Linking Weather and Climate

View More View Less
  • 1 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Historically, the atmospheric sciences have tended to treat problems of weather and climate separately. The real physical system, however, is a continuum, with short-term (minutes to days) “weather” fluctuations influencing climate variations and change, and, conversely, more slowly varying aspects of the system (typical time scales of a season or longer) affecting the weather that is experienced. While this past approach has served important purposes, it is becoming increasingly apparent that in order to make progress in addressing many socially important problems, an improved understanding of the connections between weather and climate is required.

This overview summarizes the progress over the last few decades in the understanding of the phenomena and mechanisms linking weather and climate variations. The principal emphasis is on developments in understanding key phenomena and processes that bridge the time scales between synoptic-scale weather variability (periods of approximately 1 week) and climate variations of a season or longer. Advances in the ability to identify synoptic features, improve physical understanding, and develop forecast skill within this time range are reviewed, focusing on a subset of major, recurrent phenomena that impact extratropical wintertime weather and climate variations over the Pacific–North American region. While progress has been impressive, research has also illuminated areas where future gains are possible. This article concludes with suggestions on near-term directions for advancing the understanding and capabilities to predict the connections between weather and climate variations.

Corresponding author address: Randall M. Dole, NOAA/Earth System Research Laboratoty, Boulder CO 80305. E-mail: randall.m.dole@noaa.gov

Abstract

Historically, the atmospheric sciences have tended to treat problems of weather and climate separately. The real physical system, however, is a continuum, with short-term (minutes to days) “weather” fluctuations influencing climate variations and change, and, conversely, more slowly varying aspects of the system (typical time scales of a season or longer) affecting the weather that is experienced. While this past approach has served important purposes, it is becoming increasingly apparent that in order to make progress in addressing many socially important problems, an improved understanding of the connections between weather and climate is required.

This overview summarizes the progress over the last few decades in the understanding of the phenomena and mechanisms linking weather and climate variations. The principal emphasis is on developments in understanding key phenomena and processes that bridge the time scales between synoptic-scale weather variability (periods of approximately 1 week) and climate variations of a season or longer. Advances in the ability to identify synoptic features, improve physical understanding, and develop forecast skill within this time range are reviewed, focusing on a subset of major, recurrent phenomena that impact extratropical wintertime weather and climate variations over the Pacific–North American region. While progress has been impressive, research has also illuminated areas where future gains are possible. This article concludes with suggestions on near-term directions for advancing the understanding and capabilities to predict the connections between weather and climate variations.

Corresponding author address: Randall M. Dole, NOAA/Earth System Research Laboratoty, Boulder CO 80305. E-mail: randall.m.dole@noaa.gov
Save