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O ne of the fundamental challenges in tropical  
 cyclone (TC) analysis and forecasting is  
 accurately determining the storm’s sustained 

maximum wind speed (or “intensity”) in an area 
with little or no in situ observations. Forecast centers, 
relying primarily on interpretation of geostation-
ary satellite imagery as well as any other available 
data during operational activities, create postseason 
“best track” datasets. Best-track data contain (at 
minimum) information on TC track and intensity. 
They are widely used in a large number of research 
applications, including trend analysis (e.g., Emanuel 
2005; Webster et al. 2005; Wu et al. 2006), forecast 
verification (e.g., Sievers et al. 2000; Poroseva et al. 

2010), and evaluation of reanalysis datasets (Schenkel 
and Hart 2012).

Unfortunately, when tropical cyclones are tracked 
by more than one agency, best-track data frequently 
disagree. For example, Webster et al. (2005) showed 
that the frequency of category 4 and 5 typhoons in 
the northwestern Pacific Ocean increased by 41% 
between the 1975–89 and 1990–2004 periods. But 
Wu et al. (2006) reported that those severe storms 
actually decreased in frequency between 10% and 16% 
over the same time periods. This contradiction arises 
from the source of the best-track data used by each 
group. Webster et al. used data from the Joint Typhoon 
Warning Center (JTWC); Wu et al. used best-track data 
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from the Regional Specialized Meteorological Centre 
(RSMC) Tokyo and the Hong Kong Observatory. To 
further complicate matters, Kossin et al. (2007) applied 
an objective intensity algorithm to homogeneous 
infrared (IR) satellite data and found no significant 
change in severe typhoons from 1983 to 2005.

Kossin et al. (2013) provide a good discussion on the 
causes of differences in global best-track data. They 
can be roughly classified into two categories: changes 
in technology and data availability and diverse 
analysis methods at RSMCs. Aircraft reconnaissance 
provides forecasters with the highest amount of 
confidence for a storm’s position and intensity. Data 
are recorded at flight level and GPS dropsondes are 
routinely deployed during missions to provide surface 
and vertical-profile information. Missions began 
during the 1940s in the Atlantic and North Pacific; 
unfortunately, routine missions stopped in the North 
Pacific in 1987 and have never been regularly flown 
in any other ocean basin besides the North Atlantic. 
Shoemaker et al. (1990), Gray et al. (1991), and Martin 
and Gray (1993) provide quantitative evidence for the 
effectiveness of aircraft reconnaissance in reducing 
TC initial and forecast error. Furthermore, in a re-
cent survey of National Hurricane Center specialists, 
Landsea and Franklin (2013) found that intensity and 
position uncertainty decreases substantially when 
aircraft data are available.

Because reconnaissance data are rarely available 
[even in the North Atlantic, only about 30% of best-
track times include aircraft data Rappaport et al. 
(2009)], analysts must turn to geostationary satellites, 
microwave satellites, and sparse in situ measurements 
such as buoys or nearby ships; it is then that the deter-
mination of intensity becomes subject to analyst inter-
pretation and RSMC rules. Wu et al. (2006) attribute 
differences between JTWC and RSMC Tokyo to wind 
speed time averaging (10 versus 1 min), the discrete 
nature of the Saffir–Simpson scale (Kantha 2006), and 
an “in-house” change to the application of the Dvorak 
technique at RSMC Tokyo (Koba et al. 1990). The 
Dvorak technique (Dvorak 1973, 1984; Velden et al. 
2006) is a procedure that provides an analyst with an 
estimate of the maximum sustained winds of a TC 
based on its cloud pattern, cloud-top temperature 
considerations, and recent intensity trend. It is used 
at all RSMCs and is widely considered the best avail-
able tool for determining TC intensity in the absence 
of direct observations. However, the method is also 
inherently subjective and its rules have been changed 
at various RSMCs to conform to perceived regional 
intensity differences. This is discussed in more detail 
in the section on “Data and design.”

The conflicting conclusions regarding western 
Pacific TC intensity trends, significant differences 
found in other basins (Schreck et al. 2014), and the 
changes in technology and observation practices that 
have led to these discrepancies significantly lower our 
confidence in the TC record. In fact, recent assess-
ment work by the World Meteorological Organization 
(WMO) (Knutson et al. 2010) and the Intergovern-
mental Panel on Climate Change conclude there is 
“low confidence that any observed long-term (i.e. 40 
years or more) increases in TC activity are robust, 
after accounting for past changes in observing capa-
bilities” (Seneviratne et al. 2012).

This statement and the work summarized above 
suggest that a comprehensive global reanalysis of TC 
intensity is needed. There are a number of recent and 
ongoing projects in this area, but they are restricted 
to analyses of single storms (e.g., Landsea et al. 2004), 
specific time periods (e.g., Landsea et al. 2008), or 
regions (Diamond et al. 2012; T. Kimberlain and 
P. Caroff 2014, personal communication). Although 
all of these efforts are valuable, they are not ideal 
for two reasons. First, they are necessarily restric-
tive because of the large amount of time required to 
analyze voluminous amounts of data and imagery. 
For example, here we are analyzing nearly 300,000 
images from a 32-yr TC data record. Assuming 5 min 
per analysis, it would take one person 25,000 h (~12 
years) to analyze all of the images one time—and that 
is with no time off for holidays or vacation. Second, 
regional reanalyses risk exacerbating interbasin 
differences because they are not applied globally or 
consistently.

