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ABSTRACT

The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)-based regional
climate model (CMM5) simulations of U.S.–Mexico summer precipitation are quite sensitive to the choice
of Grell or Kain–Fritsch convective parameterization. An ensemble based on these two parameterizations
provides superior performance because distinct regions exist where each scheme complementarily captures
certain observed signals. For the interannual anomaly, the ensemble provides the most significant improve-
ment over the Rockies, Great Plains, and North American monsoon region. For the climate mean, the
ensemble has the greatest impact on skill over the southeast United States and North American monsoon
region, where CMM5 biases associated with the individual schemes are of opposite sign. Results are very
sensitive to the specific methods used to generate the ensemble. While equal weighting of individual
solutions provides a more skillful result overall, considerable further improvement is achieved when the
weighting of individual solutions is optimized as a function of location.

1. Introduction

No existing model, global or regional, fully repre-
sents the observed climate system. Each model contains
substantial climate biases and inherits distinct climate
sensitivities, both of which mask the correct prediction
of regional climate responses to any forcing. Even for a
single model, solutions may vary substantially depend-
ing on which physical parameterizations are activated.
Thus, consensus weather and climate predictions based
on the ensemble of multiple models or multiple physi-
cal configurations of a model have recently been high-
lighted due to their superior skill over those using a
single model or configuration (Krishnamurti et al. 1999;
Fritsch et al. 2000; Rajagopalan et al. 2002; Palmer et al.
2004; Murphy et al. 2004; LaRow et al. 2005).

Precipitation modeling is particularly sensitive to the
cumulus parameterization, especially in summer when
convection is most active and model predictive skill is
low. While numerous cumulus schemes exist, none per-
forms equally well under all conditions (Wang and Sea-
man 1997; Giorgi and Shields 1999). Given incomplete
physical understanding of convective processes and the
large-scale forces that modulate them, different
schemes have been developed with different conceptual
underpinnings and tunable parameters (Arakawa
2004), both of which are not universal but quite uncer-
tain. Their predictive skills are thus highly dependent
upon weather or climate regimes (Liang et al. 2004a,b;
Mapes et al. 2004; Zhu and Liang 2007). Given this
circumstance, significant skill improvement is achiev-
able through the use of an optimal ensemble of multiple
cumulus schemes, including regime dependence for ac-
tivation and relative contribution from the different
schemes. This is the motivation for the present study.

The fifth-generation Pennsylvania State University–
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NCAR Mesoscale Model (MM5)-based regional cli-
mate model (CMM5) produces important regional dif-
ferences in many characteristics when the Grell (1993)
and Kain and Fritsch (1993) cumulus parameterization
schemes are interchanged, including the diurnal and
annual cycles (Liang et al. 2004a,b) and interannual
variation (Zhu and Liang 2007). These differences in-
dicate a strong degree of independence and comple-
mentarity between the two parameterizations. The pur-
pose of this study is to generate effectively a two-
member ensemble in which the relative contributions
or weights associated with different parameterizations
are optimized locally to yield overall minimum rms er-
rors and/or maximum temporal correlations with obser-
vations, and then to demonstrate the superior skill of
such an ensemble in simulating U.S.–Mexico summer
precipitation for both the climate mean and the inter-
annual variability.

The targeted application of this ensemble technique
is improving the prediction of seasonal to interannual
precipitation variability (although, in concept, it may
have many related applications in weather forecast and
climate change projection). Hence, we use CMM5
simulations of 21-yr historical records as downscaled
from or driven by a global observational reanalysis (see
below) to develop the optimization. In principle, it can
be applied for the optimal ensemble downscaling of the
actual predictions from global climate models like the
operational National Centers for Environmental Pre-
diction (NCEP) Climate Forecast System (Saha et al.
2006). In the present context, the word “prediction”
and the phrase “predictive skill” are in reference to the
CMM5 downscaling ability.

