• Arakawa, A., 1969: Parameterization of cumulus clouds. Proc. WMO/IUGG Symp. on Numerical Weather Prediction, Tokyo, Japan, Japan Meteorological Agency, IV-8-1–IV-8-6.

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and J.-H. Jung, 2011: Multiscale modeling of the moist-convective atmosphere—A review. Atmos. Res., 102, 263285, doi:10.1016/j.atmosres.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , J.-H. Jung, , and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39, 14841505, doi:10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • E, W., , B. Engquist, , X. Li, , W. Ren, , and E. Vanden-Eijnden, 2007: Heterogeneous multiscale methods: A review. Commun. Comput. Phys., 2, 367450.

    • Search Google Scholar
    • Export Citation
  • E, W., , W. Ren, , and E. Vanden-Eijnden, 2009: A general strategy for designing seamless multiscale methods. J. Comput. Phys., 228, 54375453, doi:10.1016/j.jcp.2009.04.030.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1993: A hybrid parameterization with multiple closures. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 151–154.

  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with the meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, doi:10.1002/qj.58.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convective parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convective parameterization for modeling the tropical convective atmosphere. Physica D, 133, 171178, doi:10.1016/S0167-2789(99)00104-9.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , X. Wu, , M. W. Moncrieff, , and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282, doi:10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , R. Kershaw, , and P. M. Inness, 1997: Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183, doi:10.1002/qj.49712354103.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , P. E. Ciesielski, , and T. M. Rickenbach, 2016: A further look at Q1 and Q2 from TOGA COARE. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0002.1.

  • Jung, J.-H., , and A. Arakawa, 2004: The resolution dependence of model physics: Illustrations from nonhydrostatic model experiments. J. Atmos. Sci., 61, 88102, doi:10.1175/1520-0469(2004)061<0088:TRDOMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., , and A. Arakawa, 2005: A preliminary test of multiscale modeling with a two-dimensional framework: Sensitivity to coupling methods. Mon. Wea. Rev., 133, 649662, doi:10.1175/MWR-2878.1.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., , and A. Arakawa, 2008: A three-dimensional anelastic model based on the vorticity equation. Mon. Wea. Rev., 136, 276294, doi:10.1175/2007MWR2095.1.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., , and A. Arakawa, 2010: Development of a quasi-3D multiscale modeling framework: Motivation, basic algorithm and preliminary results. J. Adv. Model. Earth Syst., 2 (4), doi:10.3894/JAMES.2010.2.11.

  • Jung, J.-H., , and A. Arakawa, 2014: Modeling of the moist-convective atmosphere with a quasi-3-D multiscale modeling framework (Q3D MMF). J. Adv. Model. Earth Syst., 6, 185205, doi:10.1002/2013MS000295.

    • Search Google Scholar
    • Export Citation
  • Kevrekidis, I. G., , C. W. Gear, , J. M. Hyman, , P. G. Kevrekidis, , O. Runborg, , and C. Theodoropoulos, 2003: Equation-free multiscale computation: Enabling microscopic simulators to perform system-level tasks. Commun. Math. Sci., 1, 715762, doi:10.4310/CMS.2003.v1.n4.a5.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2001: A cloud-resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, doi:10.1029/2001GL013552.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834, doi:10.1175/1520-0469(1983)040<1815:MTBALO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , G. M. Barnes, , and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41, 19141932, doi:10.1175/1520-0469(1984)041<1914:MFBLOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., , P. G. Kevrekidis, , C. W. Gear, , and I. G. Kevrekidis, 2007: Deciding the nature of the coarse equation through microscopic simulations: The baby–bathwater scheme. SIAM Rev., 49, 469487, doi:10.1137/070692303.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., 1993: An overview of cumulus parameterization in mesoscale models. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 155–158.

  • Molinari, J., , and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344, doi:10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950, doi:10.1002/qj.49710745103.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, doi:10.1002/qj.49711850703.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , and M. Satoh, 2016: A synoptic-scale cold-reservoir hypothesis on the origin of the mature-stage super cloud cluster: A case study with a global nonhydrostatic model. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0008.1.