We present a new approach to TC reanalysis that 
is global in scope, can be completed in a reason-
able amount of time, and shows promising skill 
in estimating TC intensity. Cyclone Center is an 
Internet portal that provides global, homogeneous, 
TC-centric IR satellite imagery to “citizen scien-
tists.” Instead of using a small number of experts, 
we tap into the scientific curiosity of thousands of 
ordinary people, using their enthusiasm, time, and 
pattern recognition skills to eventually answer these 
scientific questions:

1) Can citizen scientists provide more certainty in 
TC intensity when forecast agencies disagree?

2) Can citizen scientists provide more skill than 
current approaches in determining TC intensity, 
particularly with difficult patterns where auto-
mated techniques struggle?

3) Has TC intensity responded to recent changes in 
climate?
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Our intent is not to replace or change best-track data; 
rather, we intend to provide a global record of TC 
intensity as determined by a consistent algorithm 
applied to a homogeneous record of satellite data. 
Such a data record could then be used as one impor-
tant tool in any future global TC reanalysis effort. 
Therefore, this paper will not completely answer 
the questions above but will describe the ideas and 
motivation behind Cyclone Center, the developments 
in data that have made it possible, the process of 
soliciting and collecting citizen scientist responses, 
and some of the early results that begin to address 
these questions. Interested readers can participate in 
Cyclone Center at http://cyclonecenter.org.

THE CROWDSOURCING OF SCIENCE. 
Cyclone Center is one of nearly 30 projects that make 
up the Zooniverse, a website that started in July 2007 
with the launch of Galaxy Zoo (Lintott et al. 2008). 
With the goal of identifying galaxies for further study, 
Galaxy Zoo aimed to use the ability and enthusiasm 
of the general public to perform tasks previously left 
to trained experts. By obtaining analyses from several 
volunteers, it became possible to analyze much greater 
quantities of data and to assign a level of confidence 
to each classification. The results proved as reliable 
as those from experts in the field. The project started 
very simply, asking volunteers only a handful of very 
simple questions about the shape and orientation of 
each galaxy, but grew more complex as subsequent 
revisions were made.

Following the success of Galaxy Zoo, several other 
astronomy-based projects were developed to investi-
gate a wide variety of celestial imagery and data. In 
autumn 2010, Old Weather became the Zooniverse’s 
first project based on climate data. The site asks vol-
unteers to help transcribe the daily weather logs kept 
by ships in the early twentieth century, with the aim 
of supplementing the historical weather record with 
the only oceanic data available at the time. With Old 
Weather’s success, it became evident that there was 
adequate enthusiasm for climate data among many 
in the general public.

Cyclone Center was a logical next step, since it com-
bined this developing interest in weather and climate 
with an analysis method that has several parallels with 
Galaxy Zoo. Both projects require the visual inspec-
tion of remotely sensed data with the hope of applying 
human pattern recognition to the subject in question. 
They also focus on using human ability to identify 
spiral patterns in noisy pictures. These parallels meant 
that some of the web interface code from Galaxy Zoo 
could be repurposed for Cyclone Center.

ENGAGING THE CROWD. Crowdsourcing 
strategies. Crowdsourcing offers the ability to quickly 
analyze vast amounts of data. Naturally, that ad-
vantage relies on attracting and maintaining a large 
community of citizen scientists. One might expect 
that the destructive power of tropical cyclones would 
be enough to attract and maintain a large number of 
users, but Cyclone Center still had to be carefully de-
signed to do so. The development team at the Citizen 
Science Alliance (CSA; the parent organization of 
Zooniverse) was a valuable resource during this 
process, since they could call on past experiences 
from other projects to estimate the abilities of our 
volunteers.

Citizen scientists, especially nonexperts, hold valid 
concerns as they participate. One of the most com-
mon comments from our volunteers has been “How 
do I know if I’m doing it right?” This has proven a very 
difficult question to answer because it is not feasible 
to analyze their classifications in real time. One of the 
goals of this paper, as well as others that may follow, is 
to quantitatively investigate this question. Real-time 
support is available to participants; many citizen sci-
ence projects, including Cyclone Center, have active 
forum communities where volunteers can discuss 
classifications with each other and even with the sci-
ence team. Classifiers build their confidence through 
these discussions, and sometimes they even lead to 
serendipitous discoveries (Cardamone et al. 2009).

Another way that we built volunteer confidence 
was through online training. We provide the volun-
teers with detailed visual guidance that explains each 
question. In designing this guidance, we had to find 
ways to provide the necessary information without 
overwhelming our audience. One of the more suc-
cessful forms of training has been the tutorial that was 
recently added to the site, which takes a sample image 
from Super Typhoon Keith (1997) and gives volunteers 
a step-by-step description of how to properly classify it.

We also engage and educate our volunteers 
through Facebook, Twitter, and blog posts. We use 
these outlets to share preliminary results, confer-
ence presentations, and peer-reviewed articles like 
this one—all of which provides confidence to our 
volunteers that they really are contributing to sci-
ence. We also build their interest in tropical cyclones 
with posts describing recent events like Hurricane 
Sandy and the start or end of the Atlantic hurricane 
season. Some of our most viewed posts educate read-
ers on how tropical cyclones form and why they have 
eyes. Much of that traffic comes from unanticipated 
Internet searches that direct people to our blog, from 
which they can discover and join our project.
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Citizen science participation. The dataset selected for 
this study includes roughly 239,000 classifications 
from just over 5,000 volunteers—basically all of the 
data collected from the first year of the project. The 
distribution of users is such that a large majority 
have completed just a handful of classifications, 
while a much smaller core of very motivated users 
have completed orders of magnitude more. Figure 1a 
shows a breakdown of classifications completed by 
each user. While the mean number of classifications 
is just under 50 per user, only 10% have completed 

more than this, and nearly half have completed just 
six or fewer.

