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ABSTRACT

Undocumented changepoints (inhomogeneities) are ubiquitous features of climatic time series. Level
shifts in time series caused by changepoints confound many inference problems and are very important data
features. Tests for undocumented changepoints from models that have independent and identically distrib-
uted errors are by now well understood. However, most climate series exhibit serial autocorrelation.
Monthly, daily, or hourly series may also have periodic mean structures. This article develops a test for
undocumented changepoints for periodic and autocorrelated time series. Classical changepoint tests based
on sums of squared errors are modified to take into account series autocorrelations and periodicities. The
methods are applied in the analyses of two climate series.

1. Introduction

A changepoint is a time at which the structural pat-
tern of a time series changes. Instrumentation/observer
changes, station location changes, and changes in ob-
servation practices are frequent culprits behind change-
points. In many cases, the changepoint time and cause
are documented and it is reasonably straightforward to
statistically adjust (homogenize) the series for the ef-
fects of the changepoint. Unfortunately, many change-
point times are undocumented.

While undocumented changepoints are sometimes
evident in a plot of the series, debatable cases also
abound. Visual detection of a changepoint in a series
with a prominent seasonal mean can be difficult. More-
over, the statistical methods used to identify undocu-
mented changepoints are known to be important
[Reeves et al. (2007) reviews the topic for models with
independent and identically distributed (IID) errors].
Undocumented changepoint detection methods can

greatly facilitate metadata investigations by identifying
times around which the investigation should focus.
Hence, the development of statistically sound tests for
undocumented changepoints is desirable. Undocu-
mented changepoint detection in climate settings has
been previously explored by Potter (1981), Alexander-
sson (1986), Solow (1987), Gullet et al. (1991), Rhoades
and Salinger (1993), Easterling and Peterson (1995),
Vincent (1998), Lund and Reeves (2002), Wang (2003),
and Ducré-Robitaille et al. (2003) (among others). The
statistical side of the subject is also vast, with Page
(1955), Kander and Zacks (1966), Hinkley (1971),
Hawkins (1977), Caussinus and Mestre (2004), and
Davis et al. (2006) composing a prominent sample. Nei-
ther of these lists is complete.

In this paper, we develop a method for undocu-
mented changepoint detection for series with autocor-
related and periodic features. The periodic and auto-
correlation aspects are modeled in tandem rather than
separately. The results enable one to test for undocu-
mented changepoints in a wide variety of realistic cli-
mate settings. The methods can be used with or without
a reference series. This paper is perhaps the first de-
tailed investigation of changepoint detection in climate
settings involving autocorrelation; changepoint detec-
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tion techniques for periodic series were previously con-
sidered in Gullett et al. (1991).

The rest of this paper proceeds as follows. Section 2
introduces a two-phase time series regression model
with autocorrelated and periodic features. A test statis-
tic weighing overall series homogeneity against the al-
ternative of one undocumented changepoint is devel-
oped in section 3. Section 4 shows why autocorrelation
and periodicities are important in changepoint detec-
tion problems. Section 5 examines power aspects of the
proposed test. Applications of the methods to two se-
ries are made in section 6. Section 7 closes with several
remarks.

2. The model

In the time-homogeneous (nonperiodic) setting, a
simple but useful model allowing for one changepoint
in a time series {Xt} is the following regression:

Xt � � � �t � �1�t�c� � �t, 1 � t � N, �2.1�

where c is the unknown time of change, the magnitude
of the changepoint effect (step size) is �, and {�t} is a
zero-mean random sequence that may be autocorre-
lated (a time series). The factor 	t allows for a simple
linear trend in series values. Following Wang (2003),
the linear trend 	 is constrained to be the same before
and after the changepoint time c. The focus here is on
mean changes at the changepoint time and not on au-
tocovariance, trend, or other types of changes. The
simple linear structure in (2.1) may require modifica-
tion in some settings. For example, Lund and Reeves
(2002) study a carbon dioxide series where a quadratic
trend is apparent; the existence of a good reference
series may render the inclusion of a trend component
unnecessary.

This paper works in the at-most-one changepoint
(AMOC) setting. Multiple undocumented change-
points are indeed a frequent problem in climate series;
however, as current multiple changepoint detection al-
gorithms will need to assess the presence (or lack
thereof) of a single changepoint over various subseg-
ments of the series, AMOC methods essentially repre-
sent ground zero. Further discussion on this point is
presented in section 7.

