• Barnes, G., , and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 17821794, doi:10.1175/1520-0493(1984)112<1782:TEOFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., , and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721, doi:10.1175/JAS3455.1.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., , A. J. Majda, , and M. W. Moncrieff, 2007: Meridional momentum flux and superrotation in the multiscale IPESD MJO model. J. Atmos. Sci., 64, 16361651, doi:10.1175/JAS3908.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468, doi:10.1002/qj.49712757211.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., , and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, doi:10.1175/JAS3352.1.

  • Held, I., , R. Hemler, , and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99, 80738084, doi:10.1029/94JD00045.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397, doi:10.1175/2008JAS2752.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , J. Biello, , and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187–216.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , Y. Han, , and J. A. Biello, 2012a: Convective momentum transport in a simple multicloud model for organized convection. J. Atmos. Sci., 69, 281302, doi:10.1175/JAS-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , Y. Han, , A. J. Majda, , and S. N. Stechmann, 2012b: Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci., 69, 915933, doi:10.1175/JAS-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , A. J. Majda, , and S. N. Stechmann, 2013: Climate science in the tropics: Waves, vortices, and PDEs. Nonlinearity, 26, R1R68, doi:10.1088/0951-7715/26/1/R1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., , and D. E. Waliser, Eds., 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Environmental Sciences Series, Springer, 437 pp.

  • LeMone, M., , and M. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281305, doi:10.1175/1520-0469(1994)051<0281:MAMTBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M., , E. Zipser, , and S. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and M. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci., 61, 22182227, doi:10.1175/1520-0469(2004)061<2218:EOCGGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2008: Stochastic models for convective momentum transport. Proc. Natl. Acad. Sci. USA, 105, 17 61417 619, doi:10.1073/pnas.0806838105.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009a: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392, doi:10.1175/2008JAS2805.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009b: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 8417, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2011: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68, 30533071, doi:10.1175/JAS-D-11-053.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Masunaga, H., , T. L’Ecuyer, , and C. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794, doi:10.1175/JAS3783.1.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805827, doi:10.1002/qj.49712354002.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Richter, J., , and P. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., , and W. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2 (2), doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., , and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66, 25792599, doi:10.1175/2009JAS2976.1.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., , A. J. Majda, , and D. Skjorshammer, 2013: Convectively coupled wave–environment interactions. Theor. Comput. Fluid Dyn., 27, 513–532, doi:10.1007/s00162-012-0268-8.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2003: The observed structure of convectively coupled kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668, doi:10.1175/1520-0469(2003)060<1655:TOSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , K. M. Lau, , and C. H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. Waliser, , E. Fetzer, , B. Lambrigtsen, , Y. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., , K. Yamazaki, , A. Kitoh, , and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , and B. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, doi:10.1175/2007JAS2353.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , D. A. Randall, , and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 12101229, doi:10.1175/JAS3884.1.

    • Search Google Scholar
    • Export Citation
  • Tung, W., , and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871, doi:10.1175/1520-0469(2002)059<1857:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W., , and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549, doi:10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , L. Deng, , X. Song, , and G. Zhang, 2007: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349, doi:10.1175/JAS3894.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G., , B. Hoskins, , and J. Slingo, 2007: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423, doi:10.1175/JAS4017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 5
PDF Downloads 3 3 2

Models for Multiscale Interactions. Part II: Madden–Julian Oscillation, Moisture, and Convective Momentum Transport

View More View Less
  • 1 Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
  • 2 Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

It is well known that the envelope of the Madden–Julian oscillation (MJO) consists of smaller-scale convective systems, including mesoscale convective systems (MCS), tropical cyclones, and synoptic-scale waves called “convectively coupled equatorial waves” (CCW). In fact, recent results suggest that the fundamental mechanisms of the MJO involve interactions between the synoptic-scale CCW and their larger-scale environment (Majda and Stechmann). In light of this, this chapter reviews recent and past work on two-way interactions between convective systems—both MCSs and CCW—and their larger-scale environment, with a particular focus given to recent work on MJO–CCW interactions.

Corresponding author address: Samuel Stechmann, Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, WI 53706. E-mail: stechmann@wisc.edu

Abstract

It is well known that the envelope of the Madden–Julian oscillation (MJO) consists of smaller-scale convective systems, including mesoscale convective systems (MCS), tropical cyclones, and synoptic-scale waves called “convectively coupled equatorial waves” (CCW). In fact, recent results suggest that the fundamental mechanisms of the MJO involve interactions between the synoptic-scale CCW and their larger-scale environment (Majda and Stechmann). In light of this, this chapter reviews recent and past work on two-way interactions between convective systems—both MCSs and CCW—and their larger-scale environment, with a particular focus given to recent work on MJO–CCW interactions.

Corresponding author address: Samuel Stechmann, Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, WI 53706. E-mail: stechmann@wisc.edu
Save