• Biello, J. A., , and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721, doi:10.1175/JAS3455.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, doi:10.1175/2011JCLI3803.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1980: Estimation of nonlinear energy transfer spectra by the cross-spectral method. J. Atmos. Sci., 37, 299307, doi:10.1175/1520-0469(1980)037<0299:EONETS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Climate, 23, 38143834, doi:10.1175/2010JCLI2693.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28, 13421347, doi:10.1175/1520-0469(1971)028<1342:TEWCDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1979: Large-scale features of the tropical atmosphere. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 30–56.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and S. Gadgil, 1985: On the structure of the 30 to 50 day mode over the globe during FGGE. Tellus, 37A, 336360, doi:10.1111/j.1600-0870.1985.tb00432.x.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , D. R. Chakraborty, , N. Cubukcu, , L. Stefanova, , and T. S. V. Vijaya Kumar, 2003: A mechanism of the Madden–Julian oscillation based on interactions in the frequency domain. Quart. J. Roy. Meteor. Soc., 129, 25592590, doi:10.1256/qj.02.151.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1987: Origin of the low-frequency (intraseasonal) oscillation in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J., , B. Mapes, , M. Zhang, , and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, doi:10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

  • Liu, F., , and B. Wang, 2012a: A model for the interaction between the 2-day waves and moist Kelvin waves. J. Atmos. Sci., 69, 611625, doi:10.1175/JAS-D-11-0116.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , and B. Wang, 2012b: A frictional skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 69, 27492758, doi:10.1175/JAS-D-12-020.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , and B. Wang, 2013: Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden–Julian oscillation: A theoretical model study. Climate Dyn., 40, 213224, doi:10.1007/s00382-011-1281-0.

    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2009: An MJO simulated by the NICAM at 14- and 7-km resolutions. Mon. Wea. Rev., 137, 32543268, doi:10.1175/2009MWR2965.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. Publ. 218-TP-115, WMO, 161 pp.

  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and J. A. Biello, 2004: A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA, 101, 47364741, doi:10.1073/pnas.0401034101.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Manobianco, J., 1988: On the observational and numerical aspects of explosive East Coast cyclogenesis. Ph.D. thesis, Department of Meteorology, Florida State University, 361 pp.

  • Matsuno, T., 1966: Quasigeostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Moorthi, S., , and A. Arakawa, 1985: Baroclinic instability with cumulus heating. J. Atmos. Sci., 42, 20072031, doi:10.1175/1520-0469(1985)042<2007:BIWCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , C. Zhang, , M. W. Moncrieff, , J. Dudhia, , J. M. Caron, , L. R. Leung, , and C. Bruyere, 2010: The role of the mean state on the initiation of the Madden–Julian oscillation in a nested regional climate model. Climate Dyn., 36, 161–184, doi:10.1007/s00382-010-0859-2.

    • Search Google Scholar
    • Export Citation
  • Saltzman, B., 1970: Large-scale atmospheric energetic in the wave number domain. Rev. Geophys., 8, 289302, doi:10.1029/RG008i002p00289.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., 1986: On the energetic of low frequency motions. Ph.D. dissertation, Florida State University, 171 pp.

  • Sheng, J., , and Y. Hayashi, 1990a: Observed and simulated energy cycles in the frequency domain. J. Atmos. Sci., 47, 12431254, doi:10.1175/1520-0469(1990)047<1243:OASECI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , and Y. Hayashi, 1990b: Estimation of atmospheric energetics in the frequency domain during the FGGE year. J. Atmos. Sci., 47, 12551268, doi:10.1175/1520-0469(1990)047<1255:EOAEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423446, doi:10.1007/s00382-003-0337-1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, doi:10.1175/2008JCLI2731.1.

  • Wang, B., , and F. Liu, 2011: A model for scale interaction in the Madden–Julian oscillation. J. Atmos. Sci., 68, 25242536, doi:10.1175/2011JAS3660.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , F. Huang, , Z. Wu, , J. Yang, , X. Fu, , and K. Kikuchi, 2009: Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans, 47, 1537, doi:10.1016/j.dynatmoce.2008.09.004.

    • Search Google Scholar
    • Export Citation
  • Yu, W., , W. Han, , E. D. Maloney, , D. Gochis, , and S.-P. Xie, 2011: Observations of eastward propagation of atmospheric intraseasonal oscillations from the Pacific to the Atlantic. J. Geophys. Res., 116, D02101, doi:10.1029/2010JD014336.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., , and R. A. Houze Jr., 2013: Deep convective systems observed by A-Train in the tropical Indo-Pacific region affected by the MJO. J. Atmos Sci., 70, 465–486, doi:10.1175/JAS-D-12-057.1.

  • Zhang, C., and Coauthors, 2010: MJO signals in latent heating: Results from TRMM retrievals. J. Atmos. Sci., 67, 34883508, doi:10.1175/2010JAS3398.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 4
PDF Downloads 5 5 2

A Mechanism of the MJO Invoking Scale Interactions

View More View Less
  • 1 Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

This chapter distinguishes the mechanism of tropical convective disturbances, such as a hurricane, from that of the Madden–Julian oscillation (MJO). The hurricane is maintained by organized convection around the azimuth. In a hurricane the organization of convection, the generation of eddy available potential energy, and the transformation of eddy available potential energy into eddy kinetic energy all occur on the scale of the hurricane and these are called “in-scale processes,” which invoke quadratic nonlinearity. The MJO is not a hurricane type of disturbance; organized convection simply does not drive an MJO in the same manner. The maintenance of the MJO is more akin to a multibody problem where the convection is indeed organized on scales of tropical synoptic disturbances that carry a similar organization of convection and carry similar roles for the generation of eddy available potential energy and its conversion to the eddy kinetic energy for their maintenance. The maintenance of the MJO is a scale interaction problem that comes next, where pairs of synoptic-scale disturbances are shown to interact with a member of the MJO time scale, thus contributing to its maintenance. This chapter illustrates the organization of convection, synoptic-scale energetics, and nonlinear scale interactions to show the above aspects for the mechanism of the MJO.

Corresponding author address: T. N. Krishnamurti, Department of Earth, Ocean and Atmospheric Science, Florida State University, 430 Love Building, Academic Way, Tallahassee, FL 32310. E-mail: tkrishnamurti@fsu.edu

This chapter distinguishes the mechanism of tropical convective disturbances, such as a hurricane, from that of the Madden–Julian oscillation (MJO). The hurricane is maintained by organized convection around the azimuth. In a hurricane the organization of convection, the generation of eddy available potential energy, and the transformation of eddy available potential energy into eddy kinetic energy all occur on the scale of the hurricane and these are called “in-scale processes,” which invoke quadratic nonlinearity. The MJO is not a hurricane type of disturbance; organized convection simply does not drive an MJO in the same manner. The maintenance of the MJO is more akin to a multibody problem where the convection is indeed organized on scales of tropical synoptic disturbances that carry a similar organization of convection and carry similar roles for the generation of eddy available potential energy and its conversion to the eddy kinetic energy for their maintenance. The maintenance of the MJO is a scale interaction problem that comes next, where pairs of synoptic-scale disturbances are shown to interact with a member of the MJO time scale, thus contributing to its maintenance. This chapter illustrates the organization of convection, synoptic-scale energetics, and nonlinear scale interactions to show the above aspects for the mechanism of the MJO.

Corresponding author address: T. N. Krishnamurti, Department of Earth, Ocean and Atmospheric Science, Florida State University, 430 Love Building, Academic Way, Tallahassee, FL 32310. E-mail: tkrishnamurti@fsu.edu
Save