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Application of a customized model evaluation protocol—which takes into consideration 
the perspective and needs of the local forecaster—demonstrates the efficacy of the 

National Air Quality Forecast Capability.

Fig. 1. An example of NOAA’s Air Quality Forecast National Digital Guidance 
Database for the average 8-h O3 concentrations, depicting the NAM–CMAQ 
modeling domain (available at www.weather.gov/aq).

T	 hough still relatively new, the science of air quality forecasting has progressed greatly  
	 since the 1960s, when basic forecasts of air stagnation or pollution potential were first  
	 provided by the Weather Bureau [the predecessor of the National Weather Service (NWS)], 

which utilized numerical weather prediction models to forecast conditions conducive to poor 
air quality (Korshover 1976). Societal awareness of the impacts of poor air quality on human 
health and welfare increased markedly during the 1970s, coinciding with  
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the formation of the U.S. Environmental Protection 
Agency (EPA) in 1970 and the promulgation of the 
Clean Air Act Amendments of 1970 and 1977. During 
this and the following decade, numerous state and 
municipal air quality agencies developed basic fore-
casting approaches in an attempt to reduce exposure, 
thereby reducing the impact of poor air quality on 
human health. These forecasts, which generally 
focused on urban scales, were often based on statis-
tical models that forecast pollutant concentrations 
based on equations that had been trained or fitted 
to historical air quality [most often ozone (O3)] and 
meteorological data (McCollister and Wilson 1975; 
Aron and Aron 1978; Wolff and Lioy 1978; Lin 1982; 
Robeson and Steyn 1990). These approaches worked 
best under persistent meteorological conditions, but 
generally performed poorly in forecasting the onset 
and/or termination of a pollution episode. 

The prevalence of these air quality forecasts, as well 
as their level of sophistication, increased considerably 
during the 1990s as states and municipalities began 
establishing Ozone Action Day (OAD) programs (see, 
e.g., Ryan 1995; Hubbard and Cobourn 1998; Gaza 
1998; Davis and Speckman 1999; Ryan et al. 2000). 
These diverse programs, which are supported by both 
public and private stakeholders, are designed to edu-
cate the public about O3 and the dangers associated 
with exposure to elevated concentrations thereof and 
to inform them when air may be unhealthy, thereby 
enabling them to take action to limit their exposure. 
While the criteria used to establish OADs vary with 
states and municipalities, their intent is the same: to 
encourage voluntary reductions in O3 precursor emis-

sions through various approaches, such as offering 
free public transportation, telecommuting, and liberal 
leave policies, thereby aiding the states in avoiding 
exceedances of the National Ambient Air Quality 
Standards established by the EPA.

As the number of state and local air quality agen-
cies issuing O3 and/or OAD forecasts increased, so 
did the need for a centralized, coordinated effort to 
collect, standardize, and disseminate the forecasts 
on a national basis. Accordingly, the Office of Air 
Quality Planning and Standards within the EPA (in 
conjunction with state, local, and tribal air agencies, 
the National Park Service, and Environment Canada) 
developed the AIRNow program in 1998 (www.
airnow.gov). AIRNow was developed not only to serve 
as a web-based clearinghouse designed to facilitate 
submittal of forecasts by state and local air quality 
agencies, but also to provide a centralized, nation-
wide repository for near-real-time O3 and particulate 
matter data collected by the various agencies.

The Air Quality Index (AQI), a key component of 
the AIRNow program, was developed by the EPA in 
an effort to make these air quality forecasts as easily 
understood as weather forecasts. The AQI, which 
focuses on health effects humans may experience 
within a few hours or days after breathing polluted air, 
is calculated by the EPA based on the five major air 
pollutants regulated by the Clean Air Act, including 
O3. Initially covering 20 states in the Northeast and 
Midwest, the AIRNow program currently serves all (or 
most) of 47 states, and areas of Canada, encompassing 
over 300 metropolitan areas. Through this expansion 
and maturation process, it became increasingly obvi-
ous that key stakeholders in the AIRNow program, 
specifically state and local air quality forecasters, 
would greatly benefit from a federally generated, 
operational O3 forecast program (Dabberdt et al. 
2004, 2006). Accordingly, Congress mandated, under 
provisions of the Energy Policy Act of 2002, that the 
National Oceanic and Atmospheric Administration 
(NOAA) develop the capability to provide operational 
forecast guidance for O3 on a nationwide basis. As 
a result, NOAA, working in collaboration with the 
EPA, has developed, tested, and implemented the first 
stages of the National Air Quality Forecast Capability 
(NAQFC). Currently, the NAQFC (discussed in more 
detail in the sidebar) provides next-day forecasts of 
hourly maximum 1- and 8-h O3 concentrations (ppb) 
and smoke concentrations (µg m−3, not discussed) on 
a 12-km grid covering the contiguous United States. 
An example of the gridded output, which is dissemi-
nated through the NWS’s National Digital Guidance 
Database, is presented in Fig. 1 (see title page).
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It needs to be stressed that the NAQFC provides 
air quality forecast guidance to air quality forecasters 
(analogously to numerical weather prediction models 
providing guidance to weather forecasters), thereby 
supplementing, not replacing, the numerous and 

varied techniques that state and local agencies have 
employed through the years. Additionally, public dis-
semination of the NAQFC’s forecasts via NOAA’s web 
site (www.weather.gov/aq/) affords populations that 
are not covered by state and local air quality forecast 

