Overview of Ice Nucleating Particles

Zamin A. Kanji Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Zamin A. Kanji in
Current site
Google Scholar
PubMed
Close
,
Luis A. Ladino Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Luis A. Ladino in
Current site
Google Scholar
PubMed
Close
,
Heike Wex Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Heike Wex in
Current site
Google Scholar
PubMed
Close
,
Yvonne Boose Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Yvonne Boose in
Current site
Google Scholar
PubMed
Close
,
Monika Burkert-Kohn Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Monika Burkert-Kohn in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Cziczo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Daniel J. Cziczo in
Current site
Google Scholar
PubMed
Close
, and
Martina Krämer Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
Institut für Energie- und Klimaforschung, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Martina Krämer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ice particle formation in tropospheric clouds significantly changes cloud radiative and microphysical properties. Ice nucleation in the troposphere via homogeneous freezing occurs at temperatures lower than −38°C and relative humidity with respect to ice above 140%. In the absence of these conditions, ice formation can proceed via heterogeneous nucleation aided by aerosol particles known as ice nucleating particles (INPs). In this chapter, new developments in identifying the heterogeneous freezing mechanisms, atmospheric relevance, uncertainties, and unknowns about INPs are described. The change in conventional wisdom regarding the requirements of INPs as new studies discover physical and chemical properties of these particles is explained. INP sources and known reasons for their ice nucleating properties are presented. The need for more studies to systematically identify particle properties that facilitate ice nucleation is highlighted. The atmospheric relevance of long-range transport, aerosol aging, and coating studies (in the laboratory) of INPs are also presented. Possible mechanisms for processes that change the ice nucleating potential of INPs and the corresponding challenges in understanding and applying these in models are discussed. How primary ice nucleation affects total ice crystal number concentrations in clouds and the discrepancy between INP concentrations and ice crystal number concentrations are presented. Finally, limitations of parameterizing INPs and of models in representing known and unknown processes related to heterogeneous ice nucleation processes are discussed.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.

Current affiliation: Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partekirchen, Germany.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zamin A. Kanji, zamin.kanji@env.ethz.ch

Abstract

Ice particle formation in tropospheric clouds significantly changes cloud radiative and microphysical properties. Ice nucleation in the troposphere via homogeneous freezing occurs at temperatures lower than −38°C and relative humidity with respect to ice above 140%. In the absence of these conditions, ice formation can proceed via heterogeneous nucleation aided by aerosol particles known as ice nucleating particles (INPs). In this chapter, new developments in identifying the heterogeneous freezing mechanisms, atmospheric relevance, uncertainties, and unknowns about INPs are described. The change in conventional wisdom regarding the requirements of INPs as new studies discover physical and chemical properties of these particles is explained. INP sources and known reasons for their ice nucleating properties are presented. The need for more studies to systematically identify particle properties that facilitate ice nucleation is highlighted. The atmospheric relevance of long-range transport, aerosol aging, and coating studies (in the laboratory) of INPs are also presented. Possible mechanisms for processes that change the ice nucleating potential of INPs and the corresponding challenges in understanding and applying these in models are discussed. How primary ice nucleation affects total ice crystal number concentrations in clouds and the discrepancy between INP concentrations and ice crystal number concentrations are presented. Finally, limitations of parameterizing INPs and of models in representing known and unknown processes related to heterogeneous ice nucleation processes are discussed.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.

