
On the Estimation of Daily Climatological Temperature Variance

RICHARD P. JAMES

Prescient Weather Ltd., State College, Pennsylvania

ANTHONY ARGUEZ

NOAA/National Centers for Environmental Information, Asheville, North Carolina

(Manuscript received 29 April 2015, in final form 24 August 2015)

ABSTRACT

The climatological daily variance of temperature is sometimes estimated from observed temperatures

within a centered window of dates. This method overestimates the true variance of daily temperature when

the rate of seasonal temperature change is large, because the seasonal change within the date window in-

troduces additional variance. The contribution of the seasonal change may be removed by performing the

variance calculation using daily temperature anomalies, leading to a bias-free estimate of variance.

The difference between the variance estimation methods is illustrated using both idealized simulations of

temperature variability and observed historical temperature data. The simulation results confirm that re-

moving the climatological temperature cycle eliminates bias in the variance estimates. For several U.S.

midlatitude locations, the difference in estimated standard deviation of daily mean temperature is on the

order of a few percent near the seasonal peaks in climatological temperature change, but the maximum

difference is larger in highly continental climates. These differences are shown to be significant when esti-

mating the probability of temperature extremes under the assumption of a Gaussian distribution.

1. Introduction

Climatological normals, which describe observed

properties of atmospheric behavior and variability over

years or decades, are widely used and highly valued by

science and industry (Arguez et al. 2012). Two of the

primary uses of climatological normals are the inter-

pretation of past, current, or expected conditions in

reference to the benchmark that the normal provides,

and the assessment of likely or possible future outcomes.

In the latter role, climatological normals provide a basis

for prediction, under the assumption that the future

behavior of the atmospheric system will remain similar

to that described by the normal (WMO 2007; Arguez

and Vose 2011).

Themost basic feature of climatological normals is the

characterization of the mean or median aspects of atmo-

spheric variables, such as temperature or precipitation.

However, measures of variability are also useful to de-

scribe the observed or likely future fluctuations of cli-

mate. The NOAA 1981–2010 U.S. climate normals

include standard deviations of monthly and daily tem-

perature variables, percentiles of monthly and daily

precipitation quantities, and percentiles of some hourly

variables (Arguez et al. 2012).

Information about the variability of atmospheric be-

havior is valuable for describing departures from the

long-term average in terms of position within the ob-

served distribution or within a parametric distribution

used to model the climate. In this way, departures from

average can be easily interpreted in a probabilistic sense

and can be compared between locations with widely

varying climate. Moreover, if the probability distribu-

tion of a climatic variable is known or assumed, then

probabilistic statements about future variability can be

made, such as ‘‘The probability of July monthly mean

temperature exceeding 258C is 18%,’’ or ‘‘The central

90% probability range for daily minimum temperature

on October 15 is 28–88C’’ (e.g., Holder et al. 2006).

Temperature variability is particularly well suited to this

kind of analysis because the probability distribution is
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often close to Gaussian and is thus often adequately

characterized by the mean and standard deviation.

The ability to create probabilistic statements about

future climate behavior is perhaps the most valuable

aspect of climatological normals that include measures

of variability. However, such statements will be statis-

tically reliable only to the extent that the measures of

variability adequately describe the probability distribu-

tion in the time frame of interest. Here we describe two

alternative methods of estimating daily climatological

temperature variance; we show that one common

method overestimates the variance, and we discuss the

implications of the differences between the methods.

Section 2 describes the two methods, reviews previous

recommendations in the literature, and evaluates the

differences between the methods, and section 3 illus-

trates the potential significance of these differences us-

ing an assumed Gaussian framework.

2. Comparison of alternative estimation methods

a. Description of methods

A simple and intuitive method for estimating the daily

variance of temperature is to compute the sample

standard deviation from the observed temperature

values within a window of several days centered on the

Julian day in question; this method will be referred to as

the ‘‘simple method.’’

The daily variance estimated by the simple method is
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where n is the size of the observation sample within the

computation window (e.g., n5 450 for 30 annual sets of

15 observations), Ti is the ith observation, and T is the

sample mean of the Ti. In practice the daily values of

Vsimple are smoothed to help eliminate the day-to-day

fluctuations arising from sampling variability.