THE NATIONAL AIR QUALITY FORECAST CAPABILITY

T	he NAQFC, developed collabora- 
	tively by NOAA and the EPA, 

couples the North American Mesoscale 
(NAM) meteorological model 
[currently the Weather Research and 
Forecasting Nonhydrostatic Mesoscale 
Model (WRF–NMM; Janjic 2003)] with 
the Community Multiscale Air Quality 
(CMAQ) modeling system (Byun and 
Schere 2006). The WRF–NMM model 
generates forecast meteorological 
fields that are input into CMAQ using 
a “one way” or “offline” coupling (i.e., 
there are no feedbacks from CMAQ 
to WRF–NMM). Software developed 
by the National Centers for Environ-
mental Prediction (NCEP) is then 
used to perform bilinear interpola-
tions and nearest-neighbor mappings 
of the WRF–NMM fields to the 
CMAQ domain. The preprocessor to 
CMAQ (PREMAQ) then performs the 
remaining coordinate transformations, 
computes additional meteorological 
fields, and prepares the meteorological 
dependent emissions (Otte et al. 2005).

The base emissions, which are 
processed using the Sparse Matrix 

Operator Kernel Emissions (SMOKE) 
modeling system (Houyoux et al. 
2000), are based on the EPA’s 2001 
National Emissions Inventory (except 
as noted below) for area source 
emissions, nonroad emissions, and 
point source emissions from sources 
not associated with electric generating 
units (EGUs). (The base emissions for 
California and Georgia are augmented 
with data provided by their state 
governments.) Additionally, the latest 
national emission inventories from 
Canada (1995) and Mexico (1999) are 
included to complete the continental 
dataset. For the EGU point sources, 
continuous emission monitoring (CEM) 
data from 2005 are updated using 
projections from the Department 
of Energy’s Annual Energy Outlook 
released in January 2007. For mobile 
source emissions, vehicle miles trav-
eled (VMT) data are projected to the 
forecast year (2007) and are used 
with forecast year fleet data to initial-
ize EPA’s MOBILE6 model (U.S. EPA 
2003). Biogenic emissions of VOCs 
and NO are processed using Biogenic 

Emission Inventory System (BEIS) 
version 3.13 (Schwede et al. 2005), 
which is part of PREMAQ.

The NAQFC provides forecasts of 
O

3
 concentrations (hourly, maximum 

1 and 8 h ppb) for the CONUS using 
12-km horizontal grid spacing on a 
Lambert conformal map projection. 
The CMAQ forecasts use 22 layers 
extending from the surface to 100 hPa 
adapted from the hybrid sigma-pressure 
vertical coordinate used by the WRF–
NMM. The layers used in the NAQFC 
are selected such that CMAQ’s layer 
interfaces are coincident with a subset 
of the WRF–NMM layer interfaces 
to minimize the effects of vertical 
interpolation. The forecast guidance 
for the next day’s surface-layer O

3
 is 

based on the current day’s 1200 UTC 
NAM cycle. The target forecast period 
is local midnight through local midnight. 
An additional 7 h are required beyond 
local midnight to calculate peak 8-h 
average O

3
 concentrations. As a result, 

a 48-h forecast is needed (based on the 
1200 UTC initialization) to obtain the 
target 24-h forecast period.

Table 1. Air quality index categories with their O3 concentration breakpoints and precautionary health 
advice.

AQI
Maximum 8-h 
concentration 

(ppb)
Precautionary health advice

Good (0–50) 0–64  No health impacts are expected when air quality is in this range

Moderate 
(51–100)

65–84  Unusually sensitive people should consider limiting prolonged outdoor exertion

Unhealthy for 
sensitive groups 

(101–150)
85–104

The following groups should limit prolonged outdoor exertion: people with lung 
disease, such as asthma; children and older adults; people who are active outdoors

Unhealthy 
(151–200)

105–124
The following groups should avoid prolonged outdoor exertion: people with lung 

disease, such as asthma; children and older adults; people who are active outdoors; 
and everyone else should limit prolonged outdoor exertion

Very unhealthy 
(201–300)

> 125
The following groups should avoid all outdoor exertion: people with lung disease, 
such as asthma; children and older adults; people who are active outdoors; and 

everyone else should limit outdoor exertion.
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agencies with comparable air quality information, 
allowing them to make informed decisions in order 
to limit their exposure. 

