• Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 298 pp.

  • Bender, M., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724, doi:10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bu, Y., 2012: Factors that can influence the onset time of rapid intensification of tropical cyclones. M.S. thesis, Atmospheric and Oceanic Sciences, University of California, Los Angeles, 75 pp.

  • Bu, Y., , R. G. Fovell, , and K. L. Corbosiero, 2014: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441662, doi:10.1175/JAS-D-13-0265.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Y., , R. G. Fovell, , and K. L. Corbosiero, 2011: Tropical cyclone track and structure sensitivity to initialization in idealized simulations: A preliminary study. Terr. Atmos. Ocean. Sci., 22, 559578, doi:10.3319/TAO.2011.05.12.01(TM).

    • Search Google Scholar
    • Export Citation
  • Chan, J. C.-L., , and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. J. Atmos. Sci., 44, 12571265, doi:10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., , and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, doi:10.2151/jmsj.80.99.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., , and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp.

  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1987: Tropical cyclone track prediction with a barotropic spectral model. Mon. Wea. Rev., 115, 2346–2357, doi:10.1175/1520-0493(1987)115<2346:TCTPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Depperman, C. E., 1947: Notes on the origin and structure of Philippine typhoons. Bull. Amer. Meteor. Soc., 28, 399404.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., , S.-Y. Hong, , and K.-S. Lim, 2008: A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteor. Soc. Japan, 86A, 3344, doi:10.2151/jmsj.86A.33.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., , T. Dinh, , M. Ammerman, , and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873, doi:10.1175/2009JAS3046.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., , Y. Jin, , T. Black, , E. Rogers, , and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in NCEP Eta model. 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47241.htm.]

  • Fiorino, M. J., , and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, doi:10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and H. Su, 2007: Impact of cloud microphysics on hurricane track forecasts. Geophys. Res. Lett., 34, L24810, doi:10.1029/2007GL031723.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , K. L. Corbosiero, , and H.-C. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, doi:10.1175/2008JAS2874.1.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , K. L. Corbosiero, , and H.-C. Kuo, 2010a: Influence of cloud-radiative feedback on tropical cyclone motion: Symmetric contributions. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 13C.5. [Available online at https://ams.confex.com/ams/pdfpapers/168859.pdf.]

  • Fovell, R. G., , K. L. Corbosiero, , A. Seifert, , and K.-N. Liou, 2010b: Impact of cloud-radiative processes on hurricane track. Geophys. Res. Lett., 37, L07808, doi:10.1029/2010GL042691.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., , S. Goldenberg, , T. Quirino, , X. Zhang, , F. Marks Jr., , K.-S. Yeh, , R. Atlas, , and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, doi:10.1175/WAF-D-11-00055.1.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., , K. N. Liou, , W. Chen, , and H. Liao, 2010: Direct climate effect of black carbon in China and its impact on dust storms. J. Geophys. Res., 115, D00K14, doi:10.1029/2009JD013427.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., , K. N. Liou, , S. C. Ou, , and R. G. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.

  • Hack, J. J., , and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., , K. V. Ooyama, , and W. H. Schubert, 2006: Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63, 87108, doi:10.1175/JAS3601.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, L.-H., , H.-C. Kuo, , and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, doi:10.1175/JAS-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., Amer. Meteor. Soc., No. 32, 84 pp.

  • Krueger, S. K., , and M. A. Zuluaf, 2002: Radiatively-induced anvil spreading. Proc. 15th ARM Science Team Meeting, Daytona Beach, FL, Department of Energy, 280–283.

  • Li, X., , and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, doi:10.1175/2008MWR2366.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. Academic Press, 583 pp.

  • Lord, S. J., , H. E. Willoughby, , and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., , M. T. Montgomery, , and B. Wang, 2005: Re-examining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425, doi:10.1175/JAS-3377.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , H. Zhang, , G. Heymsfield, , R. Hood, , J. Dudhia, , J. B. Halverson, , and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. Mon. Wea. Rev., 136, 127150, doi:10.1175/JAS3590.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , and W. Wang, 2007: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp, doi:10.5065/D6DZ069T.