An alternative method for calculating the daily vari-

ance substitutes the daily climatological normal tem-

perature for the sample mean temperature,
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where Tci is the estimated climatological normal tem-

perature on the Julian day of the ith observation. The

alternative method [(2)] reflects the idea that the vari-

ance of temperature arises fundamentally from the daily

deviations of temperature away from the climatological

normal. When the climatological normal varies signifi-

cantly during the computation window—for example,

during spring and autumn—then the daily temperatures

will be closer on average to Tci than to T , and therefore

Vanom will be smaller than Vsimple.

A further refinement may be undertaken by recog-

nizing that (2) still overestimates the variance, because

the estimated climatological normal Tci is typically de-

rived using some smoothing or spline fitting, and

therefore the sample mean T may differ considerably

from the sample mean of the Tci. As a consequence the

random variability in the sample mean T relative to the

true (unknown) climatological normal will add a posi-

tive contribution to Vanom that would not be present if a

very large sample were available. If the climatological

normals could be adequately computed from the mean

of temperatures within the observation window, then

this subtlety would not arise. However, this is not pos-

sible in practice, and therefore the appropriate method

for estimating the variance is
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where T 0
i is the departure from normal of the ith

observation,
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and T 0 is the (generally nonzero) sample mean of the T 0
i .

An additional justification for using (3) rather than (2) is

that the presence of missing data does not bias the re-

sults of (3), whereas (2) may suffer from a discrepancy

between the daily temperature normals Tci and the daily

data that are available for this calculation.

The difference between the alternative method [(3)]

and the simple method [(1)] may be rewritten as follows:
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where Tc is the sample mean of the Tci. Examining (5),

we see that during seasons of significant climatological
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temperature change, termsA andBwill tend to be of the

same sign, and therefore their product will contribute to

the reduction in variance relative to Vsimple. However,

term C will vary randomly within the computation

window and therefore may contribute either positively

or negatively to Vanom.

The principal message of (5) is that the simple method

[(1)] tends to produce a larger estimate of variance, and

the difference between the methods grows with the rate

of change of the climatological normal within the com-

putation window. In locations and seasons where the

climatological normal shows little change in comparison

to the amplitude of daily temperature variations, then

the two methods [(1) and (3)] will give similar results.

However, when the computation window includes sig-

nificant change in the climatological normal in com-

parison to the magnitude of daily temperature variations,

then the methods will differ substantially.

b. Literature review

The significance of the climatological temperature

cycle with respect to estimates of daily temperature

variance has been recognized in previously published

studies, but the magnitude and significance of errors

related to this issue have not been explored to the au-

thors’ knowledge. For example, in a detailed study of

changes in daily temperature variability from long-term

European instrumental records, Moberg et al. (2000,

p. 22 851) stated, ‘‘it is important that day-to-day variability

[analyses] are not confounded by changes from day to day

caused by the average annual cycle, which can lead

to considerable changes from one day to the next in the

spring and autumn when the slope of the annual tem-

perature cycle is steep.’’ Moberg et al. (2000) compared

several measures of temperature variability, and the

calculations were based on daily anomalies of temper-

ature rather than full temperature values. Similarly,

according to Brinkmann (1983, p. 173), ‘‘the time series

of daily temperatures exhibit a strong seasonal cycle

which tends to increase interdiurnal variability about the

monthly means. For this reason, the seasonal cycle was

removed before calculating means and variances.’’

More recently, Walsh et al. (2005, p. 215) stated that

‘‘mean temperatures undergo strong seasonal cycles. . . .

The quasi-continuous change of the daily mean tem-

peratures must be considered in a quantitative evaluation

of variance.’’

In some studies, the need to calculate temperature

variance with daily anomalies rather than full values was

recognized but not explicitly discussed (e.g., Collins

et al. 2000; Vincent and Mekis 2006). However, many

other studies calculated the standard deviation of daily

temperature based on the full temperature values (e.g.,

Michaels et al. 1998; Robeson 2002; Mearns et al. 1984;

Rebetez 2001; Gough 2008; Rusticucci and Barrucand

2004; Holder et al. 2006). In most of these studies the

standard deviation was calculated separately for each

month of the year, and the focus was on long-term

changes in variance, so there would have been little

change in the results if temperature anomaly values had

been used. Nevertheless, the diversity of approaches

suggests that the significance of the climatological tem-

perature cycle may not always be recognized.