An operational evaluation of the 2007 experimen-
tal version of the NAQFC was recently completed, 
which examined the model’s performance during the 
summer of 2007 over the contiguous United States 
(CONUS; Eder et al. 2009). The evaluation, which 
covered the 4-month period (June–September), used 
strict monitor-to-gridcell matching criteria with O3 
observations obtained from the EPA’s Air Quality 
System (AQS). Results were comparable to, or better 
than, previous configurations, despite the expan-
sion of the experimental forecast domain into many 
areas dominated by complex terrain (Eder et al. 2005, 
2006). Focusing on standard-type statistics associated 
with forecast concentrations (i.e., mean and nor-
malized mean bias and error), this evaluation was 
designed to aid model developers in improving the 
quality of their forecasts, while supporting, in part, 
the NAQFC’s transition into operational status that 
occurred on 18 September 2007. 

While such an evaluation approach is important, 
it is equally if not more important to evaluate the 
NAQFC from the perspective of the local forecaster; 
that is, with data obtained for specific areas and using 
the “same circumstances as the model’s intended ap-
plication” as recommended by the 11th Prospectus 
Development Team of the U.S. Weather Research 
Program in their report “Meteorological research 
needs for improved air quality forecasting” (see 
Dabberdt et al. 2004). Accordingly, the purpose of this 
article is to demonstrate the efficacy of the NAQFC, 
from the perspective of local forecasters, thereby 
encouraging its use by state and local agencies. Such 
an approach has required the development of a new 
evaluation protocol: one that examines the utility of 
the NAQFC in forecasting AQI levels rather than O3 
concentration levels; focuses on the use of categorical-
type statistics (i.e., false alarm rates, hit rates, and 
critical success indices) related to exceedances and 
nonexceedances that are critical to local forecast 
agencies; and, most challenging, examines perfor-
mance over a local forecast region, such as an air 
shed or metropolitan statistical area (MSA), rather 
than one based on matched model grid cells and 
AQS monitors.

After brief discussions summarizing the AIRNow 
program and its AQI, this paper will demonstrate 
the development of this evaluation protocol for the 
Charlotte, North Carolina, MSA for the summer of 
2007. In addition to comparing model forecasts with 
observations, model forecasts will be compared, for 

perspective, with the local forecasts provided by the 
North Carolina Department of Environment and 
Natural Resources (NCDENR). This approach will 
then be applied and likewise compared to local air 
quality forecasts from four additional MSAs across 
the nation, including Atlanta, Georgia; Dallas–Fort 
Worth and Houston, Texas; and Washington, D.C. 
Each of the local forecasts were prepared and dissemi-
nated differently, using a variety of techniques (i.e., 
statistical models, local deterministic models, etc.), the 
details of which are beyond the scope of this work.

AIR QUALITY INDEX AND AIRNOW. 
The AQI is a dimensionless, six-color-coded index 
(ranging from 0 to 500) developed by the EPA to pro-
vide the public with simple information concerning 
local air quality and its potential impact on health. It 
is analogous to the wind chill and heat indices devel-
oped by the NWS decades earlier. The AQI focuses 
on health effects that various subsets of the general 
population (i.e., the very young or old, asthmatics, 
etc.) may experience after breathing polluted air. 
Although EPA calculates the AQI for the five major 
air pollutants regulated by the Clean Air Act [i.e., O3, 
fine particulate matter (PM2.5), carbon monoxide 
(CO), sulfur dioxide (SO2), and nitrogen dioxide 
(NO2)], this demonstration will focus on the AQI 
based on O3 because this is the only criteria pollutant 
currently forecast by the NAQFC. The conversion 
from O3 concentration (ppb) to AQI is shown below 
[Eq. (1)], with precautionary statements associated 
with each of the five categories provided in Table 1:

	 	
(1)

where Ip is the index for the pollutant (O3 in this case), 
Cp is the rounded concentration of the pollutant, BPHi 
is the breakpoint that is ≥ Cp, BPLo is the breakpoint 
that is ≤ Cp, IHi is the AQI value corresponding to BPHi, 
and ILo is the AQI value corresponding to BPLo.

As seen in Table 1, an AQI value of 100 corre-
sponds to the National Ambient Air Quality Standard 
(NAAQS) for O3, which prior to 2008 was set at 85 ppb 
(averaged over eight consecutive hours) by the EPA 
(Office of the Federal Register 1999). AQI values 
between 0 and 50 are considered “good” air quality, 
and values between 51 and 100 indicate “moderate” 
air quality. Values above 100 are considered to be 
unhealthy; first, for certain sensitive segments of the 
population (101–150), and then for the entire popu-
lation as AQI values exceed 150. It should be noted 
that the EPA recently strengthened the NAAQS for 
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O3 and changed the AQI breakpoints to reflect the 
new primary standard (Office of the Federal Register 
2008). Because this demonstration utilizes modeled 
and observed data from 2007, it will use the older 
breakpoints; however, impacts of the newer standards 
on this demonstration will be discussed later.