At the top end of the spectrum, however, a small 
contingent of “power users” have contributed im-
mense numbers of classifications to the study, with 
more than a dozen users completing over 1,000 clas-
sifications, and a single user even surpassing 10,000—
more than the bottom 3,000 users combined. These 
power users do not strongly bias the data, however—
each user is restricted to one classification per image.

Figure 1b shows the contribution of each of these 
tiers to the total activity on the site. While 28% of 
users have completed between one and three clas-
sifications, their total contribution only accounts for 
roughly 1% of the total data collected. In contrast, the 
top 1% of classifiers, those who have completed more 
than 500 each, account for over 40% of the site’s total 
activity. This highlights the importance of keeping 
power users engaged, as two-thirds of our collected 
data have come from just 5% of users.

DATA AND DESIGN. Cyclone Center was 
designed to follow the principles of the enhanced 
infrared (EIR) version of the Dvorak technique 
(Dvorak 1984; Velden et al. 2006) in a way that citizen 
scientists could provide the required information 
for the intensity estimate. In general, the technique 
involves the interpretation of an IR image of a TC 
and the application of a number of constraints and 
set procedures. Dvorak has been used consistently at 
all global TC forecast agencies for at least the last 20 
years, and validation studies (e.g., Gaby et al. 1980; 
Knaff et al. 2010) have shown that average differ-
ences between Dvorak intensity estimates and aircraft 
reconnaissance-based best-track data are quite low, 
ranging from 1.5 to 9 knots (kt; 1 kt = 0.51 m s–1). 
In the absence of reconnaissance and/or other irregu-
larly available data (e.g., scatterometers, microwave), 
the Dvorak technique still unquestionably provides 
the best estimate of TC intensity.

The IR satellite dataset used for all classifications 
is the Hurricane Satellite (HURSAT)-B1 archive 
(Knapp and Kossin 2007). HURSAT provides nearly 
300,000 TC-centric images of 3,321 global tropical 
cyclones that formed from 1978 to 2009. The data 
were created by merging global geostationary satel-
lite data and calibrating for homogenization; this 
allows us to classify global TC intensity across a 
32-yr period without needing to account for differ-
ences in the observation platforms. However, using 
HURSAT for Cyclone Center does present a few 
challenges. The relatively coarse resolution (~8 km) 
can reduce the accuracy of the EIR technique. 

Fig. 1. (a) Breakdown of number of classifications per 
user and (b) percentage of total contributions from 
each tier of activity.
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Furthermore, classifica-
tion skill would be opti-
mized if other available 
HURSAT channels (e.g., 
visible, microwave) were 
used, but the visible chan-
nel is only available during 
daylight hours. In addi-
tion, regular microwave 
data are not available be-
fore 1997 and the rela-
tive scarcity of microwave 
passes over TCs creates 
substantial discontinui-
ties in the time series [see 
Kossin et a l. (2013) for 
more discussion]. To avoid 
the large logistical chal-
lenge in setting up the in-
terface with discontinuous 
imagery, we use IR data 
exclusively, leaving the 
inclusion of other satellite 
data to future work.

The Cyclone Center user interface was thus de-
signed to gather data that are required to produce a 
classification using a modified EIR Dvorak method. 
However, we emphasize that the analysis presented 
here does not reflect the full EIR-like methodology, 
but rather the first steps, which involve determining 
the intensity trend and cloud pattern. Figure 2 is a 
screenshot that a user sees when they click on a storm 
to classify. Note the color enhancement used; the tra-
ditional Dvorak technique uses a repeating gray shade 
to distinguish between preestablished brightness 
temperature levels. To allow for easier user classifica-
tions, Cyclone Center uses a new, color-blind friendly 
enhancement scheme—see the sidebar on “Cyclone 
Center color enhancement” for more information. 
The first task asked of the user is to determine which 
image depicts the stronger storm. The responses are 
used to determine the intensity trend, which is needed 
to ultimately determine the current intensity.

The next step for the user is to choose a cloud pat-
tern from one of the following: eye, embedded center 
(EMB), curved band (CBD), or sheared. A fifth pat-
tern, called “other,” is for storms that appear close 
to the satellite edge, extratropical, or do not exhibit 
any organized clouds at all (there is no allowance 
for subtropical or hybrid systems; classifiers proceed 
with the regular classification for these systems). As 
shown in Fig. 3, when a user selects a pattern that they 
perceive most closely matches the image, a subset of 

those patterns is shown and the user is instructed to 
choose the “closest match.” These key images (Fig. 4) 
were selected from a pool of scene types with accom-
panying Dvorak evaluations, each done by a National 
Hurricane Center analyst during the 2004–06 Atlantic 
hurricane seasons. We selected images that we thought 
were the most representative of each respective cloud 
pattern and intensity; when the user selects an image, 
we have enough information to determine what is 
known as a “pattern T,” or PT, number.

In the Dvorak technique, there are several kinds of 
“T numbers”; they are defined in Table 1. In the EIR 
Dvorak analysis, the PT number is an estimate of the 
TC’s intensity based on the cloud pattern appearance 
and recent intensity trend (called the “MET”). Table 2 
shows how EIR Dvorak T numbers are converted to 
the TC maximum sustained wind in the Atlantic and 
Pacific basins. In most operational cases, the PT num-
ber is not the value that is used as the final intensity 
estimate. It is preferred to determine the “data-T,” or 
DT, number and then apply a number of rules and con-
straints, leading to the “final-T” (FT) number. Since 
we will ultimately calculate a DT-like value, there are 
questions presented to citizen scientists on the Cyclone 
Center page that provide the data we will need to do it. 
As mentioned previously, at this time we are focusing 
only on the questions that relate to the PT; the intent 
of this paper is to demonstrate that Cyclone Center is a 
viable way to achieve a skillful DT-like estimate of TC 

Fig. 2. Cyclone Center users are first asked to determine which image depicts 
a stronger storm. The image at right is the one which will be classified. The 
image at left is the storm 24 h earlier. Inline help (not shown) is provided to 
the users to guide them in their decision.
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intensity. We call our estimate of intensity the “pattern 
number” (PN), which diverges from PT as we consider 
the multiple classifications of an image.

