• Arakawa, A., , and W. H. Shubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biello, J., , and A. Majda, 2005: A multi-scale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721, doi:10.1175/JAS3455.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., , and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, doi:10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., , A. Fournier, , W. Spotz, , A. St-Cyr, , M. Taylor, , S. J. Thomas, , and H. Tufo, 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl., 19, 225–245, doi:10.1177/1094342005056108.

  • Dunkerton, T. J., , and F. X. Crum, 1995: Eastward propagating ~2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100, 25 78125 790, doi:10.1029/95JD02678.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmosphere. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., , B. Khouider, , and A. J. Majda, 2011a: Simple multicloud models for the diurnal cycle of tropical precipitation. Part I: Formulation and the case of the tropical oceans. J. Atmos. Sci., 68, 21692190, doi:10.1175/2011JAS3568.1.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., , B. Khouider, , and A. J. Majda, 2011b: Simple multicloud models for the diurnal cycle of tropical precipitation. Part II: The continental regime. J. Atmos. Sci., 68, 21922207, doi:10.1175/2011JAS3600.1.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., , A. J. Majda, , and B. Khouider, 2012: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. J. Atmos. Sci., 69, 10801105, doi:10.1175/JAS-D-11-0148.1.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., , A. J. Majda, , and B. Khouider, 2013: Stochastic and deterministic multicloud parameterizations for tropical convection. Climate Dyn., 41, 15271551, doi:10.1007/s00382-013-1678-z.

    • Search Google Scholar
    • Export Citation
  • Frierson, D., , A. J. Majda, , and O. Pauluis, 2004: Dynamics of precipitation fronts in the tropical atmosphere. Commun. Math. Sci., 2, 591626, doi:10.4310/CMS.2004.v2.n4.a3.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., , and D. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, doi:10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haertel, P., , and G. N. Kiladis, 2004: On the dynamics of two day equatorial disturbances. J. Atmos. Sci., 61, 27072721, doi:10.1175/JAS3352.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., , and B. Khouider, 2010: Convectively coupled waves in a sheared environment. J. Atmos. Sci., 67, 29132942, doi:10.1175/2010JAS3335.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: Instability of large-scale equatorial waves with a frequency-dependent CISK parameter. J. Meteor. Soc. Japan, 49, 5962.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., , and K. Puri, 1981: Spectral representation of three-dimensional global data by expansion in normal mode functions. Mon. Wea. Rev., 109, 3751, doi:10.1175/1520-0493(1981)109<0037:SROTDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006a: Multicloud convective parametrizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20, 351375, doi:10.1007/s00162-006-0013-2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006b: A simple multicloud parametrization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2008a: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397, doi:10.1175/2008JAS2752.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2008b: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 897914, doi: 10.1175/2007JAS2408.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , J. Biello, , and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8 (1), 187216, doi:10.4310/CMS.2010.v8.n1.a10.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , A. St-Cyr, , A. J. Majda, , and J. Tribbia, 2011: The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68, 240264, doi:10.1175/2010JAS3443.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , Y. Han, , and J. Biello, 2012a: Convective momentum transport in a simple multicloud model. J. Atmos. Sci., 69, 281302, doi:10.1175/JAS-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , Y. Han, , A. J. Majda, , and S. Stechmann, 2012b: Multiscale waves in an MJO background and CMT feedback. J. Atmos. Sci., 69, 915933, doi:10.1175/JAS-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 3367–3383, doi:10.1175/1520-0469(1996)053<3367:HMAROT>2.0.CO;2.

  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, doi:10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

  • Majda, A. J., 2007: New multiscale models and self-similarity in tropical convection. J. Atmos. Sci., 64, 13931404, doi:10.1175/JAS3880.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and M. Shefter, 2001a: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58, 15671584, doi:10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and M. Shefter, 2001b: Waves and instabilities for model tropical convective parametrizations. J. Atmos. Sci., 58, 896914, doi:10.1175/1520-0469(2001)058<0896:WAIFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and B. Khouider, 2002: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA, 99, 11231128, doi:10.1073/pnas.032663199.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and J. Biello, 2004: A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA, 101, 47364741, doi:10.1073/pnas.0401034101.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2008: Stochastic models for convective momentum transport. Proc. Natl. Acad. Sci. USA, 105, 17 61417 619, doi:10.1073/pnas.0806838105.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2016: Models for multiscale interactions. Part II: Madden–Julian oscillation, moisture, and convective momentum transport. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSM-D-15-0005.1.

