• Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, doi:10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , L. Hartten, , and R. H. Johnson, 1997: Impacts of merging profiler and rawinsonde winds on TOGA COARE analyses. J. Atmos. Oceanic Technol., 14, 12641279, doi:10.1175/1520-0426(1997)014<1264:IOMPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , R. H. Johnson, , P. T. Haertel, , and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16, 23702384, doi:10.1175/2790.1.

    • Search Google Scholar
    • Export Citation
  • Dopplick, T. G., 1972: Radiative heating of the global atmosphere. J. Atmos. Sci., 29, 12781294, doi:10.1175/1520-0469(1972)029<1278:RHOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dopplick, T. G., 1979: Radiative heating of the global atmosphere: Corrigendum. J. Atmos. Sci., 36, 18121817, doi:10.1175/1520-0469(1979)036<1812:RHOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S., 1978: Bulk thermodynamic effects and properties of small tropical cumuli. J. Atmos. Sci., 35, 826837, doi:10.1175/1520-0469(1978)035<0826:BTEAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S., , J.-T. Wang, , and E. I. Tollerud, 1988: A composite life cycle of nonsquall mesoscale convective systems over the tropical ocean. Part II: Heat and moisture budgets. J. Atmos. Sci., 45, 537548, doi:10.1175/1520-0469(1988)045<0537:ACLCON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., , and M. Garstang, 1981: Vertical structure of the tropical boundary layer. Mon. Wea. Rev., 109, 15121526, doi:10.1175/1520-0493(1981)109<1512:VSOTTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1978: The life cycles of GATE convective systems. J. Atmos. Sci., 35, 12561264, doi:10.1175/1520-0469(1978)035<1256:TLCOGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , A. E. Dessler, , T. J. Dunkerton, , I. Folkins, , Q. Fu, , and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, 1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , H. H. Hendon, , and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, doi:10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2007: The convective cold top and quasi-equilibrium. J. Atmos. Sci., 64, 14671487, doi:10.1175/JAS3907.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, doi:10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motion in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601, doi:10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and D. C. Kreite, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110, 18981911, doi:10.1175/1520-0493(1982)110<1898:TACCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40, 21382147, doi:10.1175/1520-0469(1983)040<2138:HAMBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 20202034, doi:10.1175/1520-0469(1997)054<2020:ETWROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2000: Rainfall and radiative heating rate estimates from TOGA COARE atmospheric budgets. J. Atmos. Sci., 57, 14971514, doi:10.1175/1520-0469(2000)057<1497:RARHRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578, doi:10.2151/jmsj.80.561.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , P. E. Ciesielski, , and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53, 18381855, doi:10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , P. E. Ciesielski, , and R. H. Johnson, 2011: Evaluation of budget analysis during MISMO. J. Appl. Meteor. Climatol., 50, 241254, doi:10.1175/2010JAMC2515.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, 2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and G. L. Stephens, 2003: The tropical atmosphere energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985, doi:10.1175/1520-0442(2003)016<1967:TTOEBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., , and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, doi:10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715, doi:10.1175/1520-0469(1996)053<0695:KATCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and P. Zuidema, 1996: Radiative-dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638, doi:10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , P. E. Ciesieslki, , and R. H. Johnson, 2003: Sampling errors in rawinsonde-array budgets. J. Atmos. Sci., 60, 26972714, doi:10.1175/1520-0469(2003)060<2697:SEIRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., , R. A. Pielke, , and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, doi:10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1978: A diagnostic study of the interaction of cumulus updrafts and downdrafts with large-scale motions in GATE. J. Meteor. Soc. Japan, 56, 232242.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102, 1728, doi:10.1175/1520-0493(1974)102<0017:HAMBAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , R. Oki, , K. Nakamura, , K. Tsuboki, , T. Asai, , and Y.-M. Kodama, 1995: 4-5 day-period variations and low-level dry air observed in the equatorial western Pacific during the TOGA-COARE IOP. J. Meteor. Soc. Japan, 73, 267290.

