• Abdul-Razzak, H., , and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2000: Future development of general circulation models. General Circulation Model Development: Past, Present, and Future, D. A. Randall, Ed., Academic Press, 721–780.

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: The interactions of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , J.-H. Jung, , and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206, doi:10.1016/0169-8095(94)90020-5.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, doi:10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1990: Greenhouse warming and the tropical water vapor budget. Bull. Amer. Meteor. Soc., 71, 14651467.

  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, 66B, 688694, doi:10.1088/0370-1301/66/8/309.

  • Borovikov, A. M., , I. I. Gaivoronskii, , V. V. Kostarev, , I. P. Mazin, , V. E. Minervin, , A. K. Khrgian, , and S. M. Shmeter, 1963: Cloud Physics. Israel Program for Scientific Translations, U.S. Department of Commerce, 392 pp.

  • Brenguier, J. L., , and W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136, doi:10.1175/1520-0469(1993)050<0120:CEACDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., , and R. R. Braham, 1949: The Thunderstorm Project. U.S. Weather Bureau, U.S. Department of Commerce Tech. Rep., 287 pp. [NTIS PB-234515.]

  • Cheng, M.-D., , and A. Arakawa, 1997: Inclusion of rainwater budget and convective downdrafts in the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci., 54, 13591378, doi:10.1175/1520-0469(1997)054<1359:IORBAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , G. J. Tripoli, , R. M. Rauber, , and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680, doi:10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61, 20632072, doi:10.1175/1520-0469(2004)061<2063:HDFITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906, doi:10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and R. T. Pierrehumbert, 1996: Microphysical and dynamical control of tropospheric water vapor. Clouds, Chemistry and Climate, P. J. Crutzen and V. Ramanathan, Eds., NATO ASI Series, Vol. 135, Springer-Verlag, 17–28.

  • Fan, J., , R. Zhang, , G. Li, , and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, doi:10.1029/2006JD008136.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , L. R. Leung, , Z. Li, , H. Morrison, , H. Chen, , Y. Zhou, , Y. Qian, , and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, doi:10.1029/2011JD016537.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. K. Krueger, , and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 13101328, doi:10.1175/1520-0469(1995)052<1310:IORACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , M. Baker, , and D. L. Hartmann, 2002: Tropical cirrus and water vapor: An effective Earth infrared iris feedback? Atmos. Chem. Phys., 2, 3137, doi:10.5194/acp-2-31-2002.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , R. Kershaw, , and P. M. Innes, 1997: Parameterization of momentum transport by convection. II: Tests in single column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183, doi:10.1002/qj.49712354103.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., , and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and M. L. Michelsen, 2002: No evidence for Iris. Bull. Amer. Meteor. Soc., 83, 249254, doi:10.1175/1520-0477(2002)083<0249:NEFI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , P. R. Field, , S. L. Durden, , J. L. Stith, , J. E. Dye, , W. Hall, , and C. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, J. M., , L. Tian, , A. J. Heymsfield, , L. Li, , and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, doi:10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., , and K. Saito, 1990: Description of the nonhydrostatic model developed at the Forecast Research Department of the MRI. Meteorological Research Institute MRI Tech. Rep. 28, 238 pp., doi:10.11483/mritechrepo.28. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_28/28_en.html.]

  • Johnson, R. H., , and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308319, doi:10.1175/1520-0493(1983)111<0308:ACAOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khain, A., , D. Rosenfeld, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , N. BenMoshe, , and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. B. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311150, doi:10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., , and W. R. Cotton, 1985: Convective cloud downdraft structure: An interpretive survey. Rev. Geophys., 23, 183215, doi:10.1029/RG023i002p00183.

    • Search Google Scholar
    • Export Citation
  • Koren, I., , Y. J. Kaufman, , D. Rosenfeld, , L. A. Remer, , and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., , and W. H. Raymond, 1980: A quasi-one-dimensional cumulus cloud model and parametrization of cumulus heating and mixing effects. Mon. Wea. Rev., 108, 9911009, doi:10.1175/1520-0493(1980)108<0991:AQODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., , and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Lasher-Trapp, S. G., , W. A. Cooper, , and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, doi:10.1256/qj.03.199.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 24442457, doi:10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., , B. Rockel, , H. Kapitza, , and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Atmos., 65, 3558.

