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ABSTRACT

Previous research has demonstrated the ability to use theWeatherResearch and Forecastingmodel (WRF)

and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal

grid spacing of 36 km. Environmental managers and urban planners have expressed the need for even finer

resolution in projections of surface-level weather to take into account local geophysical and urbanization

patterns. In this study, WRF as previously applied at 36-km grid spacing is used with 12-km grid spacing with

one-way nesting to simulate the year 2006 over the central and eastern United States. The results at both

resolutions are compared with hourly observations of surface air temperature, humidity, and wind speed. The

12- and 36-km simulations are also compared with precipitation data from three separate observation and

analysis systems. The results show some additional accuracy with the refinement to 12-km horizontal grid

spacing, but only when some form of interior nudging is applied. A positive bias in precipitation found

previously in the 36-km results becomes worse in the 12-km simulation, especially without the application of

interior nudging. Model sensitivity testing shows that 12-km grid spacing can further improve accuracy for

certain meteorological variables when alternate physics options are employed. However, the strong positive

bias found for both surface-level water vapor and precipitation suggests that WRF as configured here may

have an unbalanced hydrologic cycle that is returning moisture from land and/or water bodies to the

atmosphere too quickly.

1. Introduction

Many previous efforts to estimate future climate on

finer scales have employed dynamical downscaling where

coarsely resolved global-scale climate simulations were

used to provide temporal and spatial boundary infor-

mation for finescale meteorological models (Giorgi 1990).

A climate downscaling study was recently conducted us-

ing the Weather Research and Forecasting model (WRF;

Skamarock et al. 2008) on a nested 108/36-km modeling

grid (Otte et al. 2012; Bowden et al. 2013). These studies

demonstrated some optimization of WRF in this re-

gard by using the National Centers for Environmental

Prediction–U.S. Department of Energy (NCEP–DOE)

Atmospheric Model Intercomparison Project (AMIP)-II

Reanalysis data (Kanamitsu et al. 2002) as a surrogate for

global climate model information and then comparing

WRF outputs with finer-scale reanalysis products. The

use of historical meteorological data to provide forcing

fields for the dynamical modeling and to provide data

with which to evaluate the results is the only way to test

dynamical climate downscaling methods since there are

no future observations with which to evaluate down-

scaling results from future climate simulations.

While the previous dynamical downscaling at 108- and

36-km grid spacing was successful in providing added

detail and accuracy, environmental managers and urban

planners have expressed a desire for future climate pro-

jections at even finer scales. By taking into account the

effect of local geophysical features on surface air tem-

perature, humidity, wind, and precipitation, finescale

dynamical downscaling has the potential to provide more

useful information to guide local officials in their climate

change adaptation efforts.

To take the previous downscaling effort one step

farther, this work applies one-way nesting in WRF to

provide information on a 12-km horizontal grid for
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calendar year 2006. This study period was chosen based

on the availability of over 11million hourly observations

of surface temperature, water vapor mixing ratio, and

wind speed with which to evaluate model performance.

We restricted our simulations to one year to allow

testing of various model configurations with regard to

interior nudging type and nudging strength. Longer-

term (;20 yr) simulations are anticipated based on the

results of this study. In the course of our investigation

we also tested some alternate physics options. WRF

was applied in three modes. The first is the standard

WRF application where the simulation is constrained

only by the provision of meteorological data at the

lateral boundaries and surface conditions (e.g., topog-

raphy, land surface type, sea surface temperatures).

For the other two modes, internal forcing of meteoro-

logical variables using four-dimensional data assimila-

tion (Stauffer and Seaman 1990) is also applied. This

internal forcing, also called interior nudging, is applied

in two different ways, ‘‘analysis nudging’’ and ‘‘spectral

nudging.’’ As inOtte et al. (2012), the basis for all interior

nudging was the NCEP–DOE AMIP-II Reanalysis

(R-2) data with approximately 200-km horizontal grid

spacing.