  • Skamarock, W. C., , J. B. Klemp, , M. G. Duda, , L. D. Fowler, , S.-H. Park, , and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 488 pp.

  • Stephens, G., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 21232132, doi:10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 406 pp.

  • Tao, W.-K., , J. J. Shi, , S. S. Chen, , S. Lang, , P.-L. Lin, , S.-Y. Hong, , C. Peters-Lidard, , and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 116, doi:10.1007/s13143-011-1001-z.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteor., 19, 10371063, doi:10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036, doi:10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, doi:10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , F. D. Marks, , and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , W. R. Darling, , and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, doi:10.1175/MWR3106.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, doi:10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1958: On the changes in thermal and wind structure in a decaying typhoon. J. Meteor. Soc. Japan, 36, 141155.

  • Yanai, M., 1961a: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

  • Yanai, M., 1961b: Dynamical aspects of typhoon formation. J. Meteor. Soc. Japan, 39, 282309.

  • Yanai, M., 1963a: A comment on the creation of warm core in incipient tropical cyclone. J. Meteor. Soc. Japan, 41, 183187.

  • Yanai, M., 1963b: A preliminary survey of large-scale disturbances over the tropical Pacific region. Geofis. Int., 3, 7384.

  • Yanai, M., 1964: Formation of tropical cyclones. Rev. Geophys., 2, 367414, doi:10.1029/RG002i002p00367.

  • Zhu, T., , and D.-L. Zhang, 2006: Numerical simulation of hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126, doi:10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, doi:10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 19
PDF Downloads 34 34 9

Influence of Cloud Microphysics and Radiation on Tropical Cyclone Structure and Motion

View More View Less
  • 1 * Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • 2 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • 3 Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana
  • 4 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • 5 ** Taiwan Typhoon Flood and Research Institute, Taipei, Taiwan
  • 6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The authors survey a series of modeling studies that have examined the influences that cloud microphysical processes can have on tropical cyclone (TC) motion, the strength and breadth of the wind field, inner-core diabatic heating asymmetries, outer-core convective activity, and the characteristics of the TC anvil cloud. These characteristics are sensitive to the microphysical parameterization (MP) in large part owing to the cloud-radiative forcing (CRF), the interaction of hydrometeors with radiation. The most influential component of CRF is that due to absorption and emission of longwave radiation in the anvil, which via gentle lifting directly encourages the more extensive convective activity that then leads to a radial expansion of the TC wind field. On a curved Earth, the magnitude of the outer winds helps determine the speed and direction of TC motion via the beta drift. CRF also influences TC motion by determining how convective asymmetries develop in the TC inner core. Further improvements in TC forecasting may require improved understanding and representation of cloud-radiative processes in operational models, and more comprehensive comparisons with observations are clearly needed.

Corresponding author address: Prof. Robert Fovell, UCLA Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90096-1565. E-mail: rfovell@ucla.edu

Abstract

The authors survey a series of modeling studies that have examined the influences that cloud microphysical processes can have on tropical cyclone (TC) motion, the strength and breadth of the wind field, inner-core diabatic heating asymmetries, outer-core convective activity, and the characteristics of the TC anvil cloud. These characteristics are sensitive to the microphysical parameterization (MP) in large part owing to the cloud-radiative forcing (CRF), the interaction of hydrometeors with radiation. The most influential component of CRF is that due to absorption and emission of longwave radiation in the anvil, which via gentle lifting directly encourages the more extensive convective activity that then leads to a radial expansion of the TC wind field. On a curved Earth, the magnitude of the outer winds helps determine the speed and direction of TC motion via the beta drift. CRF also influences TC motion by determining how convective asymmetries develop in the TC inner core. Further improvements in TC forecasting may require improved understanding and representation of cloud-radiative processes in operational models, and more comprehensive comparisons with observations are clearly needed.

Corresponding author address: Prof. Robert Fovell, UCLA Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90096-1565. E-mail: rfovell@ucla.edu
Save