lation. However, there is substantial uncertainty in this
field, as suggested by the large posterior standard de-
viations and the realizations. Of course, the realizations
are not as smooth as the posterior mean due to the (i)
uncertainty in the wind data, (ii) noise amplification in
the vorticity calculation, and (iii) uncertainty in the
boundary process. Clearly, inference based on the pos-
terior mean field would be quite different than that based
on one of the realizations.

For comparison, consider case II where all parameters
are identical to case I except that we specify a nearly
‘‘fixed’’ boundary (we do this by setting the boundary
variance to an extremely small value, e.g., 5 1.0 m42s B

s22). That is, we are very certain as to the boundary
value. Figure 3 shows the results from this case. Com-

pared to case I, there is much less variability in the
realizations since we are certain about the boundary,
and thus, the posterior standard deviations of the interior
streamfunction field are much smaller. This is reason-
able since we are comparatively certain as to the bound-
ary value. These comparisons show that uncertainty in
the boundary can make a substantial impact on reali-
zations of the interior process. A key point is that our
methodology permits one to quantify such impacts ex-
plicitly.

As another test, consider case III where again 52s B

1.1 3 1012 m4 s22, but now we let mB 5 mb1, where
mb 5 23.5 3 105 m2 s21 (the mean of mB shown in
the previous examples). That is, we specify the prior
mean of the boundary to be constant in space. This
corresponds to a no-flux boundary condition, which we
know to be unrealistic in the atmospheric setting. Figure
4 shows the corresponding output. Clearly, the posterior
mean streamfunction field does not allow flow across
the boundary in this setting, which is unrealistic. How-
ever, the realizations do allow flow across the boundary,
illustrating the effect of the uncertain boundary con-
dition upon the realization from the posterior distribu-
tion. In this case, the realizations convey uncertainty
that is not obvious from examination of the posterior
mean. That is, a poor specification of the prior mean
was compensated by the data, leading to a reasonable
posterior distribution on the interior streamfunction.
One might not be interested in the posterior mean in
this setting, but could consider realizations from the
posterior distribution for purposes of inference.

b. Remarks

We note that in some contexts the boundary values
are actually not of direct interest, but are rather viewed
as a nuisance necessary only for developing a model
for the interior (e.g., limited area modeling in the at-
mosphere or ocean). In such cases, it is natural given
the new methods presented here to suggest developing
a model in which the boundary is ‘‘integrated out’’ a
priori. That is, standard probability theory applied in
(4) implies that

[c | u] 5 [c | c , u][c | u] dc . (31)I E I B B B

Alternatively, we performed this integration conditional
on the observed data in deriving (29) and (30). This
exemplifies a fundamental feature of hierarchical mod-
eling. Namely, the lhs of (31) describes our uncertainty
in the interior formally in terms of two sources: our
uncertainty about the interior if we knew the boundary
and our uncertainty regarding the boundary. Further, it
is important to note that hierarchical thinking leads to
the lhs of (31) in a conceptually simple fashion. That
is, direct specification of [cI | u ] without first devel-
oping the rhs is typically very difficult. On the other
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FIG. 2. Streamfunction posterior mean, standard deviation, and realizations for case I, with mB as shown in (e) by the solid line (the prior
and posterior mean are equivalent for the model presented here) and 5 1.1 3 1012 m4 s22; contour values should be multiplied by 1062sB

m2 s21.
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FIG. 3. Streamfunction posterior mean, standard deviation, and realizations for case II with mB spatially varying as shown by the solid
line in (e) and 5 1.1 m4 s22; contour values should be multiplied by 106 m2 s21. Note the boundary realizations are collinear because2sB

of the extremely small prior variance on the boundary process.
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FIG. 4. Streamfunction posterior mean, standard deviation, and realizations for case III with mB 5 23.5 3 105 m2 s21 for all boundary
locations and 5 1.1 3 1012 m4 s22; contour values should be multiplied by 106 m2 s21.2sB
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hand, this circumstance should be contrasted with our
model for the wind process (19). In that case, the joint
prior distribution on the entire wind field is simulta-
neously specified, rather than the result of a wind-on-
the-boundary model coupled to a interior wind model
given the boundary, as was the case for streamfunction.
The key difference is that our streamfunction model was
designed to make significant use of Poisson’s equation.
Incorporation of that physics requires both the tradi-
tional modeler and the hierarchical modeler to deal with
the boundary explicitly. Indeed, should we seek to in-
corporate a richer model for winds, perhaps based on
some physical reasoning that dictates structures among
gridded winds, we would likely need a two-step, explicit
boundary model as well.

