• Arkin, P. A., , and P. J. Webster, 1985: Annual and interannual variability of tropical–extratropical interaction: An empirical study. Mon. Wea. Rev., 113, 15101523, doi:10.1175/1520-0493(1985)113<1510:AAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennett, J. R., , and J. A. Young, 1971: The influence of latitudinal wind shear upon large-scale wave propagation into the tropics. Mon. Wea. Rev., 99, 202214, doi:10.1175/1520-0493(1971)099<0202:TIOLWS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, H. R., , and P. J. Webster, 1990: Energy accumulation and emanation at low latitudes. Part II: Nonlinear response to strong episodic equatorial forcing. J. Atmos. Sci., 47, 26242644, doi:10.1175/1520-0469(1990)047<2624:EAAEAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, H. R., , and P. J. Webster, 1995: Energy accumulation and emanation at low latitudes. Part III: Forward and backward accumulation. J. Atmos. Sci., 52, 23842403, doi:10.1175/1520-0469(1995)052<2384:EAAEAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., , and B. D. Chen, 2001: On the origin of monsoon. J. Atmos. Sci., 58, 34973507, doi:10.1175/1520-0469(2001)058<3497:TOOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1969: A further note on large-scale motions in the tropics. J. Atmos. Sci., 26, 182185, doi:10.1175/1520-0469(1969)026<0182:AFNOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, B. D., , and M. Yanai, 2000: Comparison of the Madden–Julian oscillation (MJO) during the TOGA COARE IOP with a 15-year climatology. J. Geophys. Res., 105, 21392149, doi:10.1029/1999JD901045.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deng, L., , and X. Wu, 2011: Physical mechanisms for the maintenance of GCM-simulated Madden–Julian oscillation over the Indian Ocean and Pacific. J. Climate, 24, 24692482, doi:10.1175/2010JCLI3759.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–82.

  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 27, 156171.

  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Khouider, B., , and A. J. Majda, 2016: Models for multiscale interactions. Part I: A multicloud model parameterization. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0004.1.

  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, doi:10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , R. Krishnamurti, , A. Simon, , A. Thomas, , and V. Kumar, 2016: A mechanism of the MJO invoking scale interactions. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0009.1.

  • Kung, E. C., , and L. P. Merritt, 1974: Kinetic energy source in large-scale tropical disturbances over the Marshall Island area. Mon. Wea. Rev., 102, 489502, doi:10.1175/1520-0493(1974)102<0489:KESILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., , and D. E. Waliser, Eds., 2012: Intraseasonal Variability of the Atmosphere-Ocean Climate System. 2nd ed. Springer, 613 pp.

  • Liebmann, B., 1987: Observed relationship between large-scale tropical convection and the tropical circulation on subseasonal time scales during Northern Hemisphere winter. J. Atmos. Sci., 44, 25432561, doi:10.1175/1520-0469(1987)044<2543:ORBLST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J., , B. Mapes, , M. Zhang, , and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and T. Matsuno, 1968: On the nature of large scale wave disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 46, 215221.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., , and M. Yanai, 1991: Tropical–midlatitude interaction on the timescales of 30 to 60 days during the northern summer of 1979. J. Climate, 4, 180201, doi:10.1175/1520-0442(1991)004<0180:TMIOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2016: Models for multiscale interactions. Part II: Madden–Julian oscillation, moisture, and convective momentum transport. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0005.1.

  • Maloney, E. D., , and C. Zhang, 2016: Dr. Yanai’s contributions to the discovery and science of the MJO. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0003.1.

  • Maruyama, T., 1967: Large-scale disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 45, 391408.

  • Maruyama, T., 1968: Time sequence of power spectra of disturbances in the equatorial lower stratosphere in relation to the quasi-biennial oscillation. J. Meteor. Soc. Japan, 46, 327342.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Mu, M., , and G. J. Zhang, 2006: Energetics of Madden–Julian oscillations in the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3). J. Geophys. Res., 111, D24112, doi:10.1029/2005JD007003.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., , and M. S. Unninayar, 1977: Atmospheric circulation during December 1970 through February 1971. Mon. Wea. Rev., 105, 10241038, doi:10.1175/1520-0493(1977)105<1024:ACDDTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1970: A study of generation and conversion of eddy available potential energy in the tropics. J. Meteor. Soc. Japan, 48, 524528.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1972: Energy budget of wave disturbances over the Marshall Islands during the years of 1956 and 1958. J. Meteor. Soc. Japan, 50, 7184.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2003: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543, doi:10.1175/1520-0469(2003)060<0526:EFOCCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., , and M. Yanai, 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. J. Atmos. Sci., 43, 16181642, doi:10.1175/1520-0469(1986)043<1618:CEEOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y.-N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449.

    • Search Google Scholar
    • Export Citation
  • Tomas, R., , and P. J. Webster, 1994: Horizontal and vertical structure of cross-equatorial wave propagation. J. Atmos. Sci., 51, 14171430, doi:10.1175/1520-0469(1994)051<1417:HAVSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-w., , and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549, doi:10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-w., , and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871, doi:10.1175/1520-0469(2002)059<1857:CMTODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-w., , C. Lin, , B. Chen, , M. Yanai, , and A. Arakawa, 1999: Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys. Res. Lett., 26, 31173120, doi:10.1029/1999GL900607.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-w., , M. W. Moncrieff, , and J. B. Gao, 2004: A systematic analysis of multiscale deep convective variability over the tropical Pacific. J. Climate, 17, 27362751, doi:10.1175/1520-0442(2004)017<2736:ASAOMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-w., , D. Giannakis, , and A. J. Majda, 2014: Symmetric and antisymmetric convective signals in the Madden–Julian Oscillation. Part I: Basic modes in infrared brightness temperature. J. Atmos. Sci., 71, 3302–3326, doi:10.1175/JAS-D-13-0122.1

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys. Space Phys., 9, 557612, doi:10.1029/RG009i003p00557.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, doi:10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and H. R. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803829, doi:10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1989: The three-dimensional structure of perturbation kinetic energy and its relationship to the zonal wind field. J. Climate, 2, 12101222, doi:10.1175/1520-0442(1989)002<1210:TTDSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. O. Magaña, , T. N. Palmer, , J. Shukla, , R. A. Tomas, , M. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 39–62.