    • Search Google Scholar
    • Export Citation
  • Parsons, D., and Coauthors, 1994: The integrated sounding system: Description and preliminary observations from TOGA COARE. Bull. Amer. Meteor. Soc., 75, 553567, doi:10.1175/1520-0477(1994)075<0553:TISSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, doi:10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., , D. Parsons, , and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59, 24382457, doi:10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., , and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55, 27152729, doi:10.1175/1520-0469(1998)055<2715:CITCHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , R. A. Houze Jr., , and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , M. H. Zhang, , and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, doi:10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., , W.-K. Tao, , J. Simpson, , and C.-H. Sui, 2003: Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate, 16, 817833, doi:10.1175/1520-0442(2003)016<0817:QESITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , R. A. Houze, , and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24, 4956, doi:10.1175/1520-0450(1985)024<0049:AFWCCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., , and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, doi:10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1961: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , and T. Fujitani, 1995: The behavior of dry westerly air associated with convection observed during TOGA-COARE R/V Natsushima cruise. J. Meteor. Soc. Japan, 73, 291304.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814, doi:10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 102 29
PDF Downloads 125 125 12

A Further Look at Q1 and Q2 from TOGA COARE

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
  • 2 Department of Geography, Planning, and Environment, East Carolina University, Greenville, North Carolina
© Get Permissions
Restricted access

Abstract

Two features of Yanai et al.’s profiles of Q1 and Q2—the commonly observed double-peak structure to Q2 and an inflection in the Q1 profile below the melting level—are explored using estimates of convective and stratiform rainfall partitioning based on Massachusetts Institute of Technology (MIT) radar reflectivity data collected during TOGA COARE. The MIT radar data allow the Q1 and Q2 profiles to be classified according to stratiform rain fraction within the radar domain and, within the limitations of the datasets, allow interpretations to be made about the relative contributions of convective and stratiform precipitation to the mean profiles. The sorting of Q2 by stratiform rain fraction leads to the confirmation of previous findings that the double-peak structure in the mean profile is a result of a combination of separate contributions of convective and stratiform precipitation. The convective contribution, which has a drying peak in the lower troposphere, combines with a stratiform drying peak aloft and low-level moistening peak to yield a double-peak structure. With respect to the inflection in the Q1 profile below the 0°C level, this feature appears to be a manifestation of melting. It is the significant horizontal dimension of the stratiform components of tropical convective systems that yields a small but measurable imprint on the large-scale temperature and moisture stratification upon which the computations of Q1 and Q2 are based. The authors conclude, then, that the rather subtle features in the Q1/Q2 profiles of Yanai et al. are directly linked to the prominence of stratiform precipitation within tropical precipitation systems.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, Colorado State University, 3915 W. Laport Ave., Fort Collins, CO 80523. E-mail: johnson@atmos.colostate.edu

Abstract

Two features of Yanai et al.’s profiles of Q1 and Q2—the commonly observed double-peak structure to Q2 and an inflection in the Q1 profile below the melting level—are explored using estimates of convective and stratiform rainfall partitioning based on Massachusetts Institute of Technology (MIT) radar reflectivity data collected during TOGA COARE. The MIT radar data allow the Q1 and Q2 profiles to be classified according to stratiform rain fraction within the radar domain and, within the limitations of the datasets, allow interpretations to be made about the relative contributions of convective and stratiform precipitation to the mean profiles. The sorting of Q2 by stratiform rain fraction leads to the confirmation of previous findings that the double-peak structure in the mean profile is a result of a combination of separate contributions of convective and stratiform precipitation. The convective contribution, which has a drying peak in the lower troposphere, combines with a stratiform drying peak aloft and low-level moistening peak to yield a double-peak structure. With respect to the inflection in the Q1 profile below the 0°C level, this feature appears to be a manifestation of melting. It is the significant horizontal dimension of the stratiform components of tropical convective systems that yields a small but measurable imprint on the large-scale temperature and moisture stratification upon which the computations of Q1 and Q2 are based. The authors conclude, then, that the rather subtle features in the Q1/Q2 profiles of Yanai et al. are directly linked to the prominence of stratiform precipitation within tropical precipitation systems.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, Colorado State University, 3915 W. Laport Ave., Fort Collins, CO 80523. E-mail: johnson@atmos.colostate.edu
Save