A LOCAL DEMONSTRATION OF THE 
NAQFC. In order to demonstrate the efficacy of 
the NAQFC from the perspective of a state/local fore-
caster, a case study closely examining the model’s per-
formance for the Charlotte MSA during the summer 
of 2007 is presented. The Charlotte MSA was selected 
for two reasons. First, the agency responsible for the 
forecasts—NCDENR—was able to provide forecasts 
of O3 concentrations to this research as well as AQI 
values, thereby facilitating this evaluation. Second, 
the MSA itself is conveniently defined by eight coun-
ties, making it easier to match model output using 
Federal Information Processing Standards (FIPS) 
codes. 

An example of data obtained from the NAQFC 
for 1 day (August 15) is provided in Fig. 2 (top panel), 
providing the forecast maximum 8-h O3 concentra-
tion (ppb) focusing on North Carolina. Note the 
high concentrations (O3 > 85 ppb) forecast from sec-

tions of upstate South Carolina stretching into the 
Piedmont of North Carolina, with the highest values 
in close proximity to Charlotte (denoted by box). 
Superimposed on this forecast map are observations 
(diamonds) obtained from the AQS, which indicate 
that the model performed fairly well on this day with 
respect to concentration values. While this output is 
useful in terms of providing general forecast guid-
ance, the forecasters may be equally interested in 
forecast values of the AQI, rather than concentrations, 
as these are typically disseminated to the general 
public. Accordingly, output from the NAQFC can be 
easily converted to AQI, as shown in Fig. 2 (bottom 
panel), which presents the same forecast–observation 
configuration. Note that the NAQFC forecast Code 
Orange (unhealthy air quality for sensitive groups) 
conditions for the greater Charlotte area, when, in 
fact, two monitors indicated Code Purple (very un-
healthy air quality) conditions.

To more closely examine the model’s performance, 
specific to the Charlotte area, we must first identify 
its corresponding MSA, which is defined by eight 
counties (seven in North Carolina, one in South Caro-
lina) as shown in Fig. 3 and listed in the appendix. 
These eight counties are contained within 103 of the 
NAQFC’s 12-km grid cells. Within this MSA there 
are eight AQS monitors; again, with seven in North 
Carolina and one in South Carolina. Data from our 
example day are provided in Table 2, which presents 
the eight modeled and observed maximum 8-h O3 
concentrations and corresponding AQI pairs and 
their color codes, as calculated from Eq. (1). Also 

Fig. 2. Modified output of the NAQFC centered on North 
Carolina for 15 Aug 2007 with AQS observations super-
imposed as diamonds. (top) Maximum 8-h O3 concen-
trations (ppb) and (bottom) corresponding AQI values 
(VU = very unhealthy, U = unhealthy, USG = unhealthy 
for sensitive groups, M = moderate, G = good). The 
approximate Charlotte MSA is outlined.

Fig. 3. The Charlotte MSA as defined by eight counties 
(bold black lines) and 103 NAQFC grid cells (those 
containing color denoting forecast AQI values) for 
15 Aug 2007 with observed AQI values superimposed 
as diamonds for eight AQS monitors located within 
the MSA.
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included is the maximum concentration (and AQI) 
of all eight paired monitors and corresponding grid 
cells, as well as the maximum for all 103 grid cells. 
(Note that, for this example, the highest value of all 
103 grid cells happened to also be one of the eight 
grid cells that contain a monitor.) This type of con-
version and analysis was performed on a daily basis 
from May through September for the Charlotte MSA, 
resulting in a possible 1224 (8 monitors × 153 days) 
observations. Results from this evaluation were 
then examined using a sequence of approaches as 
described below.

The first evaluation approach uses every single 
modeled–observed concentration pair, where the 
observations are matched directly with their cor-
responding grid cells (n = 1207) and corresponding 
date. This approach is most similar to performance 
evaluations performed in the past (Eder et al. 2006, 
2009) and is by far the most stringent. Examination 
of Fig. 4 (top panel) reveals that even with this strict 
approach, the NAQFC performed fairly well for the 
Charlotte MSA, since the normalized mean error 
(NME) and normalized mean bias (NMB) were 16.8% 
and 3.3%, respectively. The correlation coefficient 
was 0.63 and all except a handful of NAQFC predic-
tions were within a factor of 2 of the actual values. 
It is apparent from Fig. 4 that the NAQFC tends to 
underpredict the higher values and overpredict the 
lower values, continuing a trend seen in earlier model 
configurations (Eder et al. 2006). 