  • Yanai, M., , and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, doi:10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , T. Maruyama, , T. Nitta, , and Y. Hayashi, 1968: Power spectra of large-scale disturbances over the tropical Pacific. J. Meteor. Soc. Japan, 46, 308323.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , B. D. Chen, , and W.-w. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57, 23742396, doi:10.1175/1520-0469(2000)057<2374:TMJOOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., , and B. J. Hoskins, 1996: Propagation of Rossby waves of nonzero frequency. J. Atmos. Sci., 53, 23652378, doi:10.1175/1520-0469(1996)053<2365:PORWON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., , and P. J. Webster, 1992: Laterally forced equatorial perturbations in a linear model. Part I: Stationary transient forcing. J. Atmos. Sci., 49, 585607, doi:10.1175/1520-0469(1992)049<0585:LFEPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 5
PDF Downloads 6 6 3

Multiscale Temporal Mean Features of Perturbation Kinetic Energy and Its Budget in the Tropics: Review and Computation

View More View Less
  • 1 Key Laboratory of Numerical Modeling for Tropical Cyclone, China Meteorological Administration, and Shanghai Typhoon Institute of China Meteorological Administration, Shanghai, China
  • 2 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
  • 3 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

The authors examined the maintenance mechanisms of perturbation kinetic energy (PKE) in the tropical regions for multiple time scales by computing and analyzing its budget equation. The emphasis has been placed on the mean features of synoptic and subseasonal variabilities using a 33-yr dataset. From analysis of the contributions from u-wind and υ-wind components, the PKE maximum in the Indian Ocean is attributed less to synoptic variability and more to intraseasonal variability in which the Madden–Julian oscillation (MJO) dominates; however, there is strong evidence of seasonal variability affiliated with the Asian monsoon systems. The ones in the eastern Pacific and Atlantic Oceans are closely related to both intraseasonal and synoptic variability that result from the strong MJO and the relatively large amplitude of equatorial waves.

The maintenance of the PKE budget mainly depends on the structure of time mean horizontal flows, the location of convection, and the transport of PKE from the extratropics. In the regions with strong convective activities, such as the eastern Indian Ocean to the western Pacific, the production of PKE occurs between 700 and 200 hPa at the expense of perturbation available potential energy (PAPE), which is generated by convective heating. This gain in PKE is largely offset by divergence of the geopotential component of vertical energy flux; that is, it is redistributed to the upper- and lower-atmospheric layers by the pressure field. Strong PKE generation through the horizontal convergence of the extratropical energy flux takes place in the upper troposphere over the eastern Pacific and Atlantic Ocean, and is largely balanced by a PKE loss due to barotropic conversion, which is determined solely by the sign of longitudinal stretching deformation. However, over the Indian Ocean, there is a net PKE loss due to divergence of energy flux, which is compensated by PKE gain through the shear generation.

Publisher’s Note: This chapter was revised on 5 December 2016 to correct a slight error in the title of this volume as presented in the references.

Corresponding author address: Dr. Baode Chen, Shanghai Typhoon Institute, 166 Puxi Rd., Shanghai 200030, China. E-mail: baode@mail.typhoon.gov.cn

Abstract

The authors examined the maintenance mechanisms of perturbation kinetic energy (PKE) in the tropical regions for multiple time scales by computing and analyzing its budget equation. The emphasis has been placed on the mean features of synoptic and subseasonal variabilities using a 33-yr dataset. From analysis of the contributions from u-wind and υ-wind components, the PKE maximum in the Indian Ocean is attributed less to synoptic variability and more to intraseasonal variability in which the Madden–Julian oscillation (MJO) dominates; however, there is strong evidence of seasonal variability affiliated with the Asian monsoon systems. The ones in the eastern Pacific and Atlantic Oceans are closely related to both intraseasonal and synoptic variability that result from the strong MJO and the relatively large amplitude of equatorial waves.

The maintenance of the PKE budget mainly depends on the structure of time mean horizontal flows, the location of convection, and the transport of PKE from the extratropics. In the regions with strong convective activities, such as the eastern Indian Ocean to the western Pacific, the production of PKE occurs between 700 and 200 hPa at the expense of perturbation available potential energy (PAPE), which is generated by convective heating. This gain in PKE is largely offset by divergence of the geopotential component of vertical energy flux; that is, it is redistributed to the upper- and lower-atmospheric layers by the pressure field. Strong PKE generation through the horizontal convergence of the extratropical energy flux takes place in the upper troposphere over the eastern Pacific and Atlantic Ocean, and is largely balanced by a PKE loss due to barotropic conversion, which is determined solely by the sign of longitudinal stretching deformation. However, over the Indian Ocean, there is a net PKE loss due to divergence of energy flux, which is compensated by PKE gain through the shear generation.

Publisher’s Note: This chapter was revised on 5 December 2016 to correct a slight error in the title of this volume as presented in the references.

Corresponding author address: Dr. Baode Chen, Shanghai Typhoon Institute, 166 Puxi Rd., Shanghai 200030, China. E-mail: baode@mail.typhoon.gov.cn
Save