2. Model simulations and observations

Liang et al. (2004b) described the CMM5 model for-
mulation, computational domain design, and its skill in
reproducing the annual cycle of precipitation using the
Grell cumulus scheme for a continuous baseline inte-
gration of the period 1982–2002 with a 30-km resolution
as driven by the NCEP–Department of Energy (DOE)
Atmospheric Model Intercomparison Project II (AMIP
II) global reanalysis (Kanamitsu et al. 2002). Liang et
al. (2004a) later documented the CMM5 skill in simu-
lating the precipitation diurnal cycle and its depen-
dence on the cumulus parameterization by comparing
the baseline integration with a summer simulation using
the Kain–Fritsch scheme. They demonstrated that the
CMM5 results are sensitive to the choice of cumulus
schemes because the skill of individual schemes is re-
gime dependent. In particular, the Grell scheme realis-
tically simulates the nocturnal precipitation maxima

over the central United States and the associated east-
ward propagation of convective systems from the Rock-
ies to the Great Plains where the diurnal timing of con-
vection is controlled by large-scale tropospheric forc-
ing, whereas the Kain–Fritsch scheme is more accurate
for the late afternoon peaks in the southeast where
moist convection is governed by near-surface forcing
(Liang et al. 2004a). Summer rainfall amounts in the
North American monsoon region are very poorly simu-
lated by the Grell scheme but well reproduced by the
Kain–Fritsch scheme, whereas rainfall amounts from
moist convection in the southeast are underestimated
by the former and overestimated by the latter (Liang et
al. 2004b). The above sensitivity characteristics have
also been reflected by the CMM5 simulations of inter-
annual variations of precipitation and surface air tem-
perature (Zhu and Liang 2007).

This study focuses on the summer (June, July, and
August) months. Monthly mean precipitation during
the 1982–2002 summers simulated by the CMM5 with
the Grell and Kain–Fritsch schemes are combined with
observations to develop and optimize a two-member
ensemble and verify its skill. Observations are derived
from a composite of three objective analyses, all based
on gauge measurements over the United States and
Mexico and mapped onto the CMM5 30-km grid mesh
[see Liang et al. (2004b) for the data source and analysis
procedure].

3. Ensemble optimization solution

Given the actual (observed or modeled) precipitation
rate R, a variable P, denoted here as “estimator,” is first
constructed to represent its various transformations:

PX � �RX � AX��DX, X ∈ �KF, GR, M, O�, �1�

where A and D are choices of the offset and scaling;
subscripts GR and KF denote the CMM5 simulation us-
ing the Grell and Kain–Fritsch cumulus schemes, while
M and O denote the model ensemble and observations.
For the purpose of this study, AM � AO, DM � DO,
since AM, DM are not known in priori while seeking the
ensemble to best reproduce observations. Assuming R
and � represent the climate mean and interannual stan-
dard deviation of R during the data period, three con-
ventional forms are evaluated below: AX � 0, DX � 1
(including mean bias); AX � RX, DX � 1 (excluding
mean bias); and AX � RX, DX � �X (excluding mean
bias and scaled by the standard deviation). They are
referred to as the biased, unbiased, and normalized pre-
cipitation estimator, respectively.

The ensemble solution is assumed to be a linear com-
bination of two members, according to
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PM�s, t� � ��s�PGR�s, t� � �1 � ��s��PKF�s, t�,

0 � � � 1, �2�

where fields listed in the parentheses represent the de-
pendent variables, with s for space and t time, and 	 is
the weight to be estimated.

Our main purpose is to seek the optimal matrix of
weight 	 for the ensemble to best represent observa-
tions. This requires an objective function F to be mini-
mized by the optimization solver in estimating 	. We
consider three objective functions:

F �s, �� � RMS; �1 � COR�; RMS�1 � COR�, �3�

where RMS and COR are the pointwise rms error and
correlation coefficient between the precipitation rates
of the model ensemble (RM) and observations (RO)
during the data period. Given a precipitation estimator
from Eq. (1), RM can be calculated from Eq. (2) and an
objective function can be constructed from Eq. (3).
Thus we evaluate the sensitivity of the result to three
different precipitation estimators and three different
objective functions used in the optimization proce-
dures. Note that the method using the unbiased estima-
tor with the RMS objective function is equivalent to the
“superensemble” technique of Krishnamurti et al.
(1999).