The second approach uses the maximum of the 
eight monitors and the maximum of the eight grid 
cells, for each day, where the monitors are not neces-
sarily matched with their corresponding grid cells 
(n = 153). This somewhat more relaxed evaluation 
approach is often used by local and state forecasters 
forecasting for an area like the Charlotte MSA. Such 
an approach allows for “pattern matching” for one key 
characteristic (i.e., maximum 8-h O3 concentration), 
even when the modeled and observed patterns are not 

Fig. 4. Scatterplot and discrete statistics of the maxi-
mum 8-h O3 concentrations (ppb) associated with eight 
paired AQS observations and corresponding NAQFC 
grid cells for the summer of 2007 for the Charlotte 
MSA. (top) All eight observations are matched directly 
with their grid cells; (middle) only the maximum of the 
eight AQS observations are matched with maximum 
from the NAQFC using only the eight grid cells that 
contain monitors (though not necessarily matched); 
and (bottom) maximum of the eight AQS observations 
are matched with maximum from the NAQFC using 
all 103 grid cells that define the Charlotte MSA. For 
reference, 1:2 and 2:1 ratio lines are provided.
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coincident in space and time. Figure 4 (middle panel) 
reveals that with this approach, the NAQFC appears 
to have performed “better,” as evidenced by the re-
duction in NME (11.8% compared to 16.8% with the 
first approach) and NMB (−1.1%, compared to 3.3%). 
Also note that the correlation has increased from 0.63 
to 0.74 and that all of the NAQFC predictions were 
within a factor of 2 of the actual values (in fact, every 
prediction but one was within a factor of 1.5). 

The third approach may be more applicable to 
those forecasters that may choose to use the NAQFC 
output directly. It uses the maximum of the eight 
monitors and the maximum of all grid cells encom-
passing the MSA (e.g., 103 grid cells), for each day 
(again, n = 153). Results from this approach are fairly 
comparable to the second approach (Fig. 4, bottom 
panel) although values associated with the NMB 
would always be greater because we use the highest 
modeled value of 103 grid cells instead of 8. 

Each of these three approaches utilizes O3 concen-
tration data. The final step in this demonstration is to 
convert the concentrations from the third approach 
into AQI values (Fig. 5, top panel) and then compare 
the NAQFC’s performance to that of the local forecast 
provided by NCDENR (Fig. 5, bottom panel). As seen 
in the scatterplots, which highlight the color codes 
of the AQI, the NAQFC performed comparably to 
the local forecast in terms of correlation (0.74 for 
NAQFC and 0.73 for NCDENR) and error (NME 
= 25.1% for NAQFC and 21.5% for NCDENR). The 
model did, however, overpredict (NMB = 9.3%), while 
the human forecast was basically unbiased (NMB = 
−0.1%). Note that the human forecast sample size 
was slightly smaller (n = 150), because it was unavail-
able for 3 days during the period (17 July and 29 and 
30 September). 

The performance of both the NAQFC and 
NCDENR forecasts, utilizing this last approach, was 
examined on a daily basis throughout the summer 

Table 2. Observed and modeled maximum 8-h O3 concentrations (ppb) and corresponding AQI values 
[color code calculated from Eq. (1)] for the eight paired AQS monitors and corresponding NAQFC grid 
cells for 15 Aug 2007. Also included is the maximum concentration (and AQI) of all eight paired monitors 
and corresponding grid cells

AQS monitor

37

109

0004

37

119

0041

37

119

1005

37

119

1009

37

159

0021

37

159

0022

37

179

0003

45

109

0006

Maximum

O3
Model 72.3 103.1 92.1 100.3 87.3 97.6 77.2 71.7 103.1

Observation 92.8 127.1 88.8 125.5 102.6 103.9 78.8 71.5 127.1

AQI
Model 70 147 119 140 107 134 83 68 147

Observation 122 202 111 201 146 150 87 67 202

Fig. 5. Scatterplot and discrete statistics of the maxi-
mum AQI values associated with eight AQS observa-
tions and (top) the maximum AQI values from the 103 
NAQFC model grid cells comprising the Charlotte 
MSA for the summer of 2007, and (bottom) the 
maximum AQI value forecast by the NCDENR for the 
Charlotte MSA.
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of 2007. Results for 1 month (August) are depicted 
in Fig. 6. As seen in the Fig. 6, both forecast ap-
proaches track the observations quite well (as would 
be expected given their high correlations), but the 
NAQFC overpredicted on all but 7 days during the 
month, while the NCDENR equally over- (15 days) 
and underpredicted (16 days). Bias adjustment ap-
proaches to address such systematic over- or under-
predictions associated with the NAQFC have been 
developed by Kang et al. (2008) but are beyond the 
scope of this paper. 