Equation (2.1) is a simple linear regression model
with two phases; such models and their variants have
been studied in Hinkley (1969), Solow (1987), Easter-
ling and Peterson (1995), Vincent (1998), Lund and
Reeves (2002), and Wang (2003). A periodic variant of
(2.1) merely allows the location parameter 
 to vary
periodically with known period T: 
t�T � 
t for each t.
Using n as a cycle index and � as a phase (called a

season here) index permits (2.1) to be rewritten in sea-
sonal form, which is

XnT�� � �� � ��nT � �� � �1�nT���c� � �nT��,

1 � nT � � � N. �2.2�

In (2.2), XnT�� is the series value during the �th season,
1 � � � T, of the nth cycle of data. Our bookkeeping
takes d complete cycles of data and labels these as
0, . . . , d � 1, respectively; this makes X1 the observa-
tion for season 1 of cycle 0 and XN the observation for
season T of cycle d � 1. The total number of observa-
tions is N � dT. The setup here assumes a time-
homogeneous (nonperiodic) linear trend 	 and a time-
homogeneous mean shift �; this is emphasized nota-
tionally in that neither 	 nor � are subscripted with �.
Changepoints that induce different mean shifts during
different seasons could be described by allowing � to
depend on �.

The mean series response at time nT � � in (2.2) is

E�XnT��� � �� � ��nT � �� � �1�nT���c�;

seasonality in the first moment arises through 
�, 1 �

� � T. In addition to seasonality in mean, many climatic
series also display seasonality in variance and autocor-
relations. For example, nontropical temperature series
have larger variabilities (lag zero autocovariances) dur-
ing winter seasons and many western United States pre-
cipitation series have minimal variability during late
summer and early fall seasons. To allow for autocorre-
lation and periodicities, the errors {�t} are modeled as a
periodically stationary time series (periodic series). A
general overview of periodic series and their applica-
tions in climate modeling is presented in Lund et al.
(1995).

For simplicity of computation, presentation, and
overall flexibility, we will work with perhaps the sim-
plest periodic time series model for {�t}: a first-order
periodic autoregression [PAR(1)]. Such an {�t } is gov-
erned by the difference equation

�nT�� � ���nT���1 � ZnT��, �2.3�

where {Zt} is zero-mean periodic white noise; that is, Zt

and Zs are uncorrelated when t 
 s, Zt has zero mean
for every t, and the variance of Zt is periodic with
Var(ZnT��) � �2

�. The model in (2.3) has 2T parameters
[in addition to the T � 2 regression parameters in
(2.2)], which may be a large number if the series is
observed frequently. For example, a daily PAR(1)
model (T � 365) has 365 autoregressive parameters and
365 white noise variance parameters. Parsimony issues
for periodic series are discussed in Lund et al. (2006).
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3. The test statistic

An undocumented changepoint test statistic weighs
the null hypothesis that � � 0 (termed a null or H0

model) against the alternative that � 
 0 (termed a full
or HA model). The changepoint time c is an unknown
parameter of the full model. The general form of our
test statistic coincides with that in Lund and Reeves
(2002) and Wang (2003):

Fmax � max
1�c�N�1

Fc, �3.1�

where Fc defined by

Fc �
SSE0 � SSEA�c�

SSEA�c�	�N � p�
�3.2�

is a regression F-type statistic measuring closeness of
the null model and a full model with a single change-
point at time c. In (3.2), SSE0 is the sum of squared
errors under H0 and SSEA(c) is the HA sum of squared
errors when a changepoint exists at time c. SSE0 does
not depend on the value of c but SSEA(c) does. In (3.2),
p is the number of regression parameters involved in
the full model with a changepoint at time c. In our
section 6 applications with monthly series, p � 14.

In classical regression settings with IID Gaussian {�t},
Fc has an F distribution (exactly) with 1 numerator and
N–p denominator degrees of freedom. The larger Fc is,
the more evidence points to an undocumented change-
point at time c. Intuitively, the Fmax statistic selects the
time of largest discrepancy in the two phases of the
model as the estimator of c; H0 is accepted when Fmax

is small enough to be explained by chance variation and
rejected when Fmax is excessively large.

For IID {�t}, Alexandersson (1986) and Lund and
Reeves (2002) connect the Fmax statistic to Gaussian
likelihood ratios and maxima of correlated t and F ran-
dom variates. Since the Fcs are correlated in c, Fmax

does not behave statistically as the maximum of inde-
pendent F statistics.

