• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., , Z. Kuang, , and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, doi:10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296, doi:10.1175/2009JAS3030.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2011: Impacts of idealized air–sea coupling on Madden–Julian oscillation structure in the superparameterized CAM. J. Atmos. Sci., 68, 19902008, doi:10.1175/JAS-D-11-04.1.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., , A. Gettelman, , H. Morrison, , V. E. Larson, , D. P. Schanen, , N. R. Meyer, , and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., , A. Gettelman, , H. Morrison, , V. E. Larson, , C. Craig, , and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, doi:10.1175/JCLI-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., , and K.-M. Xu, 2011: Improved low-cloud simulation from a multiscale modeling framework with a third-order turbulence closure in its cloud-resolving model component. J. Geophys. Res., 116, D14101, doi:10.1029/2010JD015362.

  • Cheng, A., , and K.-M. Xu, 2013: Evaluating low cloud simulation from an upgraded multiscale modeling framework model. Part III: Tropical and subtropical cloud transitions over the northern Pacific. J. Climate, 26, 57615781, doi:10.1175/JCLI-D-12-00650.1.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., , and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193, doi:10.1175/2010JAS3316.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Cox, S. K., , D. McDougal, , D. A. Randall, , and R. A. Schiffer, 1987: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, doi:10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • DeMott, C. A., , C. Stan, , D. A. Randall, , J. L. Kinter III, , and M. Khairoutdinov, 2011: The Asian monsoon in the Super-Parameterized CCSM and its relation to tropical wave activity. J. Climate, 24, 51345156, doi:10.1175/2011JCLI4202.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., , C. Stan, , and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim reanalysis and SP-CCSM. J. Climate, 26, 19731992, doi:10.1175/JCLI-D-12-00191.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., , C. Stan, , D. A. Randall, , and M. Branson, 2014: Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27, 49704994, doi:10.1175/JCLI-D-13-00760.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J.-Y. Grandpeix, , J.-M. Piriou, , J. L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2011: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399–418, doi:10.1007/s00382-011-1127-9.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, doi:10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convective atmosphere. Physica D, 133, 171178, doi:10.1016/S0167-2789(99)00104-9.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 5372, doi:10.1002/qj.49712757104.

    • Search Google Scholar
    • Export Citation
  • He, H., , J. W. McGinnis, , Z. Song, , and M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115, 19661995, doi:10.1175/1520-0493(1987)115<1966:OOTASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , D. Lüthi, , and C. Schär, 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134, 20952107, doi:10.1175/MWR3176.1.

    • Search Google Scholar
    • Export Citation
  • Hung, C.-W., , X. Liu, , and M. Yanai, 2004: Symmetry and asymmetry of the Asian and Australian summer monsoons. J. Climate, 17, 24132426, doi:10.1175/1520-0442(2004)017<2413:SAAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, doi:10.1029/2001GL013552.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud-resolving modeling of ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , D. A. Randall, , and C. A. DeMott, 2005: Simulation of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., , M. S. Pritchard, , and R. C. J. Somerville, 2013: Robustness and sensitivities of central U.S. summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophys. Res. Lett., 40, 32873291, doi:10.1002/grl.50597.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, C., , and A. Arakawa, 1997a: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 10271043, doi:10.1175/1520-0469(1997)054<1027:TMEPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, C., , and A. Arakawa, 1997b: The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54, 10441053, doi:10.1175/1520-0469(1997)054<1044:TMEPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922944, doi:10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, J., , and G. L. Stephens, 2006: An enhanced convection–wind–evaporation feedback in a superparameterization GCM (SP-GCM) depiction of the Asian summer monsoon. Geophys. Res. Lett., 33, L06707, doi:10.1029/2005GL025060.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCrary, R. R., 2012: Seasonal, synoptic and intraseasonal variability of the West African monsoon. Ph.D. dissertation, Colorado State University, 160 pp.

  • Morrison, H., , and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, doi:10.1175/JAS3980.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, doi:10.1175/2007JAS2491.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , and B. Stevens, 2009: Monte Carlo spectral integration: A consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., , and R. C. J. Somerville, 2009a: Empirical orthogonal function analysis of the diurnal cycle of precipitation in a multi-scale climate model. Geophys. Res. Lett., 36, L05812, doi:10.1029/2008GL036964.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., , and R. C. J. Somerville, 2009b: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst., 1 (12), doi:10.3894/JAMES.2009.1.12.

  • Pritchard, M. S., , M. W. Moncrieff, , and R. C. J. Somerville, 2011: Orogenic propagating precipitation systems over the United States in a global climate model with embedded explicit convection. J. Atmos. Sci., 68, 18211840, doi:10.1175/2011JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 2013: Beyond deadlock. Geophys. Res. Lett., 40, 5970–5976, doi:10.1002/2013GL057998.