Categorical analysis. In addition to the discrete statis-
tics discussed above (of both concentration and AQI 
forecasts), a series of categorical statistics were also 
calculated to facilitate a comparison of the NAQFC 
forecast to that of the local human forecast for the 
Charlotte MSA. These statistics were calculated with 
the third approach (i.e., using the maximum of the 
eight monitors and the maximum of all grid cells 
encompassing the MSA, for each day).

The first categorical metric examined is the cat-
egory hit rate (cHi). This metric, which is also known 
as the probability of detection (POD), is defined as

	 	 (2)

where i is the AQI index (1, 2, 3, 4, 5) category (or 
the color scheme, i.e., green, yellow, orange, red, 
purple), and Ni

f is the number of correctly forecast 
instances in the ith category and Ni

obs is the number 
of observed instances in the ith category. Values of 
cHi for both the NAQFC and the NCDENR are pre-

sented in Fig. 7. For the 2007 sum-
mer period, the NCDENR forecast 
was more successful at forecasting 
both code green (62.0%–53.3%) and 
code yellow days (69.7%–60.5%) but 
was not as successful as the NAQFC 
at forecasting code orange days 
(50.0%–61.5%). Note that there was 
only one code red day (17 August) 
and one code purple day (15 August) 
observed in the Charlotte MSA 
during the summer, and neither 
was forecast correctly by either the 
NAQFC or the NCDENR. 

The exceedance hit rate (eH) is 
defined as follows:

	 	 (3)

where Nfo is the number of both ob-
served and forecast exceedances (AQI ≥ 3) and No is 
the number of observed, but not forecast, exceedanc-
es. The eH for the NAQFC (63.0%) was considerable 
higher than that of the human forecaster (52.0%). 
Note that these percentages are nearly identical to the 
code orange cH because of the absence of correctly 
forecast code red and code purple days.

The next categorical metric examined is the ex-
ceedance false alarm rate (eFAR), which is defined as

	 	 (4)

where Nf is the number of forecast but not observed 
exceedances (AQI ≥ 3) and Nfo is defined as above. 

Fig. 6. Daily time series for Aug 2007 of observed and forecast 
(NCDNER and NAQFC) AQI indices for the Charlotte MSA.

Fig. 7. Categorical hit rate for each AQI category for the 
Charlotte MSA. Note that neither the NAQFC nor the 
human forecaster correctly forecast the one code red 
and the one category purple experienced by the MSA.
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The eFAR for NAQFC was 64.1%, while that of the 
NCDENR forecast was considerably better at 52.8%. It 
is not surprising that the NAQFC produced higher eH 
and eFAR, given its general tendency to overpredict 
and the fact that we include all grid cells (103 in this 
case) that encompass the Charlotte MSA.

The final categorical metric calculated is the 
exceedance critical success index (eCSI). It is a 
more comprehensive index in that it is a function 
(nonlinear) of both the eH and eFAR. Accordingly, 
the eCSI is often a better indicator of the “relative 
worth” of different forecast techniques (Schaefer 
1990). It is calculated as

	 	 (5)

with each parameter defined earlier. The eCSI is 
a fairly stringent index in that it ignores the large 
number of nonexceedance forecasts that verified 
correctly. The eCSI for the NAQFC was 39.6%, which 
was slightly better than the NCDENR of 35.7%.

Application to other MSAs. Having demonstrated the 
NAQFC’s efficacy in producing local AQI forecast 
guidance for the Charlotte MSA, we now apply the 
same approach to four other MSAs, namely, Atlanta, 
Dallas–Fort Worth and Houston (including Galveston 
and Brazoria), and Washington, D.C., using the four 
categorical metrics cH, eH, 
eFAR, and eCSI. (the ap-
pendix lists information 
about these MSAs and their 
local forecast agencies). Ex-
amination of Fig. 8, which 
presents the cH for each of 
the MSAs, reveals a variety 
of outcomes. In three of 
the MSAs (Washington, 
Houston, and Atlanta) the 
human forecast was better 
than the NAQFC in pre-
dicting code green and code 
yellow days (following the 
trend from Charlotte), while 
the NAQFC proved slightly 
better in the Dallas–Fort 
Worth MSA. The NAQFC 
generally outperformed the 
local forecast in predict-
ing code orange in both 
Washington and Atlanta 
and in forecasting code red 
in Atlanta and Houston for 

this particular study period. The human forecast was 
better in the Dallas–Fort Worth area for the higher 
categories, especially code red days. Note that other 
than the one code purple day observed in Charlotte, 
there were no code purple days in the other MSAs.