While analysis nudging on a fine grid based on coarser

information is known to damp high-resolution features

desired from the finescale simulation (Stauffer and

Seaman 1994), analysis nudging was found to be gen-

erally superior to spectral nudging at the 36-km scale

when appropriate nudging coefficients were chosen to

adjust the strength of the nudging force in the WRF

governing equations (Otte et al. 2012). This study in-

vestigates further adjustments to those coefficients for

12-kmWRF applications. Spectral nudging, when applied

with appropriate options for the 12-km WRF domain,

should not damp high-resolution features in the 12-km

simulation the way analysis nudging can. This study also

investigates adjustments to the spectral nudging strength

coefficients to achieve optimal performance.

2. Model description

The Advanced Research configuration of WRF,

version 3.3.1, was used in a number of different config-

urations as outlined in Table 1. All simulations were

initialized at 0000 UTC 2 December 2005 to provide

a 30-day spinup time before the calendar year 2006

test period. The model was run continuously through

0000 UTC 1 January 2007 with no reinitialization. The

108- and 36-km horizontal domains used in Otte et al.

(2012) and the 12-km domain used here are shown in

Fig. 1. WRF was run on the 12-km domain with the same

34-layer configuration and 50-hPa model top used in Otte

et al. (2012). Initial and lateral boundary data were de-

rived from their 36-km analysis-nudged simulation using

standard WRF input data processing software with

a 1-h update interval for the lateral boundaries. The

input data for the lower boundary and for interior

nudging (when applied) were the global T62 Gaussian

analyses from the R-2 data, which provide a 6-h

history interval.

Regarding the lower boundary definitions, we noticed

an issue with inland lake surface temperatures similar to

that recently described by Gao et al. (2012). Unrealistic

discontinuities in temperature between inland lakes and

their surrounding land surfaces were produced from the

water surface temperature data available from the R-2

analysis. When inland lakes are far removed from the

TABLE 1. Specifications for all 12-km WRF test simulations conducted.

Nudging coef (s21)

Spectral

wavenumber

Case name

Nudging

type

Potential

temperature

U, V wind

components

Water vapor

mixing ratio

Geopotential

height X Y

Base NN None — — — — — —

Base AN Analysis 5.0 3 1025 5.0 3 1025 5.0 3 1026 — — —

Base SN Spectral 1.0 3 1024 1.0 3 1024 — 1.0 3 1024 2 2

Base AN low Analysis 2.5 3 1025 2.5 3 1025 2.5 3 1026 — — —

Base AN high Analysis 1.0 3 1024 1.0 3 1024 1.0 3 1025 — — —

Base SN low Spectral 5.0 3 1025 5.0 3 1025 — 5.0 3 1025 2 2

Base SN high Spectral 2.0 3 1024 2.0 3 1024 — 2.0 3 1024 2 2

Alternate lakes NN None — — — — — —

Alternate lakes SN Spectral 1.0 3 1024 1.0 3 1024 — 1.0 3 1024 2 2

Morrison NN None — — — — — —

Morrison SN Spectral 1.0 3 1024 1.0 3 1024 — 1.0 3 1024 2 2

Kain–Fritsch NN None — — — — — —

Kain–Fritsch SN Spectral 1.0 3 1024 1.0 3 1024 — 1.0 3 1024 2 2

JANUARY 2014 BULLOCK ET AL . 21



closest sea surface temperature data available in the

lower boundary input file,WRFnormally uses a nearest-

neighbor approach to estimate their surface skin tem-

perature. The R-2 data resolve the fiveGreat Lakes with

only three data points, and all other inland lakes in our

12-km WRF domain are not resolved at all. An alter-

native method for setting inland lake water tempera-

tures was tested (‘‘alternate lakes’’ cases in Table 1)

whereby 2-m air temperatures from R-2 were averaged

over the previous month and used to set inland lake

surface temperatures. This alternate lakes method was

applied without any nudging and with spectral nudging.

In neither case were we able to simulate realistic lake

surface temperatures and ice cover. The Great Lakes

could be better resolved by higher-resolution general

circulation models or corresponding reanalysis prod-

ucts, but smaller inland lakes will continue to remain

unresolved. We believe that adding a capability in WRF

to realistically simulate the exchanges of energy be-

tween inland lakes and the atmosphere above could

significantly improve future finescale dynamical down-

scaling efforts.