The daily standard deviation estimates that were in-

cluded in the initial release of NOAA’s 1981–2010 cli-

mate normals were calculated without removing the

climatological cycle from the temperature values. The

NOAA calculations used a variant of the simple method

[(1)] in which the sample meanT was set equal to a ‘‘raw

daily normal’’ for each individual day within the 15-day

window (Arguez et al. 2011). NOAA’s 1981–2010 daily

temperature standard deviation normals have since

been updated to reflect the anomaly method [(3)].

c. Evaluation of differences

It is straightforward to evaluate Eqs. (1) and (3) using

daily temperature data from any observing station that

has a sufficiently long period of record. However, his-

torical temperature data are often affected by in-

homogeneities arising from various causes, including

changes in instrumentation, observing location or envi-

ronment, or observing practice (Menne and Williams

2009; Menne et al. 2009). To mitigate these problems,

NOAA applied a homogenization procedure to the

historical monthly mean temperatures prior to calcu-

lating the 1981–2010 monthly temperature normals, and

the daily normals were then constrained by the

12 monthly normals (Arguez and Applequist 2013). The

issue of historical inhomogeneities is an important

consideration here, because large inhomogeneities

could affect the results of Eqs. (1) and (3) and the sub-

sequent interpretation of the differences. Consequently,

we restrict our evaluation (with one exception discussed

below) to observing stations at which no homogeniza-

tion adjustments or ‘‘time of observation’’ adjustments

were made in any month from 1981 to 2010 for either

maximum or minimum temperature. Only seven U.S.

stations met these criteria and had nearly complete data

from 1981 to 2010; these stations are listed in Table 1.

Figures 1–4 show a comparison of the 1981–2010

standard deviation of daily mean temperature obtained

from the twomethods [(1) and (3)] at three stations from

Table 1 and for Fairbanks International Airport, Alaska

[GHCN identification (ID) USW00026411]. The stations

have widely differing climates, and Fairbanks is included

as an example of extreme seasonal temperature change.
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The simple method following (1) uses a 15-day calcula-

tion window and a 29-day equal-weight smoothing, as

described by Arguez et al. (2011). For the alternative

method following (3), referred to here as the ‘‘anomaly

method,’’ the daily mean temperature anomalies were

first calculated relative to the NOAA 1981–2010 normal

values for the daily mean temperature, and then the

standard deviation was computed with the same 15-day

calculation window and subsequent 29-day smoothing.

Daily temperature data were taken from the Global

Historical Climatology Network (GHCN)-Daily data-

base (Menne et al. 2012), and days with missing data

were excluded from the calculation.

The results show that the anomaly method variance is

nearly always smaller than the simple method variance,

as expected based on (5), and that the maximum dif-

ference in standard deviation is on the order of a few

percent for the three midlatitude locations. Similar dif-

ferences were observed for the four additional mid-

latitude locations (not shown). However, at Fairbanks,

where the seasonal climate shift is very rapid in spring

and autumn, the difference in standard deviation ex-

ceeds 5% in both transition seasons. Each of the loca-

tions shows a greater difference between the two

methods in autumn than in spring, because the peak rate

of seasonal temperature change is greater in autumn. At

all locations the two methods produce very similar re-

sults near the midsummer and midwinter extremes in

the annual temperature cycle.

It is useful to compare the differences between the

twomethods to the sampling uncertainty associated with

estimating the standard deviation from a finite set of

data. According to Cochran’s theorem, for a sample of

independent observations from a Gaussian distribution,

the ratio of the sample variance to the population vari-

ance follows a scaled chi-squared distribution, so that

the sample variance approaches the population variance

as the sample size increases. For a 15-day sampling

window with 29-day smoothing, taken from 30 years of

data, the sample size is 1290, and the 90% confidence

interval for the standard deviation ranges from 0.9687̂s to

1.0336ŝ, where ŝ is the sample standard deviation.

Therefore, the sampling uncertainty for the estimation of

the standard deviation is on the order of 3% and is

comparable to the difference between the two calculation

methods in seasons of rapid temperature change. How-

ever, in spring and autumn in Fairbanks, the difference

between the methods is greater than the uncertainty due

to finite sampling.

d. Simulation results

The difference between the simple and anomaly

methods was also investigated in an idealized setting by

performing repeated simulations of 30-yr station histo-

ries. The advantage of this approach is twofold: first, the

climatological variance is known and thus the errors in

the estimation methods are precisely calculable; and

second, a large ensemble of simulations produces stable

statistics that alleviate uncertainty associated with

sampling variations. For each simulation, a 30-yr series

FIG. 1. Estimated standard deviation of daily mean temperature

at Portland, OR (GHCN IDUSW00014764), using two alternative

methods as described in the text; the green line shows the percent

difference between the methods.