The key methodological innovation put forth here
involves modifying sums of squares in autocorrelated
and periodic settings. Here, sums of squared errors are
best linear predictors. Because we work with seasonal
series, these sums of squares should be weighted for
seasonal variabilities. Specifically, for known time se-
ries parameters �� and �2

� for 1 � � � T,

SSE0 � �
n�0

d�1

�
��1

T
�XnT�� � X̂nT��

0 �2


�
2 ;

SSEA�c� � �
n�0

d�1

�
��1

T
�XnT�� � X̂nT��

A �c��2


�
2 , �3.3�

where the predictions X̂0
nT�� and X̂A

nT��(c) are best one-
step-ahead linear predictions from the observed past:

X̂t
0 � P0�Xt|X1, . . . , Xt�1, 1�,

X̂t
A�c� � PA�Xt|X1, . . . , Xt�1, 1�. �3.4�

The notation P[Y|X1, . . . , Xm, 1] denotes the best
(minimum mean square error) linear prediction of Y
from linear combinations of X1, . . . , Xm and a constant.
The subscript under P (or the superscript on X̂t) indi-
cates the model (H0 or HA) under which the linear
prediction is to be computed. Brockwell and Davis
(1991, chapter 8) provide the theory for sums of
squared errors in time series settings. The assumed
PAR(1) structure renders Var(XnT�� � X̂nT��) � �2

�;
for more “complicated time series models,” one merely
replaces �2

� in the denominators in (3.3) by the appropri-
ate expression for the residual variance Var(XnT�� �
X̂nT��). The Fmax statistic proposed here reduces to the
Fmax statistic for IID errors when autocorrelation and
seasonality are not present.

The computation of Fmax requires SSE0 and SSEA(c)
for each c. We first tackle SSE0. For the H0 model, the
PAR(1) structure gives

X̂nT��
0 � �� � ��nT � �� � ���XnT���1 � ���1

� ��nT � � � 1�� �3.5�

for 2 � nT � � � N, where the start-up convention
X̂0

1 � 
1 � 	 is made. Estimated values of 
�, 1 � � �

T, and 	 are computed by weighted least squares meth-
ods (see Fuller 1996 for background), with the weights
set optimally according to the covariance matrix of the
observations X1, . . . , XN, and used in (3.5). The equa-
tions governing the PAR(1) covariance structure are
(5.4)–(5.7) in Lund and Basawa (2000). The PAR(1)
covariance matrix depends only on the ��s and �2

�s,
which are viewed here as nuisance parameters. In prac-
tice, one needs only a rough idea of their values since
small perturbations in the autocovariance parameters
do not induce radical changes in the sum of squares,
and this is easily accomplished by several methods, one
of which is presented in section 6a.

To compute SSEA(c) for a fixed c, we proceed as with
the null model except that (3.5) is modified to account
for the changepoint at time c:

X̂nT��
A � �� � ��nT � �� � �1�nT���c�

� ���XnT���1 � ���1 � ��nT � � � 1�

� �1�nT���1�c�� �3.6�

for 2 � nT � � � N, where the start-up convention
X̂A

1 � 
1 � 	 is made.
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One rejects the null hypothesis of series homogeneity
if the Fmax statistic exceeds a critical value calibrated to
a preset level of statistical confidence; in our section 6
applications, these critical values (thresholds) are set
for 95% confidence and are computed by simulation.
These critical values, in theory, depend slightly on the
time series parameters �� and �� for 1 � � � T. This
dependence decays as N increases; accounting for this
dependence by simulation for each N and set of time
series parameters allows one to attach exact margins of
error. The applications in section 6 provide some feel
for these critical values.

When N is small, it may be wise to investigate parsi-
mony constraints for the regression and time series pa-
rameters. Physical logic may dictate the form of the
constraints. For example, when a good reference series
is available and the differenced series is tested for an
undocumented changepoint, it might be sufficient to set

� � 
 (a constant) and 	 � 0 (zero trend). Con-
strained periodic time series modeling is considered in
Lund et al. (2006).

4. Effects of autocorrelation and periodicities

This section shows how autocorrelations and period-
icities degrade changepoint detection procedures.
Here, we present simulations that quantify how an Fmax

statistic performs when autocorrelations and periodici-
ties are ignored.

We first investigate the effects of autocorrelation. To
study the effects of autocorrelation only, we examine a
time-homogeneous setup: (2.1) and {�t} satisfying the
first-order autoregression [AR(1)]

�t � ��t�1 � Zt, �4.1�

where {Zt} is IID zero-mean Gaussian noise with vari-
ance �2 and |� | � 1. We consider series of length N �
100; other series lengths behave similarly. As the au-
toregressive coefficient � � 0 increases, the degree of
serial autocorrelation in the errors increases. When � �
0, the errors are independent. The white noise variance
�2 is selected to make the variance of �t unity in all
cases; this entails setting �2 � 1 � �2 and allows for
meaningful comparisons across different table entries.