In regard to the WRF physics options used in this

study, we generally used the same options as did Otte

et al. (2012). These include the Rapid Radiative Trans-

fer Model for global climate models (RRTMG; Iacono

et al. 2008) for longwave and shortwave radiation, the

Yonsei University planetary boundary layer (PBL)

scheme (Hong et al. 2006), and the Noah land surface

model (Chen and Dudhia 2001). Soil temperature and

moisture in the land surface model were initialized by

interpolating from the 36-km parent domain via the

WRF ndown program. For this study, the initialization

time was 18 yr into the 36-km simulation. We also used

the WRF single-moment six-class microphysics

scheme (Hong and Lim 2006) in most of the 12-km

simulations, but instead applied the Morrison double-

moment scheme (Morrison et al. 2009) in two separate

sensitivity tests as indicated in Table 1. We also used

the Grell-3 convective parameterization scheme (Grell

and D�ev�enyi 2002) in most of our 12-km simulations,

but as Table 1 shows, we applied theKain–Fritsch scheme

(Kain 2004) two different ways to test sensitivity to

subgrid convective parameterization.

All simulations applied nudging toward the lateral

boundary values using a five-point sponge zone

(Davies and Turner 1977). For interior nudging, three

options were used: no nudging, analysis nudging, and

spectral nudging. Simulation test cases for which no

interior nudging was used are designated with NN,

cases where analysis nudging was used are designated

with AN, and cases where spectral nudging was used

are designated with SN. Both forms of interior nudg-

ing have been shown to reduce errors in WRF-based

regional climate modeling (Lo et al. 2008; Bowden

et al. 2012).

Analysis nudging in WRF is thought to be most ap-

propriatewhen the target data fields have a similar spatial

resolution as the model grid (Stauffer and Seaman 1994).

In this study the target data for nudging were of consid-

erably coarser resolution than the 12-km model grid. It

was expected that some adjustments to the analysis-

nudging coefficients used by Otte et al. (2012) for their

36-km simulations might be necessary to optimize model

FIG. 1. Modeling domains used for previous 108- and 36-km dynamical downscaling and 12-km

domain (d03) used for this study.
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performance. In general, weaker nudging is recom-

mended for finer-resolved model grids (Stauffer and

Seaman 1994). Therefore we tested the analysis-nudging

technique at 12-km grid spacing with nudging strengths

varied between one-fourth and equal to the base values

used by Otte et al. (2012) in their 36-km modeling.

Analysis nudging was applied to horizontal wind compo-

nents, potential temperature, and water vapor mixing ra-

tio. This interior nudging was only applied above the PBL.

Spectral nudging (Miguez-Macho et al. 2004) differs

from analysis nudging in that its effect is scale selective

so that finescale features in the model simulation can be

preserved. Spectral nudging is based on a spectral de-

composition of the same difference field (model solution

versus reference analysis) used in analysis nudging. By

using only the longer spectral waves (lower wave-

numbers) to reconstitute the difference field used to

nudge the simulation, the effect of nudging on finer-

scale features in the simulation is avoided. A maximum

wavenumber of 2 (i.e., two full waves across the simu-

lation domain) was selected for both horizontal dimen-

sions to account for the size of the 12-km domain and the

limited resolution power of the R-2 data. Spectral

nudging in public releases of WRF can only be applied

to the horizontal wind components, potential tempera-

ture, and geopotential. There is currently no capability

to apply spectral nudging to water vapor mixing ratio as

can be done with analysis nudging. As with our analysis

nudging tests, spectral nudging was only applied above

the PBL in this study. The scale-selective effects of

spectral nudging should reduce model sensitivity to the

nudging coefficients. Nonetheless, sensitivity to the

spectral nudging coefficients was tested with simulations

using one-half and 2 times the base values chosen for

12-km modeling.

3. Evaluation of WRF simulations against hourly
surface observations

Previous dynamical downscaling to 36-km grid spacing

by Otte et al. (2012) used North American Regional

Reanalysis data with 32-km grid spacing to evaluateWRF

simulation results. For our 12-km results, more highly

resolved ground truth datawere required. Instead of using

a meteorological reanalysis product, hourly observations

of temperature, humidity, and wind speed from the

National Oceanic and Atmospheric Administration

Meteorological Assimilation Data Ingest System

(MADIS) were used. To assure data quality, we only used

aviation routine weather reports (METAR) and surface

airways observation (SAO) reports from theMADIS data

repository. These reports provided over 113 106 hourly

observations across the 12-km WRF modeling domain

during 2006. Comparisons of simulated and observed data

were made using the Atmospheric Model Evaluation

Tool (AMET) described in Appel et al. (2011).