TABLE 1. List of U.S. stations at which no homogenization adjustments or time of observation adjustments were performed by NOAA

and at which fewer than 10 observations were missing or flagged during the period 1981–2010. ICAO denotes International Civil Aviation

Organization.

Station name State GHCN-Daily ID ICAO ID No. of missing days

Hartford Bradley International Airport CT USW00014740 KBDL 0

Concord Municipal Airport NH USW00014745 KCON 2

Portland International Jetport ME USW00014764 KPWM 0

Columbus Metropolitan Airport GA USW00093842 KCSG 6

Midland International Airport TX USW00023023 KMAF 7

Billings Logan International Airport MT USW00024033 KBIL 4

Glasgow International Airport MT USW00094008 KGGW 0

2300 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32



of synthetic daily temperatures (8C) was created by

random sampling from a Gaussian distribution with the

mean and standard deviation specified based on the day

of the year j as follows:

m5 102 10 cos

�
2p(j2 15)

365

�
and (6)

s5 41 2 cos

�
2p(j2 15)

365

�
. (7)

Owing to the random sampling procedure, consecutive

daily temperature departures from normal were in-

dependent of each other; the absence of autocorrelation

here leads to slightly larger variance estimates than in

real-world temperature data, but for a 30-yr series the

difference is negligible. After obtaining each 30-yr daily

temperature series, the climatological daily normals Tci

were estimated for each simulation separately by fitting

six harmonics, as in the NOAA method for calculating

daily temperature normals (Arguez and Applequist

2013); however, monthly mean constraints were not

imposed. Note that estimated daily normals were used

instead of the known climatological mean m in order to

more closely mimic the real-world procedure for esti-

mating daily temperature variance. Finally, the simple

and anomaly methods [(1) and (3), respectively] were

applied to each 30-yr time series, and the estimated

standard deviation was then compared to the known

climatological standard deviation s for an ensemble of

1000 simulations.

As discussed in section 2a, the estimated variance is

expected to be too large on average when computed

with the simple method; in other words, the simple

method produces a positive bias. This characteristic of

the simple method was clearly evident in the simulation

results, as shown in Fig. 5; the median bias from 1000

simulations was about 10.0358C when using the simple

method, but the median bias was very nearly zero when

using the anomaly method. Therefore the simulations

demonstrate that the anomaly method produces a bias-

free estimate of variance, although sampling variability

may still cause significant underestimates or over-

estimates of variance in some cases.

Figure 6 shows the joint distribution of the mean ab-

solute percentage error (MAPE) for the simple and

anomaly methods of variance estimation. Each point on

FIG. 4. As in Fig. 1, but for Fairbanks, AK (GHCN ID

USW00026411).

FIG. 3. As in Fig. 1, but for Midland, TX (GHCN ID

USW00023023).

FIG. 2. As in Fig. 1, but for Columbus, GA (GHCN ID

USW00093842).
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the scatterplot indicates theMAPE for the two methods

[(1) and (3)] over all 365 daily values of the estimated

standard deviation. While there is considerable scatter

in the accuracy of the estimates owing to sampling var-

iations, approximately 85% of the simulations resulted

in smaller MAPE when the anomaly method was used.

Based on this error metric, then, the anomaly method

could be expected to produce a superior estimate of

standard deviation approximately 85% of the time for

stations with climates similar to that represented by (6)

and (7).

3. Discussion

The climatological variance of temperature is some-

times used to estimate the standardized anomaly asso-

ciated with a temperature observation or the probability

of a specific temperature threshold being exceeded

within a given period of time. Such calculations assume

that the underlying distribution of daily temperature

anomalies is Gaussian, which is often approximately but

not precisely true; alternative distributions may be su-

perior in describing the climatological temperature

variability (Barrow and Hulme 1996). Several of the

stations in Table 1 exhibited considerable skewness and

kurtosis in their daily temperature distributions; the

stations in the northeastern United States exhibited

slight positive skewness, but strong negative skewness

was observed at the stations in Montana and Texas. The

most non-Gaussian temperature distribution was found

at Billings, Montana, with third and fourth standardized

moments of 20.83 and 14.56, respectively (i.e., excess

kurtosis of 11.56).