Table 1 reports empirical probabilities of erroneously
rejecting H0 (false alarm rates), at level 5%, for various
values of the autocorrelation coefficient �. Each em-
pirical probability was aggregated from 100 000 inde-
pendent simulations; hence, simulation error is mini-
mal. In each simulation run, a Gaussian AR(1) error
series {�t} with specified � is first generated. Two Fmax

statistics are then computed, one that takes into ac-
count autocorrelations (the “new” column) and one

that ignores autocorrelations (the “old” column). In
computing the Fmax statistic that takes autocorrelations
into account, we have used the true values of � and �2

to compute one-step-ahead predictions and their mean-
squared errors. This allows us to exclude the effects of
time series parameter estimation. Results for estimated
time series parameters are presented later in this sec-
tion. The mean of {Xt} is taken as zero (	 � 
 � 0). In
this case, the hypothesis of no changepoint is rejected
whenever an Fmax statistic exceeds 11.054 [the percen-
tiles of Wang (2003) apply in this setting]. The actual
(up to simulation error) 95th percentiles of the Fmax

statistic, denoted by Fmax,0.95, that ignore autocorrela-
tion are included for comparison’s sake; notice that
they are much larger than the 11.054 threshold appli-
cable to � � 0. In these cases, an error (type I) is made
any time the test declares an undocumented change-
point to exist (HA), as, in truth, no changepoints are
present (H0).

The Table 1 rejection probabilities are extremely
high for the old Fmax column, dramatically so for values
of � slightly less than unity. The rejection probabilities
should be close to 0.05 in a well-functioning test. This
agrees with the findings of Percival and Rothrock
(2005) and is not surprising geometrically: as � � 0
becomes larger, the series makes longer sojourns above
and below its mean response levels, which effectively
imitate the effects of a mean shift due to a changepoint.
This said, we are somewhat surprised with the drastic
performance degradations in autocorrelated settings;
even the � � 0.15 case, which entails minor autocorre-
lation, shows empirical rejection rates (type-I errors)
that are some 3 times too large. When � � 0.5, the
rejection rate is a whopping 60%. When � � 0 (which
is encountered less frequently in climate modeling),
consecutive observations tend to split the mean re-
sponse level (one above and one below) and make
changepoints easier to detect. Notice that the Fmax sta-
tistic accounting for autocorrelations, however, is per-
forming as it should in all cases, with empirical rejection

TABLE 1. Effects of autocorrelation on changepoint detection.

AR(1) � Old probability New probability Fmax,0.95

0.95 0.997 0.0515 176.753
0.75 0.924 0.0499 64.185
0.50 0.601 0.0509 29.547
0.25 0.238 0.0515 17.250
0.15 0.138 0.0497 14.350
0.00 0.0508 0.0508 11.054

�0.25 0.006 34 0.0499 7.460
�0.50 0.002 63 0.0515 5.323
�0.75 0.002 71 0.0502 4.211
�0.95 0.002 55 0.0507 4.531

15 OCTOBER 2007 L U N D E T A L . 5181



rates very close to 5%. The deficiencies of the test
should not be blamed on use of Fmax procedures; other
types of changepoint tests that ignore autocorrelations
will see the same performance degradations. In fact, the
Fmax test is statistically optimal (a likelihood ratio test)
in the case of IID Gaussian errors. Overall, the theme
is clear: one should be extremely careful about the
modeling methods in changepoint settings with posi-
tively autocorrelated series. Ignoring positive autocor-
relations can lead to a higher than specified false alarm
rate, while ignoring negative autocorrelations may let a
true changepoint go undetected.

To show that the effects of estimating time series
parameters are negligible, Table 2 reports sample
type-I errors for our new Fmax statistic when the AR(1)
time series parameters are estimated, as opposed to
assuming them to be known as was done in Table 1. The
simulations consider various values of � and the sample
sizes n � 100, 500, and 1000; �2 � 1 was taken in all
cases and a level 95% test was again used. Each table
entry is based on 100 000 independent simulations. The
results show that estimating � and �2 does not overly
impact the type-I errors, with lessening effects as the
sample size increases. The Table 2 values merely reflect
that the estimators of � and �2 become more accurate
as the sample size increases.