Current affiliation: Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partekirchen, Germany.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zamin A. Kanji, zamin.kanji@env.ethz.ch
Save
  • Abbatt, J. P. D., 2003: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction. Chem. Rev., 103, 47834800, doi:10.1021/cr0206418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler, 2006: Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science, 313, 17701773, doi:10.1126/science.1129726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, G., T. Koop, C. Haspel, I. Taraniuk, T. Moise, I. Koren, R. H. Heiblum, and Y. Rudich, 2013: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proc. Natl. Acad. Sci. USA, 110, 20 41420 419, doi:10.1073/pnas.1317209110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, G., C. Haspel, T. Moise, and Y. Rudich, 2014: Optical extinction of highly porous aerosol following atmospheric freeze drying. J. Geophys. Res. Atmos., 119, 67686787, doi:10.1002/2013JD021314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, P., J. Aller, and D. Knopf, 2011: Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos. Chem. Phys., 11, 55395555, doi:10.5194/acp-11-5539-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 26172634, doi:10.5194/acp-5-2617-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardon-Dryer, K., and Z. Levin, 2014: Ground-based measurements of immersion freezing in the eastern Mediterranean. Atmos. Chem. Phys., 14, 52175231, doi:10.5194/acp-14-5217-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardon-Dryer, K., Z. Levin, and R. P. Lawson, 2011: Characteristics of immersion freezing nuclei at the South Pole station in Antarctica. Atmos. Chem. Phys., 11, 40154024, doi:10.5194/acp-11-4015-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, J. D., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358, doi:10.1038/nature12278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auer, A., Jr., D. Veal, and J. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 13421343, doi:10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • aufm Kampe, H. J., and H. K. Weickmann, 1951: The effectiveness of natural and artificial aerosols as freezing nuclei. J. Meteor., 8, 283288, doi:10.1175/1520-0469(1951)008<0283:TEONAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustin, S., and Coauthors, 2013: Immersion freezing of birch pollen washing water. Atmos. Chem. Phys., 13, 10 98911 003, doi:10.5194/acp-13-10989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustin-Bauditz, S., H. Wex, S. Kanter, M. Ebert, D. Niedermeier, F. Stolz, A. Prager, and F. Stratmann, 2014: The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts. Geophys. Res. Lett., 41, 73757382, doi:10.1002/2014GL061317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustin-Bauditz, S., H. Wex, C. Denjean, S. Hartmann, J. Schneider, S. Schmidt, M. Ebert, and F. Stratmann, 2016: Laboratory-generated mixtures of mineral dust particles with biological substances: Characterization of the particle mixing state and immersion freezing behavior. Atmos. Chem. Phys., 16, 55315543, doi:10.5194/acp-16-5531-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baustian, K., M. Wise, and M. Tolbert, 2010: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmos. Chem. Phys., 10, 23072317, doi:10.5194/acp-10-2307-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baustian, K., M. Wise, E. Jensen, G. Schill, M. Freedman, and M. Tolbert, 2013: State transformations and ice nucleation in amorphous (semi-) solid organic aerosol. Atmos. Chem. Phys., 13, 56155628, doi:10.5194/acp-13-5615-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, doi:10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 11531157, doi:10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingemer, H., and Coauthors, 2012: Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos. Chem. Phys., 12, 857867, doi:10.5194/acp-12-857-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, doi:10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016a: Ice nucleating particle measurements at 241 K during winter months at 3580 m MSL in the Swiss Alps. J. Atmos. Sci., 73, 22032228, doi:10.1175/JAS-D-15-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016b: Ice nucleating particles in the Saharan Air Layer. Atmos. Chem. Phys., 16, 90679087, doi:10.5194/acp-16-9067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016c: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 1: Immersion freezing. Atmos. Chem. Phys., 16, 15 07515 095, doi:10.5194/acp-16-15075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Broadley, S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condliffe, and L. Neve, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307, doi:10.5194/acp-12-287-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, S. D., K. Suter, and L. Olivarez, 2014: Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J. Phys. Chem., 118A, 10 03610 047, doi:10.1021/jp508809y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühl, J., A. Ansmann, P. Seifert, H. Baars, and R. Engelmann, 2013: Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations. Geophys. Res. Lett., 40, 44044408, doi:10.1002/grl.50792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795807, doi:10.1175/BAMS-86-6-795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., A. Hazra, and Z. Levin, 2008: Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys., 8, 74317449, doi:10.5194/acp-8-7431-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. L., P. J. DeMott, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 2000: Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions. J. Atmos. Sci., 57, 37523766, doi:10.1175/1520-0469(2000)057<3752:IFBSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 47254738, doi:10.5194/acp-11-4725-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and Coauthors, 2013: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmos. Chem. Phys., 13, 761772, doi:10.5194/acp-13-761-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor. Climatol., 51, 265284, doi:10.1175/JAMC-D-11-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40, 19842002, doi:10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., C. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell, 2011: Biological residues define the ice nucleation properties of soil dust. Atmos. Chem. Phys., 11, 96439648, doi:10.5194/acp-11-9643-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Henne, C. E. Morris, and C. Alewell, 2012: Atmospheric ice nucleators active ≥−12°C can be quantified on PM10 filters. Atmos. Meas. Tech., 5, 321327, doi:10.5194/amt-5-321-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Rodríguez, C. Hüglin, S. Henne, E. Herrmann, N. Bukowiecki, and C. Alewell, 2015: Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus, 67B, 25014, doi:10.3402/tellusb.v67.25014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., E. Stopelli, and L. Zimmermann, 2016: Clues that decaying leaves enrich Arctic air with ice nucleating particles. Atmos. Environ., 129, 9194, doi:10.1016/j.atmosenv.2016.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824, doi:10.5194/acp-9-2805-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 12441259, doi:10.1175/1520-0469(1981)038<1244:TOOIIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbin, J., P. Rehbein, G. Evans, and J. Abbatt, 2012: Combustion particles as ice nuclei in an urban environment: Evidence from single-particle mass spectrometry. Atmos. Environ., 51, 286292, doi:10.1016/j.atmosenv.2012.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, I., and Coauthors, 2012: Ice formation and development in aged, wintertime cumulus over the UK: Observations and modelling. Atmos. Chem. Phys., 12, 49634985, doi:10.5194/acp-12-4963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., and Coauthors, 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 15721578, doi:10.1126/science.1227279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109, D04201, doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009a: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4, 044013, doi:10.1088/1748-9326/4/4/044013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2009b: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2, 333336, doi:10.1038/ngeo499.