The remaining challenge is solving the nonlinear con-
strained optimization problem to derive the geographic
distribution of weight 	(s). A common approach is to
apply a linear multiple regression technique along with
the least squares minimization of the model�observa-
tion difference (e.g., Krishnamurti et al. 1999), but this
strategy limits the use of other linear and nonlinear
objective functions and conditional constraints. The op-
timization solver used in this study is Feasible Sequen-
tial Quadratic Programming, which is designed to find
the optimal solution for the minimization of the maxi-
mum of a set of smooth objective functions subject to
equality and inequality constraints, linear or nonlinear,
and simple bounds on the variables (Zhou et al. 1997).
It has been applied by Rajagopalan et al. (2002) in their
superensemble creation and by Liang et al. (2005) in
developing a new dynamic–statistical land surface al-
bedo parameterization.

The optimization requires a long time series of his-
torical observations and model hindcasts to train the
ensemble scheme and derive the appropriate weight.
Many previous studies have adopted the cross-
validation approach because of constraints imposed by
short data records, although this approach may mask
the advantage of the superensemble over a simple com-
posite (Peng et al. 2002; Kharin and Zwiers 2002). Here
we focus on monthly mean variations during the 1982–

2002 summers using the leave-one-out cross-validation
approach (Michaelsen 1987), where the weight is
trained on data from all years except one and then used
to make an ensemble prediction for that excluded year.
Specifically, 20 yr of data are used for training in each
optimization solution and 21 yr of the resulting en-
semble prediction are applied for verification. Thus, the
total number of monthly data samples for training
(verification) is 60 (63), sufficient to obtain robust sta-
tistics.

Note that all calculations in this study are conducted
on monthly mean precipitation, whether biased, unbi-
ased, or normalized. As such, statistical quantities R
and � are obtained for each summer month (June, July,
and August) over all years of the target period, while
RMS and COR are calculated once from all the
months.

4. Results

The simplest ensemble is the arithmetic mean (or
equal weight composite) of all members (here KF and
GR), which defines the minimum skill score over which
any effective optimization should improve. We quantify
the predictive skill score by two measures: pointwise
rms errors and correlation coefficients with observa-
tions during the entire verification period 1982–2002.
Both are based on interannual anomalies at each grid
point, where the monthly climate bias of each respec-
tive 20-yr training period is removed from the predic-
tion during the skill assessment. This enables direct
comparisons between individual members and their en-
sembles using different precipitation estimators. As-
suming independence of the monthly samples, correla-
tions exceeding �0.21 (�0.29) are statistically signifi-
cant at the 95% (99%) confidence level.

Figures 1a–d compare frequency distributions of cor-
relation coefficients and rms errors of precipitation in-
terannual anomalies between KF, GR, and their en-
sembles with various weights. The statistics are based
on all 30-km land grids with available observational
data over the United States and Mexico. Clearly, KF is
on average more skillful than GR mainly because of the
general failure of the latter in simulating precipitation
features in the south and southeast United States and
Mexico (see Liang et al. 2004a,b; Zhu and Liang 2007).
Their ensemble with an equal or optimal weight, how-
ever, is superior to both individuals because there are
distinct regions (such as central United States) where
GR is persistently more skillful than KF and thus sup-
plies independent information for the composite im-
provement. Among the ensembles, the superensemble
approach, using the unbiased estimator plus RMS ob-
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jective function, produces the highest predictive skill of
interannual anomalies in both score measures. The su-
perensemble with the locally optimized weight predicts
realistic interannual anomalies with large correlations

0.4 and small rms errors �1.5 (mm day�1) over 15%
more area as compared with the equal weight.