Next, we consider how periodicities in the white
noise variances influence changepoint detection. Here,
our model is (2.2) and {�t} is periodic Gaussian white
noise. To study the effects of periodicities in the error
variances only, our parameter choices are 
� � 0, �� �
0, and 	 � 0. The white noise variances were assumed
sinusoidal in season for simplicity:


�
2 � C0 � C1 cos�2��� � ��

T �. �4.2�

Akin to Table 1, Table 3 reports empirical type-I
errors. The “old” column here refers to an Fmax statistic
that ignores seasonality in the variances of {�t}; the
“new” column refers to an Fmax statistic that takes these
seasonal variances into account (by using exact values
of �2

�). Again, each table entry is based on 100 000 in-
dependent simulations. The table varies the values of

C0 and C1 but sets � � 0 in all cases. If C1 � 0, the error
variances are nonseasonal and the setting reduces to
that studied in Wang (2003). The larger C1 is relative to
C0 the more seasonality there is in white noise vari-
ances (across varying seasons �). Of course, we need
C1 � C0 or �2

� could become negative. This table em-
ploys N � 120 (d � 10, T � 12), which corresponds to
a decade of monthly data. For series of this length, an
Fmax statistic must be 11.105 or greater to declare Ha

[the percentiles of Wang (2003) are applicable when
C1 � 0].

The Table 3 results show that the rejection probabili-
ties increase slightly with increasing seasonal variabil-
ity. This is as expected: when �2

� varies greatly with the
season �, there is a larger chance for an outlying �t to
pull the least squares regression fit away from its true
zero-mean level, hence mimicking a mean shift caused
by a changepoint. Note, however, that the effects of
periodic variances are nowhere near as drastic as those
of autocorrelation. Also, observe that the percentiles
for the first three rows are approximately those for the
last three rows and that those for C1 � 0 coincide with
those reported in Wang (2003), up to simulation error.

5. Power aspects

The last section demonstrated that the type-I error
rate of the test was as advertised in autocorrelated and
seasonal settings. This section studies the power of de-
tection attributes. Specifically, we will examine how fre-
quently the test detects changepoints in settings when,
in truth, changepoints exist.

The methods we compare here are 1) the test pro-
posed in section 3; 2) the Fmax statistic of Wang
(2003) applied to the seasonally mean adjusted series
{XnT�� � SnT��}, where S� � d�1�d�1

n�0XnT�� and
SnT�� � S� (seasonal-mean adjustment); and 3) the
Fmax statistic of Wang (2003) applied to the annual av-
erages {Xn} � {T�1�T

��1XnT��} (annual averaging).
Methods 2 and 3 entail crude ways of producing sta-
tionary series from series with periodic characteristics;
they do not take autocorrelations into account.

TABLE 2. Effects of estimating AR(1) parameters.

n � 100 n � 500 n � 1000

� � 0 0.032 25 0.048 11 0.053 89
� � 0.1 0.031 68 0.047 53 0.052 59
� � 0.25 0.030 12 0.046 82 0.054 39
� � 0.50 0.027 80 0.045 91 0.051 71
� � 0.75 0.030 77 0.042 98 0.050 25

TABLE 3. Effects of seasonal variances on changepoint
detection.

C0 C1

Old
probability

New
probability

True 95th
percentile

1.00 0.00 0.0502 0.0502 11.107
1.00 0.50 0.0676 0.0501 11.926
1.00 0.95 0.0984 0.0500 13.253

10.00 0.00 0.0500 0.0500 11.093
10.00 5.00 0.0677 0.0501 11.926
10.00 9.50 0.0970 0.0501 13.254
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We will use simulation to study the detection powers.
Each simulation run generates an error series {�t} with
a time-constant autoregressive coefficient � (for sim-
plicity and interpretability) and N � 600, which repre-
sents 50 yr of monthly data. For realism, the means 
�,
seasonal variances �2

�, and trend 	 are set to those es-
timated for the Longmire series in section 6b under the
alternative hypothesis of a changepoint. In each simu-
lation run, a synthetic mean shift is introduced at a
changepoint time chosen randomly in {1, . . . , N � 1}.
The magnitude of the mean shift at the changepoint
time is reported in terms of the parameter � � �/�.
Here, � is the actual magnitude of the mean shift at the
changepoint time and � � T�1�T

��1�� is the average
error standard deviation over a full cycle; � should be a
good measure of power in that larger �s will make the
changepoint time easier to detect. The � values of 0.15,
0.25, and 0.5 and the � values of 0.5 and 1.0 are studied.
Despite generating the error series with a constant ��,
the full algorithm in section 3 is put to the test; this
entails seasonal estimation of the ��s.

Table 4 reports empirical powers of the three meth-
ods aggregated from 10 000 independent simulations in
a level 5% test. Our conventions call a simulation a
success if the correct changepoint time is found within
�18 months of the true changepoint time in the cases
where � � 0 and merely makes the correct conclusion
of no changepoint when � � 0. In the annual tests, the
above specifications translate into getting the change-
point time correct to within one year. For example,
when � � 0.25 and � � 0.5, the seasonal-mean adjust-
ment procedure is signaling for a changepoint within
�18 months of the true changepoint time 35.05% of the
time. Here, � � 1.54. The 95th percentile for the new
test, as estimated from 10 000 independent simulations,
is 14.0 when � � 0.15, 14.3 when � � 0.25, and 15.6
when � � 0.50. The 95th percentile for the seasonal-
mean adjusted procedure is 11.55, while that for annual
averaging is 11.07.

