• Chang, C. P., , and H. Lim, 1988: Kelvin-wave CISK: A possible mechanism for the 30-50 day oscillations. J. Atmos. Sci., 45, 17091720, doi:10.1175/1520-0469(1988)045<1709:KWCAPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., , and S. J. Lin, 1994: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. J. Atmos. Sci., 51, 12821297, doi:10.1175/1520-0469(1994)051<1282:TIOSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , and R. A. Houze, 1997: Interannual variability of deep convection over the tropical warm pool. J. Geophys. Res., 102, 25 78325 795, doi:10.1029/97JD02238.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879, doi:10.1175/1520-0469(1988)045<3846:NSOAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy.Meteor.Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulation: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298, doi:10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468, doi:10.1002/qj.49712757211.

    • Search Google Scholar
    • Export Citation
  • Gray, W., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y.-Y., , and A. Sumi, 1986: The 30–40 day oscillations simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64 (4), 451467.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y.-Y., , and T. Nakazawa, 1989: Evidence of the existence and eastward motion of superclusters at the equator. Mon. Wea. Rev., 117, 236243, doi:10.1175/1520-0493(1989)117<0236:EOTEAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., , and M. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall–line system. Mon. Wea. Rev., 105, 15401567, doi:10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Julian, P. R., , and R. A. Madden, 1981: Comments on a paper by T. Yasunari, A quasi-stationary appearance of 30 to 40-day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 59, 435437.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , T. Nakazawa, , and C. H. Sui, 1991: Observations of cloud cluster hierarchies over the tropical western Pacific. J. Geophys. Res., 96, 31973208, doi:10.1029/90JD01830.

    • Search Google Scholar
    • Export Citation
  • Lestari, R. K., , and T. Iwasaki, 2006: A GCM study on the roles of the seasonal marches of the SST and land-sea thermal contrast in the onset of the Asian summer monsoon. J. Meteor. Soc. Japan, 84, 6983, doi:10.2151/jmsj.84.69.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2442.

  • Matsuno, T., , M. Satoh, , H. Tomita, , T. Nasuno, , S. I. Iga, , A. T. Noda, , and K. Oouchi, 2011: Cloud-cluster-resolving global atmosphere modelling—A challenge for the new age of tropical meteorology. The Global Monsoon System: Research and Forecast, 2nd ed., C.-P. Chang et al., Eds., 455–473.

  • McBride, J. L., , N. E. Davidson, , K. Puri, , and G. C. Tyrell, 1995: The flow during TOGA COARE as diagnosed by the BMRC tropical analysis and prediction system. Mon. Wea. Rev., 123, 717736, doi:10.1175/1520-0493(1995)123<0717:TFDTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden-Julian oscillation event simulated using a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Miyahara, S., 1987: A simple model of the tropical intraseasonal oscillation. J. Meteor. Soc. Japan, 65, 341351.

  • Miyakawa, T., , Y. N. Takayabu, , T. Nasuno, , H. Miura, , M. Satoh, , and M. W. Moncrieff, 2012: Convective momentum transport by rainbands within a Madden–Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. J. Atmos. Sci., 69, 13171338, doi:10.1175/JAS-D-11-024.1.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538, doi:10.1175/1520-0469(2004)061<1521:AROTLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805827, doi:10.1002/qj.49712354002.

    • Search Google Scholar
    • Export Citation
  • Nakajima, K., , and T. Matsuno, 1988: Numerical experiments concerning the origin of cloud clusters in the tropical atmosphere. J. Meteor. Soc. Japan, 66, 309329.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data. J. Meteor. Soc. Japan, 64, 777786.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1995: Intraseasonal oscillation during TOGA-COARE IOP. J. Meteor. Soc. Japan, 73, 305319.

