• Austin, R. T., , and G. L. Stephens, 2001: Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for Cloudsat: 1. Algorithm formulation. J. Geophys. Res., 106, 28 23328 242, doi:10.1029/2000JD000293.

    • Search Google Scholar
    • Export Citation
  • Austin, R. T., , A. J. Heymsfield, , and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., , M. J. Webb, , M. E. Brooks, , M. A. Ringer, , K. D. Williams, , S. F. Milton, , and D. R. Wilson, 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, doi:10.1175/2011BAMS2856.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , M. Webb, , C. Bretherton, , S. Klein, , P. Siebesma, , G. Tselioudis, , and M. Zhang, 2011: CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 2022.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., , and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W.-T., , C. P. Woods, , J.-L. F. Li, , D. E. Waliser, , J.-D. Chern, , W.-K. Tao, , J. H. Jiang, , and A. M. Tompkins, 2011: Partitioning CloudSat ice water content for comparison with upper-tropospheric ice in global atmospheric models. J. Geophys. Res., 116, D19206, doi:10.1029/2010JD015179.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , M. Chiriaco, , J.-L. Dufresne, , and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207.

    • Search Google Scholar
    • Export Citation
  • Cole, J., , H. W. Barker, , N. G. Loeb, , and K. von Salzen, 2011: Assessing simulated clouds and radiative fluxes using properties of clouds whose tops are exposed to space. J. Climate, 24, 2715–2727, doi:10.1175/2011JCLI3652.1.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., , and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., , and R. J. Hogan, 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., , R. J. Hogan, , R. M. Forbes, , A. Bodas-Salcedo, , and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 2064–2078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Deng, M., , G. G. Mace, , Z. Wang, , and H. Okamoto, 2010: Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Deng, M., , G. G. Mace, , Z. Wang, , and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. J. Hogan, , P. R. A. Brown, , A. J. Illingworth, , T. W. Choularton, , and R. J. Cotton, 2005: Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., , P. Hignett, , and A. Macke, 1998: The retrieval of cirrus cloud properties from aircraft multi-spectral reflectance measurements during EUCREX’93. Quart. J. Roy. Meteor. Soc., 124, 12731291, doi:10.1002/qj.49712454812.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Han, Q. Y., , W. B. Rossow, , J. Chou, , K. S. Kuo, , and R. M. Welch, 1999: The effects of aspect ratio and surface roughness on satellite retrievals of ice-cloud properties. J. Quant. Spectrosc. Radiat. Transfer, 63, 559583, doi:10.1016/S0022-4073(99)00039-4.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2006: Fast approximate calculation of multiply scattered lidar returns. Appl. Opt., 45, 59845992, doi:10.1364/AO.45.005984.

    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Radar backscattering properties of nonspherical ice crystals at 94 GHz. J. Geophys. Res., 112, D22203, doi:10.1029/2007JD008839.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA A-Train satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

  • Kato, S., , S. Sun-Mack, , W. F. Miller, , F. G. Rose, , Y. Chen, , P. Minnis, , and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Computation of top-of-atmosphere and surface irradiance computations with with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , N. G. Loeb, , D. A. Rutan, , F. G. Rose, , S. Sun-Mack, , W. F. Miller, , and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395–412, doi:10.1007/s10712-012-9179-x.

  • Kato, S., , N. G. Loeb, , F. G. Rose, , D. R. Doelling, , D. A. Rutan, , T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 5190–5207, doi:10.1175/JCLI-D-11-00469.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., , A. T. Noda, , and M. Satoh, 2012: An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J. Geophys. Res., 117, D12210, doi:10.1029/2011JD017317.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32, L18710, doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., , J. H. Jiang, , D. E. Waliser, , and A. M. Tompkins, 2007: Assessing consistency between EOS MLS and ECMWF analyzed and forecast estimates of cloud ice. Geophys. Res. Lett., 34, L08701, doi:10.1029/2006GL029022.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2008: Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations. Geophys. Res. Lett., 35, L19710, doi:10.1029/2008GL035427.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., , D. E. Waliser, , and J. H. Jiang, 2011: Correction to “Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations.” Geophys. Res. Lett., 38, L24807, doi:10.1029/2011GL049956.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

  • Li, J.-L. F., , D. E. Waliser, , G. Stephens, , S. Lee, , T. L’Ecuyer, , S. Kato, , N. Loeb, , and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res., 118, 8166–8184, doi:10.1002/jgrd.50378.

    • Search Google Scholar
    • Export Citation
  • Lin, W. Y., , and M. H. Zhang, 2004: Evaluation of clouds and their radiative effects simulated by the NCAR Community Atmospheric Model against satellite observations. J. Climate, 17, 33023318, doi:10.1175/1520-0442(2004)017<3302:EOCATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , J. M. Lyman, , G. C. Johnson, , R. P. Allan, , D. R. Doelling, , T. Wong, , B. J. Soden, , and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., , M. Köhler, , J.-L. F. Li, , J. D. Farrara, , C. R. Mechoso, , R. M. Forbes, , and D. E. Waliser, 2012: Evaluation of an ice cloud parameterization based on a dynamical–microphysical lifetime concept using CloudSat observations and the ERA-Interim reanalysis. J. Geophys. Res., 117, D05210, doi:10.1029/2011JD016275.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Q. Zhang, , M. Vaughan, , R. Marchand, , G. Stephens, , C. Trepte, , and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , W. L. Smith Jr, , D. P. Garber, , J. K. Ayers, , and D. R. Doelling, 1994: Cloud properties derived from GOES-7 for spring 1994 ARM intensive observing period using version 1.0.0 of ARM satellite data analysis program. NASA Reference Publication 1366, 59 pp. [Available online at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.3023&rep=rep1&type=pdf.]