The type-I error rate (the � � 0 column) for the
seasonal-mean adjustment procedure is unacceptably
high for a level 5% test, making this procedure unus-
able in our work. Seasonal-mean adjustment proce-
dures ignore all correlations in the series, which, as the
last section showed, is not wise when there is indeed
correlation. Having a higher power, as the seasonal-
mean adjusted procedure possesses, does not necessar-
ily yield a superior test: a test that always rejects the
null hypothesis of no changepoints will always make the
correct conclusions when in truth a changepoint exists
and the wrong ones when changepoints do not exist.
The method of annual averaging merits some consid-
eration, however, as its powers are similar to those of
the new method and its type-I error rate is only slightly
higher than the nominal 0.05 level. Annual averaging
reduces correlation magnitudes in positively autocorre-
lated series; that is, year-to-year autocorrelations are
significantly less than month-to-month autocorrela-
tions. The simulations here involve only moderate au-
tocorrelation; the type-I error of annual averaging
methods will degrade as the correlation becomes larger
(� becomes larger). Also worth mentioning is the issue
of parsimony: tests with many parameters in general
have lower powers than more parsimoniously devised
tests. Annual averaging methods involve only three pa-
rameters: an annual mean, trend, and error variance.
This parameter count is substantially less than the 37
needed to describe general periodic monthly data. If
one is willing to take the time to parsimonize the pa-
rameters in the periodic model, improvements in the
power of detection should result. As the sample size
becomes larger, the new method will perform better
and better in comparison to annual averaging. Also, as
we will see in the first example of the next section, the
new test is able to detect changepoints when the data
record is relatively short; in this case, annually averaged
series are not long enough to have good detection
power.

With the type-I error and the power aspects of the
new test clearly performing well, it remains to see how
the test works on actual data. Before doing so, we must
address a matter which was glossed over earlier. In the
above work, we estimated the time series parameters ��

and �2
� at the c that is associated with an ordinary least

squares version of Fmax, then regarded these time series
parameters as fixed and computed optimal estimates of
the regression parameters 
�, 	, and � under the null
and alternative hypotheses. This allows us to calculate
the Fc and Fmax statistics of section 3. The next section
illustrates the procedure with explicit examples. A chal-
lenge lies with the need to determine the critical values
of the Fmax statistic for each individual series being

TABLE 4. Detection powers.

Method with � � 0.15 � � 0.0 � � 0.5 � � 1.0

New method 0.0505 0.2607 0.8902
Season-mean adjustment 0.1751 0.3922 0.9058
Annual averaging 0.0546 0.2586 0.8545
Method with � � 0.25 � � 0.0 � � 0.5 � � 1.0
New method 0.0514 0.1803 0.8058
Season-mean adjustment 0.3107 0.3505 0.8621
Annual averaging 0.0569 0.1884 0.7835
Method with � � 0.50 � � 0.0 � � 0.5 � � 1.0
New method 0.0518 0.0579 0.3948
Season-mean adjustment 0.7536 0.2193 0.6130
Annual averaging 0.0735 0.0698 0.4329
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tested. For the results presented in this section (and
section 6), the critical values are obtained from 10 000
independent simulations, using a computer program
(written by the third author in FORTRAN) that com-
putes all the parameter estimates for each simulation

run in less than 1 s. Roughly, at least 100 000 simula-
tions are required if one wants to estimate the 95th
percentiles of the Fmax to one decimal place, which, for
a 50-yr monthly series (N � 600), would take about
one day to finish on a standard computer with the
FORTRAN code mentioned above (available from the
authors). Quicker methods, such as a parametric boot-
strap procedure, are currently being investigated.

6. Examples

a. A monthly mean atmospheric pressure series

The above methods were applied to a series of
monthly mean atmospheric pressures recorded at Bur-
geo, Newfoundland (Canada), from 1967 to 1994 (d �
28 yr; N � 336). The annual averages of this series are
plotted in Fig. 1; the monthly series, both raw and ad-
justed for a seasonal mean, can be viewed (along with a
mean fit explained below) in Fig. 2. Mean series pres-
sures are relatively lower in winter (December–March)
and peak in summer. Winter pressure variabilities are
higher than those in summer, a property also shared by
temperatures. These structures are reflected in the rela-

FIG. 1. Burgeo annual mean station pressures.