The first evaluations performed were intended to

gauge the improvements offered by 12-km WRF mod-

eling over the previous 36-km results. As mentioned

previously, the 36-km WRF results obtained with

analysis nudging were deemed to be generally superior

and were used in a one-way nesting operation to define

all lateral boundary values for the 12-km modeling.

Figure 2 shows monthly evaluations of mean bias and

mean absolute error for the parent 36-km WRF simu-

lation (36AN) and our base-case 12-km nested simu-

lations with no interior nudging, with analysis nudging,

and with spectral nudging in comparison with hourly

surface data from MADIS. These analyses were pro-

duced with AMET, which allows the area of compari-

son to be specified in longitude and latitude space.

The area specified for all AMET products in this study

was 258–488N and 678–1088W, which covers the 12-km

model domain to the greatest extent possible. The

WRF physics options used in these base-case 12-km

simulations were the same used in the previous 36-km

simulation. Note, however, that version 3.3.1 of WRF

was used for the present study, whereas Otte et al.

(2012) used version 3.2.1. Tables 2, 3, and 4 show an-

nual evaluation statistics for temperature, water vapor

mixing ratio, and wind speed, respectively, for all four

of these WRF simulations. The equations used to

calculate the evaluation statistics are shown in the

appendix.

In general, the 12-km simulation with no interior

nudging has a larger annual mean absolute error than

the parent 36-km simulation. However, using either

analysis or spectral nudging at 12-km grid spacing re-

duces the mean absolute errors for temperature and

wind speed from those from the 36-km simulation. The

12-km simulations with either type of interior nudging

improve anomaly correlation over the 36-km results

in all cases, except for water vapor mixing ratio from

spectral nudging where the scores are the same. This

improvement in 12-km accuracy when WRF is applied

with interior nudging is consistent with the results of

Bowden et al. (2012), who found that nudging on the

108- and 36-km nested interior domain was beneficial. A

positive bias in water vapor is apparent in all runs and

this bias is stronger in all of the 12-km simulations. This

suggests that some physics options used at 36-km grid

spacing might not be optimal for 12-km modeling. This

issue is addressed to some degree in sensitivity tests

described below.

Figure 3 shows spatial maps of the annual mean bias

in 2-m temperature for all four test cases across the
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latitude/longitude area of the statistical evaluations de-

scribed above. The 36-km parent simulation shows a

positive bias in temperature over the plains states and

into the northernOhioValley and southernGreat Lakes

regions. There is also an indication of positive bias along

the immediate coastline of the Gulf of Mexico and in

Atlantic coastal areas. A negative temperature bias is

seen over theAppalachian andRockyMountain regions

and over the northern Great Lakes region. The 12-km

simulation performedwithout any interior nudging shows

generally the same pattern in temperature bias, but the

positive bias areas are diminished and the negative bias

FIG. 2. Monthly evaluations of (left) mean absolute error and (right) mean bias for 36AN (black) and the 12-km NN (red), AN (green),

and SN simulations (purple).
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areas are noticeably expanded. The analysis-nudged and

spectral-nudged simulations both show temperature bias

patterns that are more similar to the 36-km results, with

a lesser shift toward negative bias than in the no-nudge case.

Figures 4 and 5 show similar spatial maps for bias in

water vapor mixing ratio and wind speed, respectively.

For water vapor, the 12-km simulations all show an

obvious shift toward a positive bias in nearly all areas

relative to the parent 36-km simulation. The areas of

greatest shift appear to be in the plains and Midwest

states. There is some indication that spectral nudging

reduces the positive bias in water vapor, but only slightly

so. The analysis nudging coefficient for water vapor is an

order of magnitude less than the coefficient for tem-

perature andwind andwater vapor is not nudged at all in

the spectral method. Also, when nudging is applied it is

only done so above the PBL. Interior nudging does not

appear to offer much help in overcoming what appears

to be a basic model bias toward too much moisture near

the surface, especially in 12-km simulations. For wind

speed, there is very little change in the pattern of bias

between the 36- and 12-km simulations. Figure 2 in-

dicates a general decrease in the positive bias in wind

speed for all months in the 12-km simulations, more so

when nudging is applied. But this is poorly evident in the

spatial maps of the annual mean (Fig. 5). It is interesting

to note that the model bias is generally small in areas of

the Great Plains where wind instrument exposure is less

likely to be a factor.