  • Randall, D. A., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003: Breaking the cloud parametrization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , C. DeMott, , C. Stan, , M. Khairoutdinov, , J. Benedict, , R. McCrary, , K. Thayer-Calder, , and M. Branson, 2016: Simulations of the tropical general circulation with a multiscale global model. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSM-D-15-0016.1.

  • Sato, T., , H. Miura, , M. Satoh, , Y. N. Takayabu, , and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , J. Simpson, , and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44, 31753187, doi:10.1175/1520-0469(1987)044<3175:SPOACE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., , and A. Arakawa, 2014: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J. Atmos. Sci., 71, 2089–2103, doi:10.1175/JAS-D-13-0382.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., , and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, doi:10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data. Quart. J. Roy. Meteor. Soc., 128, 593624, doi:10.1256/003590002321042117.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1961: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

  • Yanai, M., , S. Esbensen, , and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 7
PDF Downloads 7 7 2

Multiscale Modeling of the Moist-Convective Atmosphere

View More View Less
  • 1 University of California, Los Angeles, Los Angeles, California
  • 2 Colorado State University, Fort Collins, Colorado
  • 3 National Taiwan University, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

One of the most important contributions of Michio Yanai to tropical meteorology is the introduction of the concepts of apparent heat source Q1 and apparent moisture sink Q2 in the large-scale heat and moisture budgets of the atmosphere. Through the inclusion of unresolved eddy effects, the vertical profiles of apparent sources (and sinks) are generally quite different from those of true sources taking place locally. In low-resolution models, such as the conventional general circulation models (GCMs), cumulus parameterization is supposed to determine the apparent sources for each grid cell from the explicitly predicted grid-scale processes. Because of the recent advancement of computer technology, however, increasingly higher horizontal resolutions are being used even for studying the global climate, and, therefore, the concept of apparent sources must be expanded rather drastically. Specifically, the simulated apparent sources should approach and eventually converge to the true sources as the horizontal resolution is refined. For this transition to take place, the conventional cumulus parameterization must be either generalized so that it is applicable to any horizontal resolutions or replaced with the mean effects of cloud-scale processes explicitly simulated by a cloud-resolving model (CRM). These two approaches are called ROUTE I and ROUTE II for unifying low- and high-resolution models, respectively. This chapter discusses the conceptual and technical problems in exploring these routes and reviews the authors’ recent work on these subjects.

Publisher’s Note: This chapter was revised on 5 December 2016 to correct a slight error in the title of this volume as presented in the references.

Corresponding author address: Akio Arakawa, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 540 Euclid St., Santa Monica, CA 90402. E-mail: aar@atmos.ucla.edu

Abstract

One of the most important contributions of Michio Yanai to tropical meteorology is the introduction of the concepts of apparent heat source Q1 and apparent moisture sink Q2 in the large-scale heat and moisture budgets of the atmosphere. Through the inclusion of unresolved eddy effects, the vertical profiles of apparent sources (and sinks) are generally quite different from those of true sources taking place locally. In low-resolution models, such as the conventional general circulation models (GCMs), cumulus parameterization is supposed to determine the apparent sources for each grid cell from the explicitly predicted grid-scale processes. Because of the recent advancement of computer technology, however, increasingly higher horizontal resolutions are being used even for studying the global climate, and, therefore, the concept of apparent sources must be expanded rather drastically. Specifically, the simulated apparent sources should approach and eventually converge to the true sources as the horizontal resolution is refined. For this transition to take place, the conventional cumulus parameterization must be either generalized so that it is applicable to any horizontal resolutions or replaced with the mean effects of cloud-scale processes explicitly simulated by a cloud-resolving model (CRM). These two approaches are called ROUTE I and ROUTE II for unifying low- and high-resolution models, respectively. This chapter discusses the conceptual and technical problems in exploring these routes and reviews the authors’ recent work on these subjects.

Publisher’s Note: This chapter was revised on 5 December 2016 to correct a slight error in the title of this volume as presented in the references.

Corresponding author address: Akio Arakawa, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 540 Euclid St., Santa Monica, CA 90402. E-mail: aar@atmos.ucla.edu
Save