FIG. 2. (top) Burgeo monthly mean station pressures and (bottom) seasonally mean
adjusted series with model fits.
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tive magnitudes of the parameter estimates displayed in
Fig. 3.

The Fmax test of Wang (2003) for undocumented
changepoints was applied to annually averaged Burgeo
pressure values. No changepoint was found at the 95%
level. This is not surprising given the paucity of data (28
points). The Fmax test of Wang (2003) was also applied
to the seasonally mean adjusted series {XnT�� � SnT��}.
This test signals a changepoint at c � 116 (August 1976)
at the 95% level. However, as noted in the previous
section, this test has an extremely high false alarm rate
when autocorrelation is present, since it does not ac-
count for serial autocorrelation. Hence, we will scruti-
nize the results by applying the section 3 methods.

To compute the section 3 Fmax test statistic, a full
model for each admissible changepoint time c was first
fitted to the series by numerically minimizing the sum
of squared errors in (3.3) with the autocorrelation as-
pects component ignored [{�t} is taken as time-
homogeneous white noise]. The sum of squared errors
at c � 116 is the smallest and hence serves as our pre-
liminary estimate of a changepoint time. The �� and �2

�

parameters are then estimated from simple moment

equations involving the residuals {Rt} � {Xt � X̂A
t (c)}

computed from a full model fit with c � 116:

�̂� �

̂��1�


̂��1�0�
, 
̂�

2 � 
̂��0� � �̂�
̂� �6.1�

and


̂��h� � d�1�
n�0

d�1

RnT��RnT���h,

with R0 � 0. Estimates of �, 	, and 
� for each season
� are now computed via weighted least squares meth-
ods, with the weights set according to the covariance
matrix of X1, . . . , XN (which depends only on the ��’s
and �2

�s). A new set of residuals was then computed
and refits of the parameters in (6.1) were calculated.
This procedure was iterated 5 times in the spirit of Co-
chrane and Orcutt (1949) to obtain good estimates of
the time series parameters �� and �2

� . These values are
displayed in the bottom two panels of Fig. 3.

The next step is to compute Fc for each admissible c,
accounting for the effects of autocorrelations and peri-

FIG. 3. Burgeo seasonal parameter estimates: (top) 
̂�, (middle) �̂� , and (bottom) �̂2
�.
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odicities. In this computation, the �� and �2
� parameters

are held fixed as estimated above and the sums of
squares are computed to minimize (3.3) over values of
	, �, and 
�, 1 � � � T. Figure 4 plots the Fc statistics.
For this series, the 95th percentile is 14.0. The largest Fc

is 36.90, which occurred again at c � 116 (August 1976)
and greatly exceeds the 95% threshold. Hence, evi-
dence suggests a significant changepoint in 1976. The
mean shift at the changepoint time is estimated as �̂ �
�2.893 hPa by the full model and the trend estimate is
	̂ � 0.006 36 hPa month�1. Figure 2 also plots the mean
structure of this series, less the seasonal cycle contained
in the 
�s (this is for visual clarity), against the data
(dashed curve). This fit appears to describe the series
well. The estimates of 
� are plotted in the top panel of
Fig. 3.

Investigation of the related metadata suggests that
the changepoint was caused by neglecting the 10.6-m
elevation in the calculation of station pressures from
barometer readings prior to 1977 (i.e., an elevation of
0 m was used instead of 10.6 m). According to a physi-
cally based estimate using a hydrostatic model and
hourly pressure and temperature data (see Wan et al.
2007), neglecting such an elevation causes a bias of 1.32
hPa on pressure values. The estimated changepoint
time is very close to its plausible value. Additional
changes that happened between 1976 and 1977, such as

the use of computer-produced pressure reduction
tables and the addition of a plateau correction, may
have also contributed to the magnitude of the mean
shift.

The autocorrelations in this series are not overly
large (many are not significantly different from zero,
perhaps due in part to the short length of the series). In
fact, the average �̂� (over all 12 months) is zero to two
decimal places. In retrospect, a more efficient estima-
tion strategy might have been to model �� as constant
in the season �, a sound general approach. Other model
parsimonizing steps, such as parameterizing the �2

� as a
simple cosine wave, could also be pursued if desired.

b. A monthly temperature series

Figure 5 displays 50 yr of average monthly tempera-
tures recorded at Longmire, Washington (inside Mount
Rainier National Park), from 1951 to 2000 (d � 50 yr;
N � 600); both the raw and the seasonally adjusted date
are plotted. The seasonal cycle in the data is clear, with
winter temperatures being colder and slightly more
variable than summer temperatures. Estimates of the

�s are displayed in the top panel of Fig. 6.