  • Nasuno, T., , H. Tomita, , S. Iga, , H. Miura, , and M. Satoh, 2007: Multiscale organization of convection simulated with explicit cloud processes on an aquaplanet. J. Atmos. Sci., 64, 19021921, doi:10.1175/JAS3948.1.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , K. Oouchi, , M. Satoh, , H. Tomita, , S. Iga, , and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217, doi:10.1016/j.atmosres.2009.05.007.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , and Y.-Y. Hayashi, 1991: Behavior of cumulus activity and the structures of circulations in an “aqua planet” model. Part I: The structure of the super clusters. J. Meteor. Soc. Japan, 69, 541561.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77, 907927.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , and M. Yamasaki, 1997: Kelvin wave-CISK controlled by surface friction; a possible mechanism of super cloud cluster. Part I: Linear theory. J. Meteor. Soc. Japan, 75, 497511.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , and M. Yamasaki, 2001: An MJO-like gravity wave and superclusters simulated in a two-dimensional cumulus-scale-resolving model. J. Meteor. Soc. Japan, 79, 201218, doi:10.2151/jmsj.79.201.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , A. T. Noda, , M. Satoh, , H. Miura, , H. Tomita, , T. Nasuno, , and S. Iga, 2009: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian Oscillation event in a global cloud-system-resolving model. SOLA, 5, 65–68, doi:10.2151/sola.2009-017.

  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, T., , H. Miura, , M. Satoh, , Y. N. Takayabu, , and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , H. Tomita, , H. Miura, , S. Iga, , and T. Nasuno, 2005: Development of a global cloud-resolving model—A multi-scale structure of tropical convections. J. Earth Simul., 3, 1119.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud-resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., , and K.-M. Lau, 1992: Multiscale phenomena in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120, 407430, doi:10.1175/1520-0493(1992)120<0407:MPITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1987: A theory of the slow phase speed of the intraseasonal oscillation using the Wave-CISK. J. Meteor. Soc. Japan, 65, 4349.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , and M. Murakami, 1991: The structure of super cloud clusters observed in 1–20 June 1986 and their relationship to easterly waves. J. Meteor. Soc. Japan, 69, 105125.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , K.-M. Lau, , and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takeda, T., 1971: Numerical simulation of a precipitating convective cloud: The formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350376, doi:10.1175/1520-0469(1971)028<0350:NSOAPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, H., , W. Yanase, , and M. Satoh, 2010: Ensemble simulation of Cyclone Nargis by a global cloud-system-resolving model—Modulation of cyclogenesis by the Madden-Julian oscillation. J. Meteor. Soc. Japan, 88, 571591, doi:10.2151/jmsj.2010-317.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , M. J. Miller, , and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, doi:10.1002/qj.49710845802.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , H. Miura, , S. Iga, , T. Nasuno, , and M. Satoh, 2005: A global cloud-resolving Simulation: Preliminary results from an aquaplanet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, doi:10.1175/2007JAS2353.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convective anomalies. Meteor. Atmos. Phys., 44, 4361, doi:10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1984: Dynamics of convective clouds and “CISK” in vertical shear flow—With its application to easterly waves and squall-line systems. J. Meteor. Soc. Japan, 62, 833863.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1988: Towards an understanding of the interaction between convection and the large-scale in the tropics. Aust. Meteor. Mag., 36, 171182.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., , and R. A. Houze, 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641661, doi:10.1175/1520-0493(1995)123<0641:MSLSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 5
PDF Downloads 3 3 1

A Synoptic-Scale Cold-Reservoir Hypothesis on the Origin of the Mature-Stage Super Cloud Cluster: A Case Study with a Global Nonhydrostatic Model

View More View Less
  • 1 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan
  • 2 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, and Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

This chapter proposes a working assumption as a way of conceptual simplification of the origin of Madden–Julian oscillation (MJO)-associated convection, or super cloud cluster (SCC). To develop the simplification, the importance of the synoptic-scale cold reservoir underlying the convection and its interaction with the accompanying zonal–vertical circulation is highlighted. The position of the convection with respect to that of climatological warm pool is postulated to determine the effectiveness of this framework. The authors introduce a prototype hypothesis to illustrate the usefulness of the above assumption based on a numerical simulation experiment with a global nonhydrostatic model for the boreal summer season.