CYCLONE CENTER COLOR ENHANCEMENT

Fig. S1. Side-by-side comparison of Typhoon Gay (1992) using (clockwise from top left) original Dvorak BD en-
hancement, CC enhancement, and simulations of CC enhancement as seen with tritanopia, protanopia, and 
deuteranopia.  Numbers are infrared brightness temperatures (°C) and  Dvorak's named colors are identified 
in the middle: Warm Medium Gray (WMG), Off White (OW), Dark Gray (DG), Medium Gray (MG), Light Gray 
(LG), Black (B), White (W), Cold Medium Gray (CMG), and Cold Dark Gray (CDG). Simulations courtesy of 
http://vischeck.com.

The Dvorak method was originally developed using 
the “BD curve” enhancement for IR satellite imag-

ery. This grayscale enhancement accommodated the 
technological limitations of the time. While experienced 
analysts can readily identify patterns in this enhance-
ment, it can be confusing to the novice. Some shades 
are repeated, and it is not readily apparent which 
ones represent warmer or colder clouds. Since one 
of Cyclone Center’s goals is to engage as many citizen 
scientists as possible, we developed a new enhancement 
scheme that more closely resembles traditional color 
scales with which the general public is familiar.

Our enhancement uses the same temperature 
thresholds as the BD curve, but the colors change from 
warm to cold with those temperatures. Both schemes 
use gray shading for values warmer than 9°C. The BD 
curve then uses a second series of grays, while we use 
a pink tint to add some differentiation. Both schemes 
use solid shades at varying intervals for temperatures 
colder than –30°C. Where the BD curve is forced to 

repeat two of its gray shades, our colorized scheme 
uses unique colors throughout.

Note in Fig. S1 that the BD curve uses black for tem-
peratures from –63° to –69°C. This bold color marks 
a transition from moderate to tall clouds. This same 
transition is marked in our scheme by the change from 
reds and yellows to shades of blue. We also added an 
additional color (white) for temperatures colder than 
–85°C, which helps classifiers easily pick out the coldest 
cloud tops.

Since Cyclone Center seeks to maximize its pool of 
potential volunteers, we ensured that people with color 
vision deficiency could interpret our scheme. We were 
guided by the principles laid out by Light and Bartlein 
(2004). Specifically, we avoided schemes that included both 
red and green, and we sought a scheme that varied in both 
hue and intensity. Our ultimate selection was inspired by 
the “RdYlBu” scheme on http://colorbrewer2.org. The 
figure illustrates how people with the three most common 
color deficiencies would view our color enhancement.

For new or less experienced classifiers, there are re-
sources available to help them through the process. As 
mentioned previously, an online tutorial introduces 
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classifiers to the interface and guides them through a 
complete classification. During “real” classifications, 
there is a dynamic help screen that is always shown 
on the right side of the browser, providing guidance 
in answering the current question. For example, clas-
sifiers are shown visual examples of what to look for 
(e.g., improved storm structure, colder cloud tops) to 
determine whether a storm had strengthened over 
the previous 24 h.

The Cyclone Center tool provides as output the 
selections of each individual, an individual’s ID (if 
they log in), time classified, and image name. Each 
individual’s identification is anonymous except for 

Fig. 3. After determining the intensity trend, users are asked to classify the cloud pattern and perceived orga-
nization of the TC. In this case, the user chose “eye” for the cloud pattern and is asked to choose the image 
that most closely matches the current one. Canonical images are oriented to match the storm’s hemisphere.

their personally provided ID. If an individual chooses 
not to log in, we still use their responses but they are 
treated a little differently in the weighting of the re-
sponses—this will be described in the following section.

To ensure that all storms in the database will be 
classified in a reasonable period of time, we retire 
an image when it acquires 10 unique classifications. 
This number gives us enough diversity to calculate 
a statistically reasonable consensus. A cost–benefit 
analysis (not shown) determined that the potential 
classification error was not sensitive to the number 
of classifications once 10 was reached (i.e., 30 classi-
fications per image did not appreciably decrease the 
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Fig. 4. Available cloud patterns from which classifiers can choose matches. The numbers represent the Dvorak 
data-T, or DT, number as determined by an analyst at the National Hurricane Center. Larger numbers corre-
spond to stronger storms. Each row represents five intensity grades of a single cloud pattern. (top)–(bottom) 
The cloud patterns are shear, curved band, embedded center, and eye. Cloud patterns for the other options 
are not shown.

Table 1. Numbers in the EIR Dvorak and Cyclone Center algorithms.

Name Abbreviation Description

Model expected T MET TC intensity estimate based on comparison of TC 
structure and convective changes over the previous 24 h.

Pattern T PT TC intensity based on evaluation of the cloud pattern; 
cannot differ from MET significantly.

Data T DT Most objective methodology; uses a flow diagram for 
cloud pattern types and obtains TC intensity using 
brightness temperature criteria, distances, and other 
potentially subjective measures.

Final T FT Selected value of TC intensity as determined by the best 
choice of MET, PT, or DT; may be limited by established 
constraints.

Current intensity CI Final or official TC intensity of the Dvorak technique. 
Typically identical to FT, except during weakening phases 
of the TC when wind speed reductions typically lag the 
cloud patterns and trends.