4. Evaluation of WRF simulations of precipitation

Because of the positive bias that was found for surface-

level water vapor, we believed it was important to also

investigate simulated precipitation amounts. We ob-

tained precipitation data from three separate sources,

gridded analyses from the Multisensor Precipitation

Estimator (MPE) and the Parameter-Elevation Regres-

sions on Independent Slopes Model (PRISM), and site-

specific data from the National Atmospheric Deposition

Program’s National Trends Network (NTN).

TheMPE is a precipitation analysis system developed

by the National Weather Service Office of Hydrology in

March 2000. It is used by National Weather Service

River Forecast Centers to produce gridded precipita-

tion estimates for various hydrological applications.

Observational data sources include weather radar data,

automated rain gauges, and satellite remote sensors.

We obtained Stage IV datasets from the Earth Ob-

serving Laboratory at the National Center for Atmo-

spheric Research (http://data.eol.ucar.edu/codiac/dss/

id521.093). These provided hourly precipitation analy-

ses at 4-km horizontal grid spacing that we reanalyzed

to our 12- and 36-km modeling domains using the pro-

gram metgrid, which is part of the standard WRF

Preprocessing System (WPS). Specifically, we used the

gridcell average interpolator (option average_gcell in

METGRID.TBL), which is described in chapter 3 of the

online WRF User’s Guide (http://www.mmm.ucar.edu/

wrf/users/docs/user_guide_V3/users_guide_chap3.htm).

We restricted our WRF evaluations based on MPE data

to non-oceanic areas because of the limited precipitation

information available over oceans. We also restricted

our evaluations of monthly total precipitation to those

areas where the hourly MPE data were at least 90%

complete for each month. Where the MPE data were

not 100% complete, we scaled the monthly totals lin-

early to 100%.

Figure 6a shows a graph of average monthly precip-

itation from theWRF simulations compared to theMPE

data. The 36-km WRF simulation results (from Otte

et al. 2012) were trimmed to match the 12-km modeling

domain to allow for proper comparison. All of theWRF

simulations produced more precipitation than the MPE

data indicate, with the only exception being the 36-km

results for October. The greatest exceedances were in

the spring and summer months. The 12-km simulations

show higher positive bias than the 36-km case in nearly

TABLE 2. Annual evaluation statistics for temperature (K).

36-km

AN

12-km

NN

12-km

AN

12-km

SN

Correlation 0.9660 0.9601 0.9690 0.9692

Mean absolute error 2.2121 2.3452 2.0752 2.0543

Mean bias 0.6287 0.2146 0.4052 0.2968

RMS error 2.9017 3.0574 2.7260 2.7021

Anomaly correlation 0.9644 0.9599 0.9683 0.9688

TABLE 3. Annual evaluation statistics for water vapor mixing ratio

(g kg21).

36-km

AN

12-km

NN

12-km

AN

12-km

SN

Correlation 0.9441 0.9396 0.9520 0.9477

Mean absolute error 1.1932 1.3029 1.2014 1.2021

Mean bias 0.3488 0.6185 0.6277 0.5559

RMS error 1.6802 1.8223 1.6831 1.6871

Anomaly correlation 0.9418 0.9325 0.9449 0.9418

TABLE 4. Annual evaluation statistics for wind speed (m s21).

36-km

AN

12-km

NN

12-km

AN

12-km

SN

Correlation 0.5890 0.5492 0.6071 0.5976

Mean absolute error 1.7036 1.7159 1.5482 1.6038

Mean bias 0.8586 0.7233 0.5792 0.6546

RMS error 2.2116 2.2362 2.0271 2.0991

Anomaly correlation 0.5527 0.5238 0.5875 0.5745
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all instances. The positive bias is most obvious for the

no-nudge 12-km case.We also calculatedmonthly-mean

absolute error versus MPE (not shown) and found only

slight differences between the WRF simulations. How-

ever, the 12-km cases did show slightly larger error, es-

pecially when no nudging was applied.