Despite the prevalence of departures from Gaussian

behavior, however, it is useful to examine the results of

calculations that are typically performed in tandem with

the Gaussian assumption. For example, Fig. 7 shows the

1981–2010 frequency of daily temperature anomalies of

two standard deviations or more, as computed using the

two alternative methods, and compared to the expected

frequency if the temperature distribution were indeed

Gaussian. At every location except Billings, the fre-

quency of large anomalies is too small when calculated

using the simplemethod, but the anomalymethod reduces

the shortfall in frequency in each case. This result illus-

trates that the simple method tends to produce standard-

ized anomalies that are too small as a result of the positive

variance bias that is inherent in themethod. The frequency

of large anomalies is closer to the expected value when the

anomaly method is used, even for some significantly non-

Gaussian stations such as Glasgow, Montana.

While it is clear from the foregoing results that the

anomaly method provides superior estimates of daily

temperature variance, the differences in the estimates

are generally only a few percent or less, and it is not yet

clear that these differences are important. However, the

significance of the differences becomes apparent when

we consider the probability of relatively large deviations

of temperature from the seasonal norm. The excess es-

timated variance produced by the simple method leads

directly to an overestimate of the probability of tem-

perature extremes, and for some locations and seasons

FIG. 6. Distribution of MAPE of estimated standard deviation

from 1000 simulations of 30-yr temperature histories, using two

alternative methods as described in the text.

FIG. 5. Distribution of annual mean bias of estimated daily

standard deviation from 1000 simulations of 30-yr temperature

histories, using two alternative methods as described in the text.

2302 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32



the difference is considerable. For example, using an

assumed Gaussian distribution, the estimated probabil-

ity of an 88C departure from the climatological mean at

Portland, Maine, differs by more than 10% for nearly

half of the year, depending on the method used to cal-

culate the daily variance (Fig. 8). In Fairbanks, where

temperature volatility is greater, we examine the esti-

mated probability of a 128C departure from the mean;

the two methods [(1) and (3)] produce estimates that

differ by considerably more than 20% for most of the

spring and autumn (Fig. 9).

It should be emphasized that the exceedance proba-

bilities portrayed here are estimates based on the

Gaussian assumption, and it is likely that improved es-

timates of exceedance probability could be obtained

either by using an alternative distribution that provides a

superior fit or by examining historical frequencies of

large anomalies. However, the Gaussian analysis

provides a first-order estimate of the significance of the

variance estimation differences within the tails of the

climatological distribution. We therefore conclude that

when the climatological variance is used to estimate the

probability of extreme temperatures on any given day,

or within a specified date range, significant errorsmay be

obtained by using the simple method variance.

4. Conclusions

The climatological daily variance of temperature is an

important metric for describing and predicting tem-

perature variations about the mean, and probabilistic

analysis of observed or expected temperature variability

is sensitive to the estimated value of the true climato-

logical variance. Both theoretical and observational

considerations reveal that a common method of esti-

mating the variance includes a contribution from sea-

sonal climatological temperature change and therefore

it overestimates the true daily variance in seasons of

rapid temperature change. An alternative method is

described in which the variance is estimated from the

daily anomalies of temperature rather than from daily

temperatures themselves.

Using data from eight U.S. locations, it is shown that

the anomaly method produces estimates of temperature

FIG. 8. Comparison between the estimated probabilities of an

88C departure from normal of daily mean temperature at Portland

using an assumed Gaussian distribution with the standard de-

viation estimated by two alternative methods.

FIG. 9. As in Fig. 8, but for a 128C daily anomaly at Fairbanks.

FIG. 7. Period 1981–2010 frequency of daily temperature de-

partures from the climatological normal of two standard deviations

ormore, based on two alternative variance estimationmethods and

compared to the expected frequency in a Gaussian distribution.
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standard deviation that are up to several percent smaller

than the simple method during seasons of rapid clima-

tological temperature change. These differences may be

comparable to or larger than the sampling uncertainty

for estimating standard deviation from a 30-yr period.

The superiority of the anomaly method is illustrated by

examining a large ensemble of simulations of daily

temperature histories, showing that the anomaly method

is bias free. We also demonstrate that estimated proba-

bilities of large daily temperature anomalies may differ

by 10%–20% or more at certain times of year, depending

on the variance estimation method.

It is recommended that weather and climate analyses

that depend on measures of daily temperature variance

employ the anomaly method described here to estimate

the climatological variance. NOAA’s 1981–2010 daily

temperature standard deviation normals have been up-

dated to reflect the anomaly method.
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