Premises for the hypothesis include 1) that the cloud cluster (CC) is a basic building block of tropical convection accompanying the precipitation-generated cold reservoir in its subcloud layer and 2) that a warm-pool-induced quasi-persistent zonal circulation is key for the upscale organization of CCs. The theory of squall-line structure by Rotunno, Klemp, and Weisman (hereafter RKW) is employed for the interpretation. No account is taken regarding the influences of equatorial waves as a first-order approximation. Given the premises, an SCC of O(1000) km scale is interpretable as a gigantic analog of a multicellular squall line embedded in the quasi-stationary westerly shear branch of the zonal circulation east of the warm water pool. A CC corresponds to the “cell,” and its successive formation to the east and westward movement represents an upshear-tilting core of intense updraft. The upshear-tilted SCC is favorably maintained with the precipitating area being separated from the gust front boundary between the cold reservoir and a low-level easterly, which is supported in the realm of the RKW theory where two horizontal vortices associated with the cold reservoir and vertical shear are opposite in sign but cold reservoir’s vorticity can be inferred to be larger, leading to upshear-tilted and multicellular behavior. As a counterexample, CCs to the west of the warm pool (Indian Ocean and Arabian Sea) are embedded in the easterly shear and organized into a less coherent cloud cluster complex (CCC) given the situation of RKW where two horizontal vortices associated with the cold reservoir and vertical shear are still opposite in sign, but the smaller vertical shear west of the warm pool causes even more suboptimal vorticity imbalance in the western flank of cold reservoir, leading to larger tilt with height and intermittent, less viable storm situations.

A cold pool or cold reservoir, having been prevalent in mesoscale convection research, is argued to be important for the MJO as pointed out by the emerging evidence in the international field campaign for the MJO called Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO. The simplified and idealistic hypothesis proposed here does not cover all aspects of MJO and its validation awaits further modeling and observational studies, but it can offer a framework for characterizing a fundamental aspect of the origin of MJO-associated convection.

Corresponding author address: Dr. Kazuyoshi Oouchi, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: k-ouchi@jamstec.go.jp

Abstract

This chapter proposes a working assumption as a way of conceptual simplification of the origin of Madden–Julian oscillation (MJO)-associated convection, or super cloud cluster (SCC). To develop the simplification, the importance of the synoptic-scale cold reservoir underlying the convection and its interaction with the accompanying zonal–vertical circulation is highlighted. The position of the convection with respect to that of climatological warm pool is postulated to determine the effectiveness of this framework. The authors introduce a prototype hypothesis to illustrate the usefulness of the above assumption based on a numerical simulation experiment with a global nonhydrostatic model for the boreal summer season.

Premises for the hypothesis include 1) that the cloud cluster (CC) is a basic building block of tropical convection accompanying the precipitation-generated cold reservoir in its subcloud layer and 2) that a warm-pool-induced quasi-persistent zonal circulation is key for the upscale organization of CCs. The theory of squall-line structure by Rotunno, Klemp, and Weisman (hereafter RKW) is employed for the interpretation. No account is taken regarding the influences of equatorial waves as a first-order approximation. Given the premises, an SCC of O(1000) km scale is interpretable as a gigantic analog of a multicellular squall line embedded in the quasi-stationary westerly shear branch of the zonal circulation east of the warm water pool. A CC corresponds to the “cell,” and its successive formation to the east and westward movement represents an upshear-tilting core of intense updraft. The upshear-tilted SCC is favorably maintained with the precipitating area being separated from the gust front boundary between the cold reservoir and a low-level easterly, which is supported in the realm of the RKW theory where two horizontal vortices associated with the cold reservoir and vertical shear are opposite in sign but cold reservoir’s vorticity can be inferred to be larger, leading to upshear-tilted and multicellular behavior. As a counterexample, CCs to the west of the warm pool (Indian Ocean and Arabian Sea) are embedded in the easterly shear and organized into a less coherent cloud cluster complex (CCC) given the situation of RKW where two horizontal vortices associated with the cold reservoir and vertical shear are still opposite in sign, but the smaller vertical shear west of the warm pool causes even more suboptimal vorticity imbalance in the western flank of cold reservoir, leading to larger tilt with height and intermittent, less viable storm situations.

A cold pool or cold reservoir, having been prevalent in mesoscale convection research, is argued to be important for the MJO as pointed out by the emerging evidence in the international field campaign for the MJO called Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO. The simplified and idealistic hypothesis proposed here does not cover all aspects of MJO and its validation awaits further modeling and observational studies, but it can offer a framework for characterizing a fundamental aspect of the origin of MJO-associated convection.

Corresponding author address: Dr. Kazuyoshi Oouchi, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: k-ouchi@jamstec.go.jp
Save