The method of Wang (2003) was applied to the an-
nually averaged series and does not find a changepoint
at the 95% level. However, applying Wang’s (2003)

FIG. 4. Burgeo Fc statistics.
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methods to the seasonally mean adjusted series reveals
a changepoint at c � 420 (December 1985) with Fmax �
12.18, which slightly exceeds the 95% threshold of 11.55
for that test.

Examination of the related metadata does not reveal
a reason for the changepoint. The Longmire series
shows stronger autocorrelations than the Burgeo series
(the lag-one sample autocorrelation of the seasonally
mean adjusted series is approximately 0.245); hence,
one is concerned that the changepoint declaration is
due to the effects of autocorrelation.

Proceeding as with the Burgeo series, the methods of
section 3 were fitted for each candidate changepoint
time c. The best-fitting model had c � 420; values of the
PAR(1) parameter estimates for this c are plotted in
the middle and lower panels of Fig. 6. From these
PAR(1) parameters, Fc statistics were then computed
for each admissible c; these are plotted in Fig. 7 against
a 95% confidence threshold. The largest F statistic was
12.29, occurred at c � 419 (November 1985), and does
not exceed the 95% confidence threshold of 14.2 for
this series. The null hypothesis model fit (no change-
point) has 	̂ � 0.000 234°C month�1.

We believe that the Longmire series is typical in that
an analysis that accounts for periodicities and autocor-
relations does not find a changepoint in this series, but
methods that ignore these features do. Given the re-
sults in Table 1, we expect that such conclusions will
arise frequently. Of course, the methods of section 3 are
preferable as they account for the series autocorrela-
tions and periodicities; mistakes can be made when au-
tocorrelations are ignored. In fact, as observed in the
two examples of this section, the method of section 3
obtained what we believe to be the “correct” answer in
both cases (detecting a changepoint at the correct time
in the Burgeo series but not finding any changepoints in
the Longmire series), whereas the annual-averaged
method failed to detect a changepoint in either series
and the monthly adjusted method detected “change-
points” in both series. This is consistent with the be-
havior of these procedures noted in the power study of
section 5.

7. Remarks

We conclude with several comments. First, the set-
ting examined here is the classical “at-most-one

FIG. 5. (top) Longmire monthly mean temperatures and (bottom) seasonally mean
adjusted series with model fits.
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FIG. 6. Longmire seasonal parameter estimates: (top) 
̂�, (middle) �̂� , and (bottom) �̂2
�.

FIG. 7. Longmire Fc statistics.
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changepoint” scenario. This may not be realistic for
longer series. In practice, climatologists typically apply
AMOC methods recursively to series subsegments to
detect multiple changepoints (see Wang 2006; Menne
and Williams 2005; Wang and Feng 2007). Recent work
by Caussinus and Mestre (2004) and Davis et al. (2006)
are rooted in efficient algorithms to find the locations
of multiple changepoints. Davis et al. (2006) do allow
for autocorrelated model errors but focus on applica-
tions where the covariance structure of the model er-
rors shifts at the changepoint times, but the mean re-
mains constant (in contrast to keeping the time series
parameters fixed across varying series segments and
studying mean shifts). Their methods should be adapt-
able to our setting and hence show promise for multiple
changepoint problems.

One should be cautious when seasonally adjusting a
series before checking for undocumented changepoints.
This is because the estimates of the seasonal param-
eters will be biased, sometimes quite heavily, if the
mean shift(s) induced by the changepoint is large and
ignored. A remedy to the problem is as we have done
above: fit the changepoint and seasonal structures si-
multaneously.

The PAR(1) model used here for {�t} seems to work
well for localized series (series that have not been spa-
tially averaged over a large region). Localized series
typically display short memory (Handcock and Wallis
1994). Series that have been aggregated over a large
area can possess a longer memory. For such series, the
model for {�t} may need to be modified. Covariate ef-
fects, such as El Niño and the North Atlantic Oscilla-
tion, could also be incorporated into the regression
model if needed.

The changepoint detection techniques here are based
on (2.2) and the methods should not be applied to series
that grossly violate this regression structure. For in-
stance, these methods may not work well for series that
display quadratic trends, such as those considered in
Lund and Reeves (2002). Reeves et al. (2007) provide a
recent overview of regression response function selec-
tion issues in changepoint settings.

We envision a plethora of climate series where pre-
viously declared undocumented changepoints might
be erroneously diagnosed, or at least need to be reas-
sessed. The seasonal resolution of the model will
also prevent a changepoint occurring in the middle
of a year from spreading its effects over two adjacent
cycles.
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