The PRISM precipitation data (Daly et al. 1994)

provide a second gridded analysis product with which

to evaluate WRF performance. These high-resolution

(0.041 678 latitude–longitude) monthly precipitation data

are fully documented (http://www.prism.oregonstate.

edu/docs/). We used software from the R Project for

Statistical Computing (http://www.r-project.org/) to per-

form area-weighted grid-to-grid mapping to upscale the

PRISM data to the 12- and 36-kmmodeling grids. Figure

6b shows a graph of average monthly precipitation from

theWRF simulations compared to PRISM. Precipitation

data from PRISM are only available over land areas so

the results in Figs. 6a and 6b both exclude oceanic areas.

The PRISM results confirm what was found in our com-

parisons to MPE. The lines showing WRF-simulated

precipitation in Figs. 6a and 6b are nearly identical, but

there are some small differences because the MPE data

did not cover all land areas of the 12-kmWRFdomain for

some months. It is interesting to note how similar the

MPE and PRISM values are throughout the entire year.

In the PRISM evaluation, all WRF simulations exceeded

the indicated precipitation for every month with no ex-

ceptions and the exceedances were greatest during the

spring and summer.

We obtained weekly NTN precipitation data at 209

sites within the 12-kmWRFmodeling domain (the NTN

is described at http://nadp.sws.uiuc.edu/ntn/). The spa-

tial distribution of NTN monitors is generally homoge-

neous across land areas of the 12-kmWRF domain with

slightly higher network density in the central and eastern

sections. NTN samples were grouped bymonth based on

the end of their sampling period. Most months had four

weekly sampling periods in this analysis, but April, July,

and September had five. WRF-simulated precipita-

tion was compared to NTN samples based on the exact

period for each sample. We calculated the mean of

WRF-simulated and NTN-observed weekly totals for

each month, then scaled those 7-day means to match the

FIG. 3. Annual mean bias of 2-m temperature (8C) for (top left) the 36-km parent simulation and the three 12-km simulations with (top

right) NN, (bottom left) AN, and (bottom right) SN.
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actual number of days in eachmonth to providemonthly

average values for NTN that could be directly compared

with the monthly MPE and PRISM results above. These

monthly totals based on theWRF–NTN comparisons are

shown in Fig. 6c. Here, as with the MPE and PRISM

comparisons, WRF-simulated precipitation generally

exceeded the observed amounts, with the worst excesses

generally coming from the 12-km simulation with no in-

terior nudging. Because of the higher NTN station den-

sity in the central and eastern parts of the study domain

where more precipitation normally falls, the average

monthlyNTN precipitation values are slightly higher that

indicated for the MPE and PRISM data. But the average

WRF-simulated precipitation is also higher at the NTN

station locations, and once again theWRF results exceed

observations in nearly all instances. The exceedances are

again especially large in the warm months and more so

for the 12-km WRF when no nudging is used.

5. Testing adjustments to nudging strength

The results shown above demonstrate that the physics

options for WRF employed in previous dynamical

downscaling to 36-km grid spacing can be used at 12-km

grid spacing to provide some additional accuracy for

temperature, humidity, and wind speed when interior

nudging is appliedwith reductions in nudging strength to

account for finer horizontal resolution. However, the

reductions we applied were rather arbitrary. To test

model sensitivity to the choice of analysis-nudging and

spectral-nudging coefficients, values of one-half and

twice the base values were also applied.

