• Barnes, G., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 17821794, doi:10.1175/1520-0493(1984)112<1782:TEOFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721, doi:10.1175/JAS3455.1.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., A. J. Majda, and M. W. Moncrieff, 2007: Meridional momentum flux and superrotation in the multiscale IPESD MJO model. J. Atmos. Sci., 64, 16361651, doi:10.1175/JAS3908.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468, doi:10.1002/qj.49712757211.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, doi:10.1175/JAS3352.1.

  • Held, I., R. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99, 80738084, doi:10.1029/94JD00045.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397, doi:10.1175/2008JAS2752.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187–216.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., Y. Han, and J. A. Biello, 2012a: Convective momentum transport in a simple multicloud model for organized convection. J. Atmos. Sci., 69, 281302, doi:10.1175/JAS-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., Y. Han, A. J. Majda, and S. N. Stechmann, 2012b: Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci., 69, 915933, doi:10.1175/JAS-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. J. Majda, and S. N. Stechmann, 2013: Climate science in the tropics: Waves, vortices, and PDEs. Nonlinearity, 26, R1R68, doi:10.1088/0951-7715/26/1/R1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, Eds., 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Environmental Sciences Series, Springer, 437 pp.

  • LeMone, M., and M. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281305, doi:10.1175/1520-0469(1994)051<0281:MAMTBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M., E. Zipser, and S. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci., 61, 22182227, doi:10.1175/1520-0469(2004)061<2218:EOCGGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2008: Stochastic models for convective momentum transport. Proc. Natl. Acad. Sci. USA, 105, 17 61417 619, doi:10.1073/pnas.0806838105.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009a: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392, doi:10.1175/2008JAS2805.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009b: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 8417, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2011: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68, 30533071, doi:10.1175/JAS-D-11-053.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Masunaga, H., T. L’Ecuyer, and C. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794, doi:10.1175/JAS3783.1.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805827, doi:10.1002/qj.49712354002.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Richter, J., and P. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., and W. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2 (2), doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66, 25792599, doi:10.1175/2009JAS2976.1.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., A. J. Majda, and D. Skjorshammer, 2013: Convectively coupled wave–environment interactions. Theor. Comput. Fluid Dyn., 27, 513–532, doi:10.1007/s00162-012-0268-8.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668, doi:10.1175/1520-0469(2003)060<1655:TOSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K. M. Lau, and C. H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. Waliser, E. Fetzer, B. Lambrigtsen, Y. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, doi:10.1175/2007JAS2353.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. A. Randall, and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 12101229, doi:10.1175/JAS3884.1.

    • Search Google Scholar
    • Export Citation
  • Tung, W., and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871, doi:10.1175/1520-0469(2002)059<1857:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W., and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549, doi:10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., L. Deng, X. Song, and G. Zhang, 2007: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349, doi:10.1175/JAS3894.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423, doi:10.1175/JAS4017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 6 6 6

Models for Multiscale Interactions. Part II: Madden–Julian Oscillation, Moisture, and Convective Momentum Transport

View More View Less
  • 1 Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
  • | 2 Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
Restricted access

Abstract

It is well known that the envelope of the Madden–Julian oscillation (MJO) consists of smaller-scale convective systems, including mesoscale convective systems (MCS), tropical cyclones, and synoptic-scale waves called “convectively coupled equatorial waves” (CCW). In fact, recent results suggest that the fundamental mechanisms of the MJO involve interactions between the synoptic-scale CCW and their larger-scale environment (Majda and Stechmann). In light of this, this chapter reviews recent and past work on two-way interactions between convective systems—both MCSs and CCW—and their larger-scale environment, with a particular focus given to recent work on MJO–CCW interactions.

Corresponding author address: Samuel Stechmann, Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, WI 53706. E-mail: stechmann@wisc.edu

Abstract

It is well known that the envelope of the Madden–Julian oscillation (MJO) consists of smaller-scale convective systems, including mesoscale convective systems (MCS), tropical cyclones, and synoptic-scale waves called “convectively coupled equatorial waves” (CCW). In fact, recent results suggest that the fundamental mechanisms of the MJO involve interactions between the synoptic-scale CCW and their larger-scale environment (Majda and Stechmann). In light of this, this chapter reviews recent and past work on two-way interactions between convective systems—both MCSs and CCW—and their larger-scale environment, with a particular focus given to recent work on MJO–CCW interactions.

Corresponding author address: Samuel Stechmann, Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, WI 53706. E-mail: stechmann@wisc.edu
Save