  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 4374–4400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Nam, C. C. W., , and J. Quaas, 2012: Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Climate, 25, 49754992, doi:10.1175/JCLI-D-11-00347.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14, 25402550, doi:10.1175/1520-0442(2001)014<2540:ITFEGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589 – 662. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter8.pdf.]

  • Rossow, W. B., , and Y. C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res., 100, 11671197, doi:10.1029/94JD02746.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , and D. Liu, 2009: Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite, and reanalysis data. J. Climate, 19, 153192, doi:10.1175/JCLI3612.1.

    • Search Google Scholar
    • Export Citation
  • Song, X., , G. J. Zhang, , and J.-L. F. Li, 2012: Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5. J. Climate, 25, 85688590, doi:10.1175/JCLI-D-11-00563.1.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., , J. Delanoë, , and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice–cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 19521969, doi:10.1175/2011JAMC2646.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , J.-L. F. Li, , T. S. L’Ecuyer, , and W.-T. Chen, 2011: The impact of precipitating ice and snow on the radiation balance in global climate models. Geophys. Res. Lett., 38, L06802, doi:10.1029/2010GL046478.

    • Search Google Scholar
    • Export Citation
  • Webb, M., , C. Senior, , S. Bony, , and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, doi:10.1007/s003820100157.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee, , G. L. Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , K. Liou, , K. Wyser, , and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718, doi:10.1029/1999JD900755.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., , and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, doi:10.1175/2008JTECHA1221.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , S. A. Klein, , J. Boyle, , and G. G. Mace, 2010: Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data. J. Geophys. Res., 115, D12205, doi:10.1029/2009JD012006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 16
PDF Downloads 21 21 16

Characterizing and Understanding Cloud Ice and Radiation Budget Biases in Global Climate Models and Reanalysis

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The authors present an observationally based evaluation of the vertically resolved cloud ice water content (CIWC) and vertically integrated cloud ice water path (CIWP) as well as radiative shortwave flux downward at the surface (RSDS), reflected shortwave (RSUT), and radiative longwave flux upward at top of atmosphere (RLUT) of present-day global climate models (GCMs), notably twentieth-century simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), and compare these results to those of the third phase of the Coupled Model Intercomparison Project (CMIP3) and two recent reanalyses. Three different CloudSat and/or Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined ice water products and two methods are used to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate can be obtained for model evaluations.

The results show that, for annual mean CIWC and CIWP, there are factors of 2–10 (either over- or underestimate) in the differences between observations and models for a majority of the GCMs and for a number of regions. Most of the GCMs in CMIP3 and CMIP5 significantly underestimate the total ice water mass because models only consider suspended cloud mass, ignoring falling and convective core cloud mass. For the annual means of RSDS, RLUT, and RSUT, a majority of the models have significant regional biases ranging from −30 to 30 W m−2. Based on these biases in the annual means, there is virtually no progress in the simulation fidelity of RSDS, RLUT, and RSUT fluxes from CMIP3 to CMIP5, even though there is about a 50% bias reduction improvement of global annual mean CIWP from CMIP3 to CMIP5. It is concluded that at least a part of these persistent biases stem from the common GCM practice of ignoring the effects of precipitating and/or convective core ice and liquid in their radiation calculations.

Corresponding author address: J.-L. F. Li, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: juilin.f.li@jpl.nasa.gov

Abstract

The authors present an observationally based evaluation of the vertically resolved cloud ice water content (CIWC) and vertically integrated cloud ice water path (CIWP) as well as radiative shortwave flux downward at the surface (RSDS), reflected shortwave (RSUT), and radiative longwave flux upward at top of atmosphere (RLUT) of present-day global climate models (GCMs), notably twentieth-century simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), and compare these results to those of the third phase of the Coupled Model Intercomparison Project (CMIP3) and two recent reanalyses. Three different CloudSat and/or Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined ice water products and two methods are used to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate can be obtained for model evaluations.

The results show that, for annual mean CIWC and CIWP, there are factors of 2–10 (either over- or underestimate) in the differences between observations and models for a majority of the GCMs and for a number of regions. Most of the GCMs in CMIP3 and CMIP5 significantly underestimate the total ice water mass because models only consider suspended cloud mass, ignoring falling and convective core cloud mass. For the annual means of RSDS, RLUT, and RSUT, a majority of the models have significant regional biases ranging from −30 to 30 W m−2. Based on these biases in the annual means, there is virtually no progress in the simulation fidelity of RSDS, RLUT, and RSUT fluxes from CMIP3 to CMIP5, even though there is about a 50% bias reduction improvement of global annual mean CIWP from CMIP3 to CMIP5. It is concluded that at least a part of these persistent biases stem from the common GCM practice of ignoring the effects of precipitating and/or convective core ice and liquid in their radiation calculations.

Corresponding author address: J.-L. F. Li, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: juilin.f.li@jpl.nasa.gov
Save