Figure 7 shows monthly-mean absolute error and

mean bias for all three analysis nudging cases (ANlow,

AN, and ANhigh) and all three spectral nudging cases

(SNlow, SN, and SNhigh) for temperature, water vapor

mixing ratio, and wind speed. Generally, the differences

in mean absolute error were quite small throughout the

year, especially for wind speed. For temperature, the

differences in mean absolute error are quite small

throughout the year. Nonetheless, the base-value

coefficients for both analysis and spectral nudging

produced the lowest errors in temperature for nearly

every month. However, water vapor error increased

during the summermonths as nudging strength increased

for both nudging methods. Nudging of water vapor has

FIG. 4. As in Fig. 3, but for water vapor mixing ratio (g kg21).
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been somewhat controversial because doing so adds or

subtracts mass from the simulated atmosphere. For this

reason, we chose our strength for analysis nudging of

water vapor to be one-tenth the strength of the other

variables in all cases. Nudging of water vapor is not per-

formed at all with spectral nudging in published WRF

codes. Nonetheless, there are still discernible differences

in the mean absolute error for water vapor between the

spectral nudging cases. For wind speed, increasing the

nudging strength nearly always resulted in a very small

increase in mean absolute error. However, this effect was

so small as to be nearly undetectable in Fig. 7.

Figure 7 shows some interesting changes inmodel bias

as nudging strengths are changed. For temperature, bias

is increased with stronger analysis nudging in all months

except November and December. Model biases were

already positive in all months except June, so stronger

analysis nudging generally degraded the temperature

results. This could indicate a positive bias in the R-2

temperature data the model is being nudged toward.

Temperature bias was only slightly affected by changes

in the strength of spectral nudging with no definite relation

of nudging strength to bias correction. The positive

model bias in water vapor mixing ratio is improved by

stronger analysis nudging and by stronger spectral

nudging in every month. Because water vapor is directly

nudged in the analysis-nudging method, we might ex-

pect to see improvement from that form of nudging.

However, the link between stronger spectral nudging

and improved bias in water vapor is not direct and sug-

gests complex interactions of model physics. Wind speed

bias was improved to a small degree by stronger analysis

nudging, but changes to spectral nudging strength had

little effect.

We also tested the effect of nudging strength on the

amount of precipitation simulated by the 12-km WRF.

Figure 8a shows the average monthly total precipitation

for all 12-kmWRF cells over landwhen analysis nudging

strength is varied up and down by a factor of 2. Figure 8b

shows similar results for spectral nudging. The 12-km

precipitation behavior is much more sensitive to changes

in the strength of analysis nudging than spectral nudging.

The strongest analysis nudging reduces the simulated

precipitation by ;5%–10%, with the greatest effect

in the spring and summer months. Variations in the

strength of spectral nudging have little effect in any

FIG. 5. As in Fig. 3, but for 10-m wind speed (m s21).
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month. Unlike analysis nudging, spectral nudging is de-

signed to preserve smaller-scale features of the simula-

tion. The lack of sensitivity to spectral nudging strength

suggests that the positive precipitation bias is due more

to smaller-scale phenomena. Analysis nudging strength

has its greatest effect on precipitation amount in the

spring and summer when convection is more dominant.

The evidence here points to small-scale circulations and

convection being a critical component to the large pos-

itive bias in precipitation simulated by the 12-kmWRF.

FIG. 6. Average monthly precipitation (mm) from WRF simulations in comparison with

observational data from (a) MPE, (b) PRISM, and (c) NTN. The WRF simulations are 36AN

and 12-km resolution with NN, AN, and SN.
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6. Testing alternate physics options

Because of the positive biases found in both water vapor

and precipitation, we wanted to see if alternate choices

for convective parameterization and cloud microphysics

might reduce these biases. The tests we conducted are in

no way conclusive, but a brief discussion of their results

are worthy of presentation.

Our physics options based on the previous 36-km

modeling included use of the Grell-3 subgrid convection

FIG. 7. Monthly (left) mean absolute error and (right) mean bias for WRF simulations testing nudging strength for AN and SN. Low

nudging strength is one-half the base value. High nudging strength is 2 times the base value.
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scheme. To test model sensitivity to this choice, we

conducted simulations with and without spectral nudg-

ing using the Kain–Fritsch scheme instead. The differ-

ences we found in mean absolute error and mean bias

for temperature, water vapor, and wind speed were all

quite small. The strong positive biases in water vapor

and precipitation remained. Alapaty et al. (2012) iden-

tified a weakness in many convective parameterization

schemes where the effects of subgrid convective clouds

on radiation are not taken into account. Their treatment

for the radiative effects of subgrid convection signifi-

cantly reduced simulated precipitation. Our research

group at the U.S. Environmental Protection Agency is

also working to modify convective parameterizations in

other ways so as to be applicable at finer scales where

current formulations may not be appropriate and may

be contributing to the type of positive precipitation bias

we found here. In the future, we plan to test these

developing techniques for 12-km dynamical down-

scaling with WRF.