A second critical remark regarding the value in ex-
plicitly developing [cB | u ] is that the formulas of prob-
ability theory direct us to formulas for updating this
distribution, and hence the rhs of (31), should available
data, say d , be informative about the boundary. Spe-cB

cifically, one simply replaces [cB | u ] by [cB | u, d ];cB

this is obtained via Bayes’ theorem.

4. Discussion

The hierarchical stochastic boundary condition meth-
odology outlined here is more general than the relatively
simple Poisson example might suggest. For example,
we may include Neumann or mixed boundary condi-
tions as well as time-varying boundaries. For Neumann
boundary conditions one specifies the gradient of the
process at the boundary. A common example is the
boundary condition, ]c/]n 5 a(s), which states that the
normal derivative at the boundary location s of the pro-
cess c is equal to some value of the process a at that
location. For bounded domains, a standard numerical
procedure uses the value of the process outside the
boundary (i.e., at a so-called image point) in terms of
its interior reflection. For example, in the 1D example
considered in section 2, we consider the interior loca-
tions x1, . . . , xn. At the left end, the Neumann condition
would be c0 5 c2 2 a12h. In our case, this would
suggest a slight modification to G as well as the intro-
duction of the a process on the rhs of (12). In this
implementation a specific boundary process cB need not
be specified, but is effectively replaced by a discretized
a process defined on the boundary.

The random boundary process cB is a useful construct
in open boundary specifications of the kind required in
the experiments described here. Open boundary speci-
fications raise difficult issues in purely deterministic
modeling contexts. Rienecker and Miller (1991) dem-
onstrated the sensitivity of domain-scale solutions to
errors in open boundary specifications in data assimi-
lation experiments in a quasigeostrophic ocean model
for a limited area domain. About a decade later, Ler-
musiaux (1999) and Lermusiaux and Robinson (2001)
report many sophistications in ocean model and data

assimilation components of the open ocean forecast sys-
tem that descend from the prior work. Still, the open
boundary specification requires specific regional cali-
bration, dependent upon adequate in situ observations,
in the setup stages of the forecast experiments. Issues
of ill-posedness in quasigeostrophic ocean model ap-
plications in limited area domains have been noted since
Bennett and Kloeden (1978). Miller (1984) described
the problem in light of theoretical work that had gone
on in pure and applied mathematics in the late 1970s
and early 1980s. Similarly, the partition into unique
streamfunction and velocity potential fields for atmo-
spheric flows observed in limited area domains requires
arbitrary constraints to close the problem (e.g., Lynch
1989). It appears from our preliminary experiments that
issues of these kinds that arise in deterministic modeling
contexts can be circumvented by the stochastic approach
presented here. However, more fundamental demon-
strations await further work.

One can imagine that a stochastic boundary condition
could be useful for regional models that are nested with-
in larger models. In that case, one might assume that
the time-varying boundary process for the nested model
is given as a distribution with prior mean from the larger
model, with suitable variability. This too will be ex-
plored elsewhere.

Finally, the model considered here assumed that the
distributional parameters were known. Extensions are
possible to cover the cases where the parameters are
random and there are data to inform the boundary. In
these cases the posterior distribution is rarely tractable
analytically. However, recent advances in the develop-
ment and use of Markov chain Monte Carlo (MCMC)
have enabled Bayesian treatments of many large and
complex problems (e.g., Robert and Casella 1999).
Rather than a direct computation of the posterior dis-
tribution, one computes successive simulations from a
Markov chain5 constructed in a fashion that permits the
assertion that its stationary distribution coincides with
the target posterior. Hence, after some transience or
burn-in time, realizations of the chain are viewed as
simulated, though dependent, cases from the posterior
distribution. For meteorological applications of these
notions, see Wikle et al. (1998, 2001), Royle et al.
(1999), and Berliner et al. (2000).
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