  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 13201324, doi:10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., L. Ladino, Y. Boose, Z. A. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0008.1.

    • Crossref
    • Export Citation
  • Davies, P. L., 2014: Ice-binding proteins: A remarkable diversity of structures for stopping and starting ice growth. Trends Biochem. Sci., 39, 548555, doi:10.1016/j.tibs.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 10721079, doi:10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., Y. Chen, S. Kreidenweis, D. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 24292432, doi:10.1029/1999GL900580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, doi:10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, doi:10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2015: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys., 15, 393409, doi:10.5194/acp-15-393-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 57975803, doi:10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dentener, F., and Coauthors, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6, 43214344, doi:10.5194/acp-6-4321-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Després, V. R., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, doi:10.3402/tellusb.v64i0.15598.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, doi:10.1029/2005GL024175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst, 2008: Ice nucleation and overseeding of ice in volcanic clouds. J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24172436, doi:10.1175/2010JAS3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. J. Connolly, S. Boult, M. Campana, and Z. Li, 2015: Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles. Atmos. Chem. Phys., 15, 11 31111 326, doi:10.5194/acp-15-11311-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth-Sci. Rev., 79, 73100, doi:10.1016/j.earscirev.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., and G. Feingold, 2013: Sensitivities of immersion freezing: Reconciling classical nucleation theory and deterministic expressions. Geophys. Res. Lett., 40, 33203324, doi:10.1002/grl.50580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2001: Ice nucleation in orographic wave clouds: Measurements made during INTACC. Quart. J. Roy. Meteor. Soc., 127, 14931512, doi:10.1002/qj.49712757502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, B. J. Shipway, P. J. DeMott, K. A. Pratt, D. C. Rogers, J. Stith, and K. A. Prather, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 10661079, doi:10.1175/JAS-D-11-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Flagan, R. C., and J. H. Seinfeld, 1988: Particle formation in combustion. Fundamentals of Air Pollution Engineering, Prentice Hall, 358–390.

  • Fletcher, N. H., 1959: On ice-crystal production by aerosol particles. J. Meteor., 16, 173180, doi:10.1175/1520-0469(1959)016<0173:OICPBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fletcher, N. H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 12661271, doi:10.1175/1520-0469(1969)026<1266:asaicn>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, doi:10.1029/2009JD011958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, M. A., 2015: Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett., 6, 38503858, doi:10.1021/acs.jpclett.5b01326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, B., G. Kulkarni, J. Beranek, A. Zelenyuk, J. A. Thornton, and D. J. Cziczo, 2011: Ice nucleation and droplet formation by bare and coated soot particles. J. Geophys. Res., 116, D17203, doi:10.1029/2011JD015999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich-Nowoisky, J., T. C. J. Hill, B. G. Pummer, G. D. Franc, and U. Pöschl, 2015: Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences, 12, 10571071, doi:10.5194/bg-12-1057-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and R. C. Schaller, 1982: Ice nucleation by aerosol-particles: Theory of condensation-freezing nucleation. J. Atmos. Sci., 39, 648655, doi:10.1175/1520-0469(1982)039<0648:INBAPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, E., T. C. Hill, A. J. Prenni, P. J. DeMott, G. D. Franc, and S. M. Kreidenweis, 2012: Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions. J. Geophys. Res., 117, D18209, doi:10.1029/2012JD018343.

    • Search Google Scholar
    • Export Citation
  • Garimella, S., D. A. Rothenberg, M. J. Wolf, R. O. David, Z. A. Kanji