The WRF configuration for the previous work at

36-km grid spacing and for the base case 12-km simu-

lations performed here used the WRF single-moment

6-class microphysics scheme. To test model sensitivity,

we instead applied the Morrison double-moment scheme

with and without spectral nudging. We found mixed

results in terms of model error and bias. There was

a reduction in surface temperature during the warmer

months (May through September), which led to a negative

bias and a general increase in model error. During

these same warmmonths we found a decrease in water

vapor, which reduced model error and bias for that

variable.

Obviously, there are other WRF options that could

influence the simulation of water vapor and precipita-

tion (e.g., land surface model or radiation model).

Correcting the positive bias in water vapor and pre-

cipitation that we found in nearly all of our 12-kmWRF

simulations will likely require a follow-on investigation

of the entire hydrologic cycle as it is simulated by all

model processes.

7. Summary

This work has applied a dynamical downscaling tech-

nique previously developed for WRF at 36-km hori-

zontal grid spacing to a finer 12-km grid. Our one-way

nesting technique does provide more accurate infor-

mation for surface-level temperature and wind speed as

long as proper adjustments are made to the interior

nudging coefficients. Water vapor and precipitation

remain problems to be addressed. Mean absolute error

in water vapor is not so much degraded in going from

36- to 12-km grid spacing as is the mean bias, which

becomes more positive. Stronger interior nudging of

either type, analysis or spectral, can provide some im-

provement to the positive bias in water vapor at the

surface. Stronger analysis nudging can reduce the positive

bias in precipitation, but stronger spectral nudging does

not have much effect. The overall optimum adjustments

depend somewhat on the time of year and meteorolog-

ical variables of most interest, but the base nudging

strengths chosen for this study were found to be gener-

ally appropriate when both mean absolute error and

mean bias are considered. The evaluation against ob-

servations demonstrates that interior nudging is re-

quired to provide additional accuracy from downscaling

to 12-km grid spacing.

Optimum simulation of water vapor mixing ratio

and precipitation in 12-km simulations may require

a change in physics options from those applied pre-

viously with 36-km grid spacing. Previously identified

positive biases in water vapor and precipitation from

36-km WRF simulations (Otte et al. 2012) became

more pronounced in our 12-km simulations when the

same physics options were used. Changing to an alter-

nate convective parameterization scheme had little

effect on precipitation bias.We suspect that at this finer

horizontal resolution, some larger convective elements

in the atmosphere may be resolvable by the model and

subgrid convective parameterizations might be account-

ing for their precipitation a second time. But investigation

FIG. 8. Average of the monthly total precipitation (mm) simu-

lated by the 12-kmWRFover landwith high, base, and low nudging

strengths for (a) AN and (b) SN.
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of this conjecture is beyond the scope of this study.

Besides, surface-level water vapor was also positively

biased. We are left with a kind of ‘‘chicken or egg’’ co-

nundrum.Which came first, toomuchwater vapor or too

much precipitation? Understanding why our surface-

level water vapor and precipitation are both too high

requires an investigation of the entire hydrologic cycle

that is also beyond the scope of this study.

We intend to move forward with long-term (10–20 yr)

applications of 12-km dynamical downscaling withWRF

once we have addressed the issues of inland lake surface

temperatures and subgrid cloud radiation effects. The

required computational and data storage resources are

also a concern. However, more spatially refined climate

projections have been identified as a critical need by

hydrologic and urban air quality managers.
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APPENDIX

Definition of Statistics

The following statistics are calculated as shown with

X representing model simulation values and Y repre-

senting observed values.

Correlation (Pearson):

r 5

�
n

i51

(Xi2X)(Yi 2Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Xi 2X)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Yi 2Y)2

s .

Mean absolute error:

MAE5 jX2Yj .

Mean bias:

MB5 X2Y .

Root-mean-square (RMS) error:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X2Y)2

q
.

Anomaly correlation:

AC5
(X2Y)(Y2Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X2Y)2 (Y2Y)2

q .
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