The NAQFC’s predictions of higher-category 
AQIs is generally better, as ref lected in its higher 
eH rates (Fig. 9, top panel), which exceed 80% in 
Atlanta, Dallas–Fort Worth, and Washington. When 
compared to the human forecasts the NAQFC per-
formed better in Atlanta, Charlotte, and Washington, 
and equally well in Dallas–Fort Worth but worse in 
Houston. A negative consequence of the NAQFC’s 
ability to capture more of the higher-category AQIs is 
its propensity to forecast more eFARs than the human 
forecast. As seen in Fig. 9 (middle panel), the NAQFC 
forecast resulted in higher false alarm rates than the 
local forecaster in each MSA. For some of the MSAs 
(Charlotte, as seen earlier in Dallas–Fort Worth and 
Houston), the differences were small (< 5%), while in 
Atlanta and Washington they were large (> 15%).

Finally, the more comprehensive eCSI (which again 
ignores the large number of nonexceedance forecasts 
that verified correctly) indicates that the NAQFC 
performed either slightly better or comparable to 
the local forecasts in Atlanta, Charlotte (discussed 
earlier), and Washington, but more poorly in Dallas–
Fort Worth and Houston (Fig. 9, bottom panel).

Fig. 8. Categorical hit rates for each AQI category for the Washington, 
Houston, Atlanta, and Dallas–Fort Worth MSAs.

321march 2010AMERICAN METEOROLOGICAL SOCIETY |



New AQI breakpoints. As discussed earlier, this dem-
onstration is based on the AQI and its breakpoints 
established by the EPA in 1997 (Office of the Federal 
Register 1999) that were in effect through 2007. 
Following extensive research, including a review of 
over 1700 studies, the EPA concluded that the 1997 
primary standard and its associated AQI did not 
adequately protect public health with an adequate 
margin of safety (Office of the Federal Register 
2008). Consequently, the EPA recently (12 March 
2008) revised the NAAQS for O3 from 80 (effectively 
85 ppb because of rounding) to 75 ppb. As a result, 
starting with the 2008 O3 season, the states have 
been encouraged by the EPA to use the revised AQI 
with the “100 level” (the upper end of the moderate 
or acceptable category) based on the new 75 ppb 
standard, with proportional changes to the other 
AQI values. The impacts of these changes on the 
NAQFC’s performance are discussed brief ly here, 
where eH, eFAR, and eCSI are recalculated for each 
MSA based on the new AQI. As seen in Fig. 10, results 
associated with eH (top panel) are mixed, because the 
NAQFC eH based on the revised standard was better 
for Charlotte and Houston, comparable for Atlanta, 
and somewhat worse for Dallas–Fort Worth and 
Washington. Results for eFAR (middle panel) and 
eCSI (bottom panel) are more conclusive in that the 
NAQFC forecasts produced considerable lower eFAR 
percentages and higher eCSI percentages based on the 
revised standard. This “improvement” is not surpris-
ing, given that the NAQFC has historically forecast 
O3 concentrations in the middle of the distribution 
with more skill than those concentrations on either 
end of the distribution (Eder et al. 2006).

These results should be encouraging to state and 
local forecasters, given that the new standard and 
hence new AQI effectively increases the frequency of 
exceedance days and lengthens the O3 forecast season, 
thereby further taxing their resources, which in many 
cases are limited or even decreasing given the recent 
economic trends.

SUMMARY AND DISCUSSION. The purpose 
of this paper has been to demonstrate the efficacy 
of the NAQFC in providing AQI forecast guidance 
for O3 to local forecasters, thereby demonstrating its 
utility to state and local agencies. Accordingly, this 
demonstration applied a specially designed evalua-
tion protocol that assessed NAQFC predictions from 
the perspective of air quality forecasters, rather than 
the typical evaluation approach designed to assist 
air quality model developers. As such, this approach 
focused on AQI categories rather than O3 concentra-

tions and on categorical-type metrics that are criti-
cal to state and local air quality forecasters, who are 
required to forecast exceedances and nonexceedances 
of the NAAQS. Finally and most challenging, a pro-
tocol was used that examined performance over a 

Fig. 9. (top) Exceedance hit rate, (middle) exceedance 
false alarm rate, and (bottom) exceedance critical 
success index for each MSA.
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“local forecast region,” such as an air shed or MSA, 
rather than one based on matched model grid cells 
and AQS monitors.

Results from this approach, which was demon-
strated for the Charlotte MSA and subsequently ap-
plied to four additional MSAs during the summer of 
2007, revealed that the performance of the NAQFC 
was generally comparable to the that of the local 
forecast agencies as indicated by the comprehensive 
critical success indices. The NAQFC’s propensity to 
forecast higher-category AQIs did result in gener-
ally better hit rates when compared to the human 
forecaster, but not without consequences (i.e., higher 
false alarm rates). The tendency of the NAQFC to 
overpredict may be ameliorated somewhat, starting 
with the 2008 O3 season (as states begin to base their 
“100 level” of the AQI on the new 75 ppb NAAQS), 
because the NAQFC has historically performed better 
when forecasting O3 concentrations in the middle of 
the distribution (Eder et al. 2006).