  • Majda, A. J., , B. Khouider, , G. Kiladis, , K. H. Straub, , and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61, 21882205, doi:10.1175/1520-0469(2004)061<2188:AMFCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , S. N. Stechmann, , and B. Khouider, 2007: Madden–Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc. Natl. Acad. Sci. USA, 104, 99199924, doi:10.1073/pnas.0703572104.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Mapes, B. E., 2000: Convective inhibition, subgridscale triggering energy, and “stratiform instability” in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2541.

  • Nakazawa, T., 1974: Tropical super clusters within intraseasonal variation over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and J. Yu, 1994: Modes of tropical variability under convective adjustment and Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, doi:10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int., 4, 187198.

  • Qiang, D., , B. Khouider, , and A. J. Majda, 2014: The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. J. Atmos. Sci., 72, 55–74, doi:10.1175/JAS-D-14-0120.1.

  • Straub, K. H., , and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, doi:10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668, doi:10.1175/1520-0469(2003)060<1655:TOSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448.

    • Search Google Scholar
    • Export Citation
  • Taylor, M., , J. Edwards, , and A. St-Cyr, 2008: Petascale atmospheric models for the Community Climate System Model: New developments and evaluation of scalable dynamical cores. J. Phys. Conf. Ser., 125, 012023, doi:10.1088/1742-6596/125/1/012023.

  • Waite, M. L., , and B. Khouider, 2009: Boundary layer dynamics in a simple model for convectively coupled gravity waves. J. Atmos. Sci., 66, 27802795, doi:10.1175/2009JAS2871.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , G. N. Kiladis, , and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, doi:10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1969: Large-scale disturbances in a conditionally unstable atmosphere in low latitudes. Pap. Meteor. Geophys., 20, 289336.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44, 291294.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , B. Chen, , and W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57, 23742396, doi:10.1175/1520-0469(2000)057<2374:TMJOOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , J. C. McWilliams, , M. Moncrieff, , and K. A. Emanuel, 1995: Hierarchical tropical cloud systems in an analog shallow-water model. J. Atmos. Sci., 52, 17231742, doi:10.1175/1520-0469(1995)052<1723:HTCSIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , M. Moncrieff, , and J. C. McWilliams, 1998: Linear stability and single column analyses of several cumulus parametrization categories in a shallow-water model. Quart. J. Roy. Meteor. Soc., 124, 9831005, doi:10.1002/qj.49712454715.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2001: A comparison of convergence- and surface-flux-based convective parametrizations with applications to tropical cyclogenesis. J. Atmos. Sci., 58, 283301, doi:10.1175/1520-0469(2001)058<0283:ACOCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 10
PDF Downloads 38 38 36

Models for Multiscale Interactions. Part I: A Multicloud Model Parameterization

View More View Less
  • 1 Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
  • 2 Center for Atmosphere Ocean Science, and Department of Mathematics, Courant Institute, New York University, New York, New York
© Get Permissions
Restricted access

Abstract

In this chapter, a model parameterization for organized tropical convection and convectively coupled tropical waves is presented. The model is based on the main three cloud types, congestus, deep, and stratiform, that are observed to play an important role in the dynamics and morphology of tropical convective systems. The model is based on the self-similarity across scales of tropical convective systems and uses physically sound theory about the mutual interactions between the three cloud types and the environment. Both linear analysis and numerical simulations of convectively coupled waves and the Madden–Julian oscillation are discussed.

Publisher’s Note: This chapter was revised on 5 December 2016 to correct a slight error in the title of this volume as presented in the references.

Corresponding author address: Dr. Boualem Khouider, Mathematics and Statistics University of Victoria, P.O. Box 3045 STN CSC, Victoria, BC V8W 3P4, Canada. E-mail: khouider@math.uvic.ca

Abstract

In this chapter, a model parameterization for organized tropical convection and convectively coupled tropical waves is presented. The model is based on the main three cloud types, congestus, deep, and stratiform, that are observed to play an important role in the dynamics and morphology of tropical convective systems. The model is based on the self-similarity across scales of tropical convective systems and uses physically sound theory about the mutual interactions between the three cloud types and the environment. Both linear analysis and numerical simulations of convectively coupled waves and the Madden–Julian oscillation are discussed.

Publisher’s Note: This chapter was revised on 5 December 2016 to correct a slight error in the title of this volume as presented in the references.

Corresponding author address: Dr. Boualem Khouider, Mathematics and Statistics University of Victoria, P.O. Box 3045 STN CSC, Victoria, BC V8W 3P4, Canada. E-mail: khouider@math.uvic.ca
Save