    • Search Google Scholar
    • Export Citation
  • Li, Z., , F. Niu, , J. Fan, , Y. Liu, , D. Rosenfeld, , and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, doi:10.1038/ngeo1313.

    • Search Google Scholar
    • Export Citation
  • Lin, B., , B. A. Wielicki, , L. H. Chambers, , Y. Hu, , and K.-M. Xu, 2002: The Iris hypothesis: A negative or positive cloud feedback? J. Climate, 15, 37, doi:10.1175/1520-0442(2002)015<0003:TIHANO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288299, doi:10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , M.-D. Chou, , and A. Y. Hou, 2001: Does the Earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82, 417432, doi:10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , J. E. Penner, , S. Ghan, , and M. Wang, 2007: Inclusion of ice microphysics in the NCAR Community Atmospheric Model version 3 (CAM3). J. Climate, 20, 45264547, doi:10.1175/JCLI4264.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2008: Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys., 8, 21152131, doi:10.5194/acp-8-2115-2008.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , P. Stier, , C. Hoose, , S. Ferrachat, , S. Kloster, , E. Roechner, , and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys., 7, 34253446, doi:10.5194/acp-7-3425-2007.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with large-scale environment. Part III: Semi-prognostic test of the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci., 39, 88103, doi:10.1175/1520-0469(1982)039<0088:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , E. Zipser, , and M. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, doi:10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , J. Smagorinsky, , and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93, 769798, doi:10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and A. J. Heymsfield, 1996: Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , P. J. DeMott, , and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, doi:10.1175/2007JAS2374.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2005: Anvil glaciation in a deep cumulus updraught over Florida simulated with an explicit microphysics model. I: Impact of various nucleation processes. Quart. J. Roy. Meteor. Soc., 131, 20192046, doi:10.1256/qj.04.85.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., , L. J. Donner, , and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761, doi:10.1175/JAS3869.1.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533, doi:10.1256/003590002321042072.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., , A. Khain, , R. S. Maheshkumar, , G. Pandithurai, , J. R. Kulkarni, , M. Konwar, , and B. N. Goswami, 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 18821901, doi:10.1175/2011JAS3707.1.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., and Coauthors, 2012: Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. J. Geophys. Res., 117, D20205, doi:10.1029/2011JD016837.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 997 pp.

  • Ramanathan, V., , and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, doi:10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Harshvardhan, , D. A. Dazlich, , and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, doi:10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rennó, N. O., , K. A. Emanuel, , and P. H. Stone, 1994: Radiative-convective model with an explicit hydrologic cycle: 1. Formulation and sensitivity to model parameters. J. Geophys. Res., 99, 14 42914 441, doi:10.1029/94JD00020.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, doi:10.1029/1999GL006066.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, doi:10.1038/35013030.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , U. Lohmann, , G. B. Raga, , C. D. O’Dowd, , M. Kulmala, , S. Fuzzi, , A. Reissell, , and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 31583161, doi:10.1029/JC081i018p03158.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., , and A. Sinha, 1991: Sensitivity of the Earth’s climate to height-dependent changes in the water vapour mixing ratio. Nature, 354, 382384, doi:10.1038/354382a0.

    • Search Google Scholar
    • Export Citation
  • Slawinska, J., , W. W. Grabowski, , H. Pawlowska, , and H. Morrison, 2012: Droplet activation and mixing in large-eddy simulation of a shallow cumulus field. J. Atmos. Sci., 69, 444462, doi:10.1175/JAS-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Song, X., , and G. J. Zhang, 2011: Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. J. Geophys. Res., 116, D02201, doi:10.1029/2010JD014833.

    • Search Google Scholar
    • Export Citation
  • Song, X., , G. J. Zhang, , and J.-L. F. Li, 2012: Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5. J. Climate, 25, 85688590, doi:10.1175/JCLI-D-11-00563.1.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Part I—The relation between structure and stability. Tellus, 10A, 256261, doi:10.1111/j.2153-3490.1958.tb02011.x.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , S. van den Heever, , and L. Pakula, 2008: Radiative–convective feedbacks in idealized states of radiative–convective equilibrium. J. Atmos. Sci., 65, 38993916, doi:10.1175/2008JAS2524.1.