When compared to the evolution of numerical 
weather prediction’s incorporation into weather 
forecasting, which took decades, the success of this 
program, which involves numerical (deterministic) 
O3 forecasts based on the North American Mesoscale 
(NAM) and Community Multiscale Air Quality 
(CMAQ) model, has been realized in a remarkably 
short time frame. First conceived as part of NOAA’s 
New England Pilot Program in 2002, which served as 
a “test bed” for O3 forecasting by including all the ele-
ments of a forecast system [i.e., emissions, meteorolog-
ical and chemical models, and evaluation (Kang et al. 
2005)], the NAQFC was initially deployed in 2004. In 
less than 5 yr, it has expanded in both its scope and 
coverage so that it now provides timely, accurate O3 
forecasts over the contiguous United States

The results presented here are designed to en-
courage all O3 forecasters to utilize the NAQFC as 
part of their forecast preparation, whether they are 
“seasoned” veterans with numerous tools at their 
disposal or forecasters with limited experience and 
resources. Reliance on the NAQFC may become even 
more important now that the EPA has tightened the 
O3 NAAQS, effectively increasing the number of ex-
ceedance days and lengthening the O3 season, thereby 
further taxing state and local agencies’ budgets that 
are limited or even decreasing. It is important to 
remember, however, that the NAQFC is intended to 
provide guidance to, and certainly not replace, the 
local forecaster. Just as with numerical weather fore-
casting, the reliability of a tailored O3 forecast made 
at the local level will almost always be better than one 
derived from a continental-scale model.

Future work. Continuing development and testing 
is aimed at expanding the NAQFC to provide O3 
predictions nationwide (including Hawaii and 

Fig. 10. (top) Exceedance hit rate, (middle) exceedance 
false alarm rate, and (bottom) exceedance critical 
success index for each MSA comparing the NAQFC 
forecasts based on the old and new AQI.
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Alaska) and to add predictions of fine particulate 
matter (PM2.5). Just as with the O3-based AQI fore-
casts demonstrated here, an AQI forecast based on 
PM2.5 could also become available. In fact, it may 
be possible, using the numerous species potentially 
forecast by NAM–CMAQ, to move toward a more 
comprehensive AQI, similar to the index recently 
implemented by Environment Canada (www.ec.gc.
ca/cas-aqhi), which they deem to be a personal 
health protection tool based on the synergistic risk 
associated with three pollutants: O3, PM2.5, and 
NO2 (Stieb et al. 2008). Should the EPA decide 
in the future to move in that direction, a similar 
health or exposure index could be developed for 
the United States using output potentially avail-

able from WRF–CMAQ and disseminated through 
AIRNow.
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APPENDIX: Metropolitan statistical area descriptions.
Metropolitan statistical area, 

forecasting agency  
(estimated 1 Jul 2006 population)

Federal Information Processing 
Standard (FIPS) code

FIPS name

Charlotte, NC, 

North Carolina Department of Environmental 
and Natural Resources

(1,583,016)

37025

37071

37097

37109

37119

37159

37179

45091

Cabarrus

Gaston

Iredell

Lincoln

Mecklenburg

Rowan

Union

York (SC)

Atlanta, GA,

Georgia Department of Natural Resources

(5,138,223)

13247

13151

13113

13121

13063

13067

13057

13117

13223

13135

13089

13077

13097

Rockdale

Henry

Fayette

Fulton

Clayton

Cobb

Cherokee

Forsyth

Paulding

Gwinett

Dekalb

Coweta

Douglas

Dallas–Fort Worth, TX,

Texas Commission on Environmental Quality

(6,003,967)

48113

48439

48085

48121

48397

48231

48257

48213

48139

48251

48221

48367

Dallas

Tarrant

Collin

Denton

Rockwall

Hunt

Kaufman

Henderson

Ellis

Johnson

Hood

Parker
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Houston, TX,

Texas Commission on Environmental Quality

(5,539,949)

48201

48167

48039

48157

48473

48339

48291

48071

Harris

Galveston

Brazoria

Fort Bend

Walter

Montgomery

Liberty

Chambers

Washington, D.C.,

Washington D.C.’s Metropolitan Washington 
Council of Governments

(5,290,400)

11001

51013

51059

51107

51153

51179

51510

51610

51600

51683

51685

24009

24017

24021

24031

24033

DC Arlington (VA)

Fairfax (VA)

Loudoun (VA)

Prince Williams (VA)

Strafford (VA)

Alexandria (VA)

Falls Church (VA)

Fairfax(VA)

Manassas (VA)

Manassas Park (VA)

Calvert (MD)

Charles(MD)

Frederick (MD)

Montgomery (MD)

Prince George (MD)
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