The objective function (1 � COR) results in the
worst ensemble prediction with a skill score no better
than the equal weight composite. The skill is improved
by using RMS(1 � COR) but still worse than that using
RMS. Thus the optimization by minimizing RMS is

considered as the best method, based on which all sub-
sequent ensemble weights are solved. On the other
hand, the mean climate bias removal before the opti-
mization to derive the weight, that is, using the unbi-
ased precipitation estimator, is found to be the most
critical step in enhancing the ensemble predictive skill.
Without this removal, the biased ensemble does not
gain skill by using the optimal from equal weight. This
supports Yun et al. (2003) in explaining the disagree-
ment of Krishnamurti et al. (1999) with Kharin and
Zwiers (2002) about the advantage of the superen-

FIG. 1. Frequency distributions of (a),(b) interannual anomaly correlation coefficients and (c),(d) rms errors with observations as
simulated by CMM5 with the KF or GR cumulus scheme and their ensemble using an equal (EQ) or optimal (EC) weight. The
optimization is solved with the unbiased (u), biased (b), or normalized (n) precipitation estimator by minimizing RMS; one exception
is ECx, which is identical to ECu but minimizing (1�COR). Geographic distributions of interannual anomaly correlation coefficients
(color scale on left bottom) of (e) KF and (f) ECu with observations; climate mean precipitation (mm day�1, color scale at right bottom)
(g) observed and simulated by (h) KF and (i) ECb. All calculations are based on 1982–2002 summer (June, July, and August) monthly
means at 30-km grid spacing; for all ECs, they are the predicted values using the leave-one-out cross-validation approach.
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semble over simple ensemble approach. In contrast, the
normalization using the standard deviation does not im-
prove the correlation skill but actually degrades the rms
error score. This normalization yields optimal weights
that are very close to 0.5 everywhere, so its ensemble
predictive skill is similar to the equal weight composite.

Figures 1e and 1f compare geographic distributions
of correlation coefficients of precipitation interannual
anomalies between KF and the superensemble. Clearly,
almost everywhere the superensemble increases corre-
lations over KF (recall that KF has an overall higher
skill score than GR). The most significant enhancement
is identified over the Rockies where light precipitation
occurs and over the Great Plains and the North Ameri-
can monsoon region where light to moderate rainfall
amounts prevail. Important correlation increases are
also seen in the northeast United States. As a result, the
superensemble captures observed precipitation anoma-
lies over 90% (80%) of the land area of the United
States and Mexico in the domain with correlation co-
efficients statistically significant at the 95% (99%) con-
fidence level. These include high correlations over most
of the western United States, Mexico, and the Great
Plains. Note that small differences in the correlation
skill between KF, GR, and their ensembles over the
northwest reflect a dominance of precipitation induced
by the orographically forced uplift, with minimal con-
tributions from convection, as discussed in Liang et al.
(2004b) and Zhu and Liang (2006). Thus, using the su-
perensemble, the CMM5 skill in simulating precipita-
tion interannual anomalies over most of the western
United States and Mexico is excellent for both summer
and winter and likely high in other seasons. Relatively
lower skill is produced over the eastern United States,
especially along the Gulf Coast where rainfall is heavy,
indicating substantial room for further improvement by
the superensemble based on more cumulus schemes
and/or multiple models. The low correlation in the Gulf
Coast could be attributed to variability in precipitation
associated with tropical depression and cyclone activity,
which may not adequately be resolved by CMM5 at the
30-km grid. Errors in the driving reanalysis, especially
over the south and east buffer zones, may also play an
important role in the CMM5 failure (Liang et al.
2004b).

One disadvantage of the superensemble approach is
that it predicts only the anomaly from the observed
climate mean of the training period, not the total pre-
cipitation amount. In many practical applications, the
climate mean precipitation is as essential as the
anomaly. This can be best represented by the optimized
ensemble using the biased precipitation estimator. Fig-
ures 1g–i compare geographic distributions of the cli-

mate mean precipitation observed and simulated by KF
and the biased ensemble. As shown by Liang et al.
(2004b), over the southeast United States and North
American monsoon region, rainfall amounts are over-
estimated by KF but underestimated by GR. As such,
the optimal ensemble produces a substantially im-
proved precipitation distribution, superior to KF or GR
and their equal weight composite. By the ensemble,
monthly mean climate rms errors (mm day�1) are less
than 1.0 over most of the domain except for northern
Texas (1.2–1.5) and the North American monsoon re-
gion (1.5–3.0). These latter areas need further model
improvement.