Pattern number PN The PT-like value calculated from Cyclone Center data.
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error). When all of the images for a particular storm 
are retired, the storm itself is taken out of circulation 
and replaced by a fresh one.

As of this writing, we have had over 8,000 unique 
users from around the world perform more than 
400,000 classifications. All results presented here are 
from classifications recorded through 15 September 
2013 and include approximately 5,000 unique users 
and 239,000 classifications.

DEVELOPING THE CONSENSUS. A signifi-
cant challenge for this project is to estimate a storm’s 
intensity at any time based on the numerous selec-
tions by citizen scientists. This can be complicated 
by the temporal dependence of the Dvorak tech-
nique—intensity change rates are limited based on 
storm type. Best estimates based on a crowd are not 
new (e.g., Brabham 2008); however, they may be new 
to the field of meteorology. Therefore, we employed 
two methods to initially look at the performance of 
the crowd toward estimating intensity from storm 
imagery. We demonstrate how a consensus approach 
allows the intercomparison of citizen scientists with 
subsequent spread being used to denote precision of 
an individual and estimate a bias-corrected inten-
sity. We also use a Monte Carlo approach (section 
on “Consensus case studies”) to randomly select 
individuals, which allows for the investigation of 
uncertainty in the resulting intensities.

In either case, there are two primary steps: 1) to 
estimate a given intensity based on a snapshot and 2) 
to apply temporal constraints to the instantaneous 
estimates. These initial calculations demonstrate 
a proof of concept rather than a complete analysis 
of a classification algorithm. To that end, we show 
the results of only a few storms and not a complete 
analysis of the technique.

The goal of the consensus approach is to combine 
each observation from all citizen scientists for a 
given snapshot into a PN that accounts for tenden-
cies between each of them. The tendency of a given 
individual can be measured against observations 
from others when multiple citizen scientists view a 
common snapshot, as performed above. In this case, 
we are interested in consensus and will leave the cal-
culations of best estimates to future work.

We currently focus on the pattern analysis from 
the citizen scientists. The input here is the image 
selected from the “Choose the closest match” question 
as shown in Fig. 3, chosen from all of the possible 
matches shown in Fig. 4. The calculation of a consen-
sus PN (PNc

i ) for some snapshot in time i is calculated 
from all users k:

Table 2. EIR Dvorak T number/Cyclone Center PN 
conversion to maximum sustained wind. Note that 
maximum wind is assumed to be a 1-min average 
at a standard height of 10 m.

T number Maximum wind (kt)

1.0 25

1.5 25

2.0 30

2.5 35

3.0 45

3.5 55

4.0 65

4.5 77

5.0 90

5.5 102

6.0 115

6.5 127

7.0 140

7.5 155

8.0 170

 ( )

∑
∑ PN +

PN =

k k k

i

c

k

k

i k

w B

w

 
  , (1)

where PNk
i  is the classification from the kth classifier 

who is characterized by a weight wk and a bias Bk. 
Hence, the consensus estimate is the weighted sum 
of the estimate from each available classification, 
where an individual’s classification is corrected for 
their overall bias. Thus, it requires knowledge of a 
classifier’s weight and bias, which are calculated as 
for user k by

  
(2)

where wk is proportional to the number of classifica-
tions by the user Nk and inversely proportional to 
the mean deviation of the user from the consensus 
PN (σk). The bias and mean deviation are calculated 
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from a subset of Nk that have at least one classification 
from another individual N k

m. The bias is the mean 
difference of a user’s classifications from the con-
sensus. Likewise, the mean deviation is the variance 
of a user’s best estimate (corrected for bias) from the 
consensus. Future work will provide a more technical 
derivation of wk and PNc

i .
In this approach, the initial classifier characteris-

tics are populated with random numbers. Then Eqs. 
(1) and (2) are iterated until the values of wk and PNc

i 

converge, usually after about four iterations. At this 
point, each image has a consensus intensity from 
available classifiers calculated from Eq. (1). Last, tem-
poral constraints are applied to the individual values 
of PNc

i  following the advanced Dvorak technique 
[ADT; an automated, objective version of the Dvorak 
technique; see Olander and Velden (2007)], which 
provides an estimate of the final storm intensity. This 
value will be called the “CC consensus.”

A limiting factor of this approach is the inabil-
ity to identify characteristics of 
individuals who do not log in to the 
system. In this treatment, we apply 
a small weight and no bias to these 
individuals. The effect is that their 
classification is used when nobody 
else who is logged in has classified an 
image, whereas PNc

i  derives mostly 
from users that are logged in when 
possible, because of the small weight 
of those not logged in.

EARLY RESULTS. Proper evalu-
ation of the performance of any 
algorithm that assesses TC intensity 
is difficult because the true intensity 
of a TC at any time is never exactly 
known. Even in cases where a storm 
is measured by multiple reconnais-
sance aircraft, the maximum surface 
wind is almost certainly missed be-
cause of the large ratio of storm size 
to observation area. For example, 
Uhlhorn and Nolan (2012) estimated 
that the maximum surface wind 
sampled by aircraft in a major (cat-
egory 3 or higher) hurricane under-
estimates the true maximum wind 
by 7%–10%. We can however make 
a reasonable assessment of the CC 
performance through comparisons 
with existing TC intensity datasets 
(given all of their caveats). In this 
section we examine the value of the 
CC consensus with respect to best-
track data (IBTrACS; Knapp et al. 
2010) and an intensity dataset gener-
ated by the application of the ADT 
on HURSAT data (ADT-HURSAT; 
Kossin et al. 2013).