    • Search Google Scholar
    • Export Citation
  • Su, C.-W., , S. K. Krueger, , P. A. McMurtry, , and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158, doi:10.1016/S0169-8095(98)00039-8.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , and G. K. Walker, 1999: Microphysics of clouds with the Relaxed Arakawa–Schubert Scheme (McRAS). Part I: Design and evaluation with GATE Phase III data. J. Atmos. Sci., 56, 31963220, doi:10.1175/1520-0469(1999)056<3196:MOCWTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization of non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, doi:10.1002/qj.49710444110.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically Based Modelling and Simulation of Climate and Climatic Change, M. E. Schlesinger, Ed., Reidel, 433–461.

  • Sundqvist, H., , E. Berge, , and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657, doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , X. Li, , A. Khain, , T. Matsui, , S. Lang, , and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , J.-P. Chen, , Z. Li, , C. Wang, , and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 504 pp.

  • Warner, J., 1969: The microstructure of cumulus cloud. Part II: The effect on droplet size distribution of the cloud nucleus spectrum and updraft velocity. J. Atmos. Sci., 26, 12721282, doi:10.1175/1520-0469(1969)026<1272:TMOCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , C. S. Bretherton, , D. Leon, , A. D. Clarke, , P. Zuidema, , G. Allen, , and H. Coe, 2011: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection. Atmos. Chem. Phys., 11, 23412370, doi:10.5194/acp-11-2341-2011.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., 1995: Partitioning mass, heat, and moisture budgets of explicitly simulated cumulus ensembles into convective and stratiform components. J. Atmos. Sci., 52, 551573, doi:10.1175/1520-0469(1995)052<0551:PMHAMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119, 342367, doi:10.1175/1520-0493(1991)119<0342:EOCPUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58, 16301649, doi:10.1175/1520-0469(2001)058<1630:UADSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H. R. Cho, 1991a: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492, doi:10.1175/1520-0469(1991)048<1483:POTVTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H. R. Cho, 1991b: Parameterization of the vertical transport of momentum by cumulus clouds. Part II: Application. J. Atmos. Sci., 48, 24482457, doi:10.1175/1520-0469(1991)048<2448:POTVTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995a: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995b: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426, doi:10.1029/94JD02519.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. H., , U. Lohmann, , and P. Stier, 2005: A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J. Geophys. Res., 110, D15S07, doi:10.1029/2004JD005128.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , M. J. Meitin, , and M. A. LeMone, 1981: Mesoscale motion fields associated with a slow moving GATE convective band. J. Atmos. Sci., 38, 17251750, doi:10.1175/1520-0469(1981)038<1725:MMFAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 24
PDF Downloads 37 37 21

Parameterization of Microphysical Processes in Convective Clouds in Global Climate Models

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

The microphysical processes inside convective clouds play an important role in climate. They directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts. The detrained water substance in turn affects the anvil cloud formation, upper-tropospheric water vapor distribution, and thus the atmospheric radiation budget. In global climate models, convective parameterization schemes have not explicitly represented microphysics processes in updrafts until recently. In this paper, the authors provide a review of existing schemes for convective microphysics parameterization. These schemes are broadly divided into three groups: tuning-parameter-based schemes (simplest), single-moment schemes, and two-moment schemes (most comprehensive). Common weaknesses of the tuning-parameter-based and single-moment schemes are outlined. Examples are presented from one of the two-moment schemes to demonstrate the performance of the scheme in simulating the hydrometeor distribution in convection and its representation of the effect of aerosols on convection.

Corresponding author address: Guang J. Zhang, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093. E-mail: gzhang@ucsd.edu

Abstract

The microphysical processes inside convective clouds play an important role in climate. They directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts. The detrained water substance in turn affects the anvil cloud formation, upper-tropospheric water vapor distribution, and thus the atmospheric radiation budget. In global climate models, convective parameterization schemes have not explicitly represented microphysics processes in updrafts until recently. In this paper, the authors provide a review of existing schemes for convective microphysics parameterization. These schemes are broadly divided into three groups: tuning-parameter-based schemes (simplest), single-moment schemes, and two-moment schemes (most comprehensive). Common weaknesses of the tuning-parameter-based and single-moment schemes are outlined. Examples are presented from one of the two-moment schemes to demonstrate the performance of the scheme in simulating the hydrometeor distribution in convection and its representation of the effect of aerosols on convection.

Corresponding author address: Guang J. Zhang, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093. E-mail: gzhang@ucsd.edu
Save