  • Randall, D. A., , K.-M. Xu, , R. J. C. Somerville, , and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9, 16831697, doi:10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003a: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2003b: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84, 455469, doi:10.1175/BAMS-84-4-455.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., , K. Barthel, , and K. Hasselmann, 1988: Coupled ocean–atmosphere models with flux correction. Climate Dyn., 2, 145163, doi:10.1007/BF01053472.

    • Search Google Scholar
    • Export Citation
  • Stan, C., 2012: Is cumulus convection the concertmaster of tropical cyclone activity in the Atlantic? Geophys. Res. Lett., 39, L19716, doi:10.1029/2012GL053449.

    • Search Google Scholar
    • Export Citation
  • Stan, C., , and L. Xu, 2014: Climate simulations and projections with a super-parameterized climate model. Environ. Modell. Softw., 60, 134152, doi:10.1016/j.envsoft.2014.06.013.

    • Search Google Scholar
    • Export Citation
  • Stan, C., , M. Khairoutdinov, , C. A. DeMott, , V. Krishnamurthy, , D. M. Straus, , D. A. Randall, , J. L. Kinter III, , and J. Shukla, 2010: An ocean–atmosphere climate simulation with an embedded cloud resolving model. Geophys. Res. Lett., 37, L01702, doi:10.1029/2009GL040822.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., , and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2009: A multi-scale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 515534, doi:10.1175/2008BAMS2542.1.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., , and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312, doi:10.1175/2009JAS3081.1.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , H. Miura, , S. Iga, , T. Nasuno, , and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , M. Khairoutdinov, , and C. S. Bretherton, 2006: Climate sensitivity and cloud response of a GCM with a superparameterization. Geophys. Res. Lett., 33, L06714, doi:10.1029/2005GL025464.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , P. N. Blossey, , and M. Khairoutdinov, 2012: Fast cloud adjustment to increasing CO2 in a superparameterized climate model. J. Adv. Model. Earth Syst., 4, M05001, doi:10.1029/2011MS000092.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and A. Cheng, 2013a: Evaluating low-cloud simulation with an upgraded multiscale modeling framework model. Part I: Sensitivity to spatial resolution and climatology. J. Climate, 26, 57175740, doi:10.1175/JCLI-D-12-00200.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and A. Cheng, 2013b: Evaluating low-cloud simulation with an upgraded multiscale modeling framework model. Part II: Seasonal variations over the eastern Pacific. J. Climate, 26, 57415760, doi:10.1175/JCLI-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., , D. A. Randall, , and M. Khairoutdinov, 2011: Cloud modeling tests of the ULTIMATE-MACHO scalar advection scheme. Mon. Wea. Rev., 139, 32483264, doi:10.1175/MWR-D-10-05044.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and C. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305323, doi:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 10
PDF Downloads 11 11 6

Simulations of the Tropical General Circulation with a Multiscale Global Model

View More View Less
  • 1 * Colorado State University, Fort Collins, Colorado
  • 2 George Mason University, Fairfax, Virginia
  • 3 Stony Brook University, Stony Brook, New York
  • 4 Lawrence Berkeley National Laboratory, Berkeley, California
  • 5 ** NCAR, Boulder, Colorado
  • 6 University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
© Get Permissions
Restricted access

Abstract

Cloud processes play a central role in the dynamics of the tropical atmosphere, but for many years the shortcomings of cloud parameterizations have limited our ability to simulate and understand important tropical weather systems such as the Madden–Julian oscillation. Since about 2001, “superparameterization” has emerged as a new path forward, complementing but not replacing studies based on conventional parameterizations. This chapter provides an overview of work with superparameterization, including a discussion of the method itself and a summary of key results.

Current affiliation: Rosenstiel School of Marine & Atmospheric Science, University of Miami

Current affiliation: NCAR

Corresponding author address: David Randall, Atmospheric Science, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523. E-mail: randall@atmos.colostate.edu

Abstract

Cloud processes play a central role in the dynamics of the tropical atmosphere, but for many years the shortcomings of cloud parameterizations have limited our ability to simulate and understand important tropical weather systems such as the Madden–Julian oscillation. Since about 2001, “superparameterization” has emerged as a new path forward, complementing but not replacing studies based on conventional parameterizations. This chapter provides an overview of work with superparameterization, including a discussion of the method itself and a summary of key results.

Current affiliation: Rosenstiel School of Marine & Atmospheric Science, University of Miami

Current affiliation: NCAR

Corresponding author address: David Randall, Atmospheric Science, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523. E-mail: randall@atmos.colostate.edu
Save