ADT-HURSAT comparisons. The ADT-
HURSAT dataset was generated 

Fig. 5. Comparisons of intensity estimate distributions between 
Cyclone Center (CC consensus), ADT-HURSAT, and (a) global best 
track (IBTrACS), and (b) best track limited to times in the North 
Atlantic within 12 h of low-level aircraft reconnaissance (best-track/
recon).

600 APRIL 2015|



from the same HURSAT imag-
ery shown to citizen scientists on 
Cyclone Center, providing a conve-
nient way to compare how humans 
classify images compared to a com-
puter algorithm. ADT-HURSAT 
and CC consensus are compared to 
IBTrACS. Figure 5a shows the global 
wind speed distribution of IBTrACS 
(“best track”), CC consensus, and 
ADT-HURSAT for the 1978–2009 
period. For the weakest best-track 
storms, both ADT-HURSAT and CC 
consensus tend to estimate higher 
intensities. The distribution of the 
CC consensus across all wind speeds 
appear to be more physically realistic 
than ADT-HURSAT. As discussed in 
Kossin et al. (2013), ADT-HURSAT 
experiences difficulty identifying 
changes in cloud pattern when a 
prehurricane intensity TC is transi-
tioning from an embedded center to 
an eye. High cirrus clouds may linger over the devel-
oping eye and the ADT-HURSAT tends to hold onto 
the weaker pattern too long, resulting in an artificial 
frequency maximum centered at 55 kt [work is under 
way to improve the ADT in this regard—see Olander 
and Velden (2012)]. Our human classifiers appear to 
be better at identifying the pattern changes leading up 
to the emergence of an eye, as shown by the smoother 
transition to higher intensities in Fig. 5a; this will be 
better shown in a case study in the next section.

To focus on only the highest confidence “ground 
truth,” further comparisons are made to a subset 
of North Atlantic TC points that are within 12 h of 
low-level aircraft reconnaissance. This subset, called 
“best-track/recon,” contains 722 points that cover the 
1995–2009 North Atlantic TC data record. Figure 5b 
shows the wind distributions for those cases. There 
is much more agreement between the three datasets 
for the weaker storms here, making it difficult to con-
clude whether the undercount from the weak storms 
highlighted in Fig. 5a is meaningful. Overall, Fig. 5b 
suggests both the CC consensus and ADT-HURSAT 
appear to do a good job at capturing the observed 
TC intensity distribution, though the ADT-HURSAT 
frequency minimum at the 75-kt bin remains.

Using the same best-track/recon validation set as 
ground truth, we calculated the root-mean-square 
error (RMSE) and bias for both ADT-HURSAT and 
the CC consensus (Fig. 6). Both datasets exhibit low 
bias and near-normal error distributions. The CC 

consensus RMSE is approximately 4 kt higher than 
ADT-HURSAT. The larger error is not surprising 
at this point. We expect that the CC errors will be 
reduced, perhaps substantially, when the images 
are subjected to a full EIR-like analysis. Also, there 
appear to be a number of egregious classifications 
in the CC dataset with errors exceeding 40 kt. A 
small number of these cases arise when classifiers 
incorrectly identify the TC of interest in a HURSAT 
image. Figure 7 shows one such case. Posttropical 
cyclone Nancy (0000 UTC 18 February 2005, near 
the image center) in the South Pacific is the in-
tended classification image; here, Nancy’s remnants 
appear to be sheared off to the southeast. Best-track 
data still issuing intensities on the storm list the 
maximum wind speeds at 30–35 kt. However, sev-
eral CC classifiers incorrectly (but understandably) 
analyzed TC Olaf in the upper portion of the image. 
Olaf was clearly a mature TC at this point, with best-
track winds of 100–120 kt (depending on agency). 
For this image, two classifiers identified Olaf as 
a PT = 7.0 eye pattern, one 5.5 embedded center, 
and one 2.0 shear case (ultimately thrown out by 
the consensus algorithm described in “Developing 
the consensus”). Three additional users analyzed a 
“no-storm” pattern for Nancy, producing a snapshot 
intensity (PN without temporal rules applied) of 6.4 
(~125 kt). If best track is assumed ground truth, 
this produces an intensity error of approximately 
90 kt. Although these cases are rare (~0.1% of all 

Fig. 6. Intensity estimate error distributions for CC consensus and 
ADT-HURSAT, as measured against best-track estimates within 12 h 
of low-level aircraft reconnaissance.
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images contain two storms, of which one is at least 
a hurricane and the other is a weak system), other 
cases similar to this one could explain some of 
the egregious errors seen in Fig. 7. Future work to 
identify user center fixes well off the image center 
should correct these cases.

Consensus case studies. Although descriptive statistics 
provide a good overview about the general perfor-
mance of the CC consensus, we now present two case 
studies that provide more specific insight. Maximum 
wind speed time series of Typhoon Yvette (1992) and 
Typhoon Ivan (1997) are shown in Figs. 8a and 8c, 
respectively. In both of these storms, there is a large 
amount of disagreement between the best-track data 
of different forecast agencies (shown as gray lines). 
We recognize that a portion of the disagreements 
arise from several factors beyond Dvorak (pattern) 
interpretation, including different wind-averaging 
periods, inconsistent mapping of CI numbers to wind 
speeds, and other perceived regional bias adjustments. 
But recent work (Barcikowska et al. 2012; Nakazawa 
and Hoshino 2009) demonstrates that significant in-
teragency intensity differences in operational Dvorak 
estimates drive disparate best-track data, even after 
accounting for these factors.

In Ivan (Fig. 8a), the CC consensus (green) closely 
follows the upper best-track data (JTWC) during the 
intensification and weakening phases but tends to 
agree more with other agencies in days 12–17. Yvette 
(Fig. 8c) displays more divergence between CC and 
the best-track data early on but closely follows the 
most intense best-track data (also JTWC) from day 
9 onward. In both storms, the CC consensus nicely 
resolves the daily variance in the TC intensity and 
produces a maximum wind comparable to ADT-
HURSAT.

As mentioned in the previous section, ADT-
HURSAT has been shown to be sometimes late in 
identifying an eye pattern, resulting in an intensity 
plateau. This is clearly seen in Typhoon Ivan (Fig. 8a, 
magenta) on days 6–7, where ADT-HURSAT main-
tains an intensity of 60 kt while all other best-track 
and CC consensus shows an intensification trend [a 
similar plateau is seen in Yvette (Fig. 8c)]. A criti-
cal image in this scenario is shown in Fig. 9. At this 
point (1800 UTC 16 October 1997) a small, ragged 
eye is beginning to emerge from TC Ivan. ADT-
HURSAT called this a central dense overcast (CDO, 
equivalent to the EIR embedded center) pattern and 
assigned a current intensity (CI) number of 3.9, just 
below typhoon strength (~63 kt). CC users were 
split, with 57% choosing embedded center and 43% 
eye pattern. The consensus PN is 5.7, analogous to 
a maximum wind speed of about 108 kt. Although 
the true intensity of Ivan at this point is arguable, 
our own manual EIR Dvorak analysis of this image 
assigns a DT of 6.0—equivalent to a 115-kt maximum 
sustained wind speed.

It is tempting to believe that these kinds of dis-
agreements between ADT-HURSAT and the CC 
consensus permeate the dataset but this conclusion 
is not supported by the evidence. In fact, ADT-
HURSAT and CC consensus (when unanimous) 
agree on certain cloud pattern types most of the 
time. When a TC is classified by at least five citizen 
scientists and they all agree on an eye cloud pattern, 
ADT-HURSAT concurs over 95% of the time. Similar 
results are seen with the embedded-center pattern. 
Other cloud patterns (e.g., shear and embedded 
center) show less agreement not only with ADT-
HURSAT but also among CC classifiers themselves, 
suggesting they are less confident with those scene 
types. The sidebar presents an interesting analysis of 
CC classifier agreement on both cloud pattern type 
and overall intensity.

Monte Carlo approach. One limitation of the consensus 
approach is that it provides little information in the 

Fig. 7. An example of a misclassified storm. Nancy, 
whose center in IBTrACS is within the black circle, 
was the intended classification target. Four classifiers 
chose Typhoon Olaf at the top of the image to classify. 
Black crosses indicate user eye or embedded center 
fixes; the  shows a user center fix for a shear pattern.



way of how certain one can be about the intensity at 
any given time. While deviation between individuals 
can be calculated for each snapshot, it becomes con-
volved with the ADT temporal rules and information 
about uncertainty is lost.

A Monte Carlo approach can be used to estimate 
intensity and also address storm intensity uncertainty. 
We randomly select one classification from the avail-
able classifications for a snapshot. Performing this 
for each snapshot of the storm creates a simulated 
intensity analysis. Temporal rules (following ADT) 
are then applied to the random PN values, producing 
a final intensity time series of the system. However, 
there are numerous possible time series of PN based 
on differences between each citizen scientist. For 
instance, for a storm that lasts 7 days with 8 images 
per day and 10 citizen scientists per image, there are 
about ~1056 possible time series of PN (which is an 

upper limit given the likelihood that there would be 
some agreement in the classifications). In our analysis, 
we create 100 time series of PN through random selec-
tion of classifications at each time. This produces a 
distribution of intensities at each snapshot rather than 
one value. The variation of intensity at each snapshot 
provides an estimate of intensity and some measure 
of uncertainty.

The distribution of intensities using the Monte 
Carlo method is shown in Fig. 8b (Ivan) and Fig. 8d 
(Yvette). For both cases, the method shows that there 
is a large degree of agreement early on in the TC life 
cycles (days 1–5) and larger uncertainty during the 
mature stages of the TCs. We believe that the large 
uncertainty arises from the diversity of eye sizes, 
shapes, and eyewall cloud-top temperature patterns 
that may make it difficult to identify a close match 
on the eye pattern canonical images (row 4 in Fig. 4).

Fig. 8. (a) Time series of intensity of Typhoon Ivan (1997) with intensities from best-track data and esti-
mates from ADT-HURSAT and Cyclone Center (CC consensus). (b) Time series of Ivan where shading 
is proportional to frequency of the simulated intensities (5-kt interval) and the box-and-whisker plots 
show the quartiles and the 5th and 95th percentiles (for clarity, box and whiskers are only shown with 
a 6-h interval). (c),(d) As in (a) and (b) (respectively), but for Typhoon Yvette (1992).
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Fig. 9. Typhoon Ivan at 1800 UTC 16 Oct 1997. The 
yellow pixels surrounded by the dark blue near the 
center of the image represent the developing eye of 
the typhoon.

SUMMARY AND FUTURE WORK. Best-
track data for TCs contain a high degree of uncer-
tainty because TCs are rarely directly observed. 
Although the Dvorak technique is a ubiquitous and 
valuable tool for determining TC surface maximum 
wind speed, it is inherently subjective. Furthermore, 
global best-track data are also compromised by 
changes in technology such as improved satellite 
coverage and resolution, nonstandard changes to 
Dvorak rules and constraints at forecast agencies, 
and changes in the observation infrastructure. A 
global reanalysis of TCs is desirable and should be 
done. However, it is difficult to achieve without a 
large group of dedicated researchers and significant 
funding sources—especially if the participants have 
operational forecast and analysis commitments.