5. Summary and discussion

It is demonstrated that a two-member ensemble
based on the CMM5 simulations using the GR and KF
cumulus parameterizations is superior to both indi-
vidual members because there exist distinct regions
where one scheme is persistently more skillful than the
other. For the interannual anomaly, the superensemble
approach, using the unbiased estimator plus the RMS
minimization, produces the highest predictive skill. The
removal of the mean climate bias before optimizing the
weight is found to be a key procedure that significantly
enhances the ensemble predictive skill. In contrast, nor-
malization by further removing the deviation departure
from observations does not improve the skill. The most
significant improvement is found over the Rockies,
Great Plains, and North American monsoon region
where light to moderate rainfall prevails in summer.
For the climate mean, the optimal ensemble using the
biased estimator results in substantial improvements
over the southeast United States and North American
monsoon region where the CMM5 biases in GR and KF
are of opposite sign. To simulate the total rainfall
amount, we suggest integrating the separately opti-
mized ensembles of the climate mean and interannual
anomaly by minimizing rms errors using, respectively,
the biased and unbiased precipitation estimators. Note
that the optimized weight 	 largely differs between the
two, especially over the Rockies, with values near zero
for the climate mean and close to one for the interan-
nual anomaly (not shown). This may indicate a scale
separation in the model sensitivity to cumulus param-
eterizations.

The above results contain several important issues
that warrant further investigation. First, we implicitly
assume that the linear combination of the two CMM5
simulations using only GR and KF cumulus schemes
fully represents observations. This would be relaxed
and likely improved by incorporating more model phys-
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ics configurations or multiple models. Second, since the
precipitation distribution is known to be non-Gaussian,
a more appropriate procedure would be to initially rank
the data into several threads, such as light, moderate,
heavy, and very heavy rainfall events, and then conduct
a separate optimization for each thread. This would
require substantially longer data records to obtain sta-
tistically robust weights for all threads. We plan to
study the ranking effect on the optimization of daily
precipitation ensemble forecasts, where data records
are sufficient. Third, this study focuses on using mul-
tiple model outputs for postcomposite analyses rather
than attempting to improve a specific model or a par-
ticular parameterization. But our recent research shows
that the accuracy of model simulations with specific
physical schemes is regime dependent, suggesting that
better results are achievable through intelligent optimi-
zation of an overall modeling system. This indicates the
need for further investigation of techniques similar to
Grell and Dvénéyi (2002), who developed an ensemble
cumulus parameterization (ECP) that utilizes a suite of
alternative closure assumptions. In concept, this ap-
proach applies an ensemble of cumulus parameteriza-
tions at every time step and grid point and then feeds
back the average of all solutions to the predictive sys-
tem. Their current ECP implements an identical weight
for all closures, implying that each one is an equally
likely representation of reality, irrespective of regime,
location, and time. Given the known regime depen-
dence of closure assumptions, the ECP appears to have
great potential for improvement if appropriate regime-
specific weights can be derived. Future work should be
focused in this area, both for postprocessing output
from multiple ensemble members and for developing
dynamic weighting of physical parameters and param-
eterizations.

As a final note, our emphasis on interannual variabil-
ity makes the developed optimization procedure and
optimal weight most applicable to improving the sea-
sonal–interannual prediction of precipitation through
the CMM5 ensemble downscaling from actual global
climate model forecasts under the present-day condi-
tion. We have tested this approach over the U.S.–
Mexico domain, where CMM5 with both KF and GR
cumulus schemes are driven by the output of a fully
coupled general circulation model (Liang et al. 2006);
the ensemble mean using the same weight derived in
this study from the reanalysis-driven CMM5 simula-
tions significantly reduces overall precipitation biases
with individual schemes. We are now experimenting
with the application as driven by the operational NCEP
Climate Forecast System (CFS) predictions. As pointed
out above, the model sensitivity to cumulus parameter-

izations depends on time scales, where the distribution
of the optimal weight may differ between daily and
monthly precipitation or change from the present to
future climate conditions. As such we cannot guarantee
the statistically derived weight is the optimal choice for
all. Nonetheless, the procedure for optimizing the en-
semble can be applied in general and the interactive
ECP with dynamic (rather than statistical) weighting as
proposed is anticipated to be more credible for future
climate change projections.
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