Cyclone Center employs a scheme that uses 
Dvorak-like pattern recognition on a 32-yr homoge-
neous satellite image dataset to provide consistent TC 
intensities. Cyclone Center is one of the first efforts 
to use crowd sourcing to analyze a large meteoro-
logical dataset. A website was developed to guide 
untrained users, called citizen scientists, to answer 
simple questions about TC cloud patterns and cloud 
temperatures. We have shown that

1) CC consensus intensity errors are comparable 
to ADT-HURSAT, even without the full EIR 
implementation;

2) CC classifications can be used to resolve gross 
discrepancies in best-track data; and

3) the crowdsourcing approach provides valuable 
information on uncertainty.

Our intention is not to modify or replace best-track 
data but rather to ultimately provide an objective 
assessment of modern TC intensity that may be used 
as a starting point for a future reanalysis project. Such a 
project could improve the CC consensus by including 
corrections for biases in TC intensity estimates that 
originate from the Dvorak technique, as demonstrated 
in Knaff et al. (2010).

The information presented here is just a hint of 
what is possible with the data that have been (and 
are still continuously being) collected. One valuable 
dataset that naturally falls out of a global TC survey 
is storm morphology information, such as storm 
size, eye size, eye temperature, eyewall temperature, 
and number of storms with strong banding features. 
These types of data can be easily extracted from 
the citizen scientist responses. The addition of the 
uncertainty information will provide an additional 
valuable piece of metadata that can aid analysts and 
researchers.

The implementation of the modified, complete 
EIR Dvorak procedure on the dataset is a high priority 
of the project going forward. As has been mentioned 
several times, the CC consensus results presented 
here are calculated from the “closest match” image 
selection combined with the TC intensity trend (e.g., 
the Dvorak PT number). This is a somewhat crude 
estimation of the TC intensity. We believe that the 
inclusion of additional pattern-specific information 
found in the EIR Dvorak technique will significantly 
improve our estimates of TC intensity. The inclusion 
of additional visible and microwave data is another 
step that we believe would make a significant im-
provement in the CC consensus. However, this would 
require a new development phase and launch of the 
website and is, therefore, reserved for another time.

Finally, we are working on a better way of 
creating the CC consensus. It is difficult to rate 
user skill level when there is no “gold standard” 
to measure against. Our current method weights 
users on the total number of classifications that 
they have done (more is assumed to be better) and 
their bias (how close they are to the consensus). 
Although this technique will minimize the effects 
of inexperienced and “crazy” classifiers, it does not 
fully take advantage of the highly skilled classifiers 
who may classify less but see the “right” pattern 
when others do not.
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One method of evaluating Cyclone Center classifications is 
to compare an individual classification with other citizen 

scientists. In this case, we have selected to compare classifica-
tions with those from the most active Cyclone Center citizen 
scientist (and coauthor): the user “bretarn,” who has 20,000+ 
classifications. So for a given snapshot image, how does bretarn 
classify snapshots compared to others? Figure S2 is a heat map 
representation showing the distribution of classifications from 
bretarn compared to all other individuals based on general 
storm pattern types: shear, eye, EMB, CBD, and other patterns 
(which includes posttropical, no storm, or on the satellite 
limb). The percentages represent the fraction of classifica-
tions from bretarn when another citizen scientist classifies the 
same image with a particular pattern type. For example, 53% 
of the time that any individual selected an eye storm, bretarn 
did, too. However, 35% of the time, an eye was confused 
with an embedded center. The largest agreement is for eyes 
and embedded centers. The shear case causes quite a bit of 
confusion, with bretarn agreeing only 15% of the time with 
other users. More often, when most other users select shear, 
bretarn selects embedded center (49%). Another category 
that has significant off-diagonal percentages is “other storms”. 
However, this is expected since these storms are a catchall of 
categories. For example, a posttropical storm (other) can look 
like a shear pattern to the untrained eye. Similarly, one might 
classify a weak curved band as no storm (other) if they do not 
see a pattern in the cloud field. Yet, the impact of discrepancies 
in classifications is not as clear, since the intensities between the 
pattern types overlap. For instance, the intensity of a weak eye 
can be similar to a strong embedded center.

The impact of different pattern types is 
investigated quantitatively in Fig. S3. This 
heat map provides the same analysis as the 
first, except in terms of PN. The impact of 
selecting the wrong type is removed in this 
analysis and shows the agreement purely in 
terms of PN (where no-storm classifications 
were given a value of 0.1 and posttropical 
and limb storms were not included). The 
PNs show some agreement with some of 
the largest percentages lying on the diagonal; 
however, some patterns and outliers do 
occur. For example, bretarn classifies 
crowd-identified weak systems (PN = 0.1 or 
1.5) as much stronger storms (PN = 3.5 or 
4.0) 30% of the time. It cannot be deter-
mined at this point whether the systems 
are underrated by the crowd, overrated by 
bretarn, or a little of both; such an analysis 
is possible with the most active users. Tasks 
like these are the target of future work.

CLASSIFICATION CONSISTENCY: COMPARISONS TO A SUPERUSER

Fig. S2. Heat map of conditional frequency—the 
percentage of classifications from bretarn based on 
a given selection from all individuals classifying the 
same image as bretarn. Numbers along the top axis list 
the total number of snapshot matchups for each type 
from bretarn. Percentages are based on classifications 
from an individual, so rows sum to 100% (percentages 
rounded to integer).

Fig. S3. Similar to Fig. S2, except in 
terms of PN. Each row is the distribu-
tion of bretarn selections based on a 
selection from citizen scientists.
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Citizen scientists can help improve tropical cyclone 
records. Classifications on Cyclone Center (http://
cyclonecenter.org) continue and the reader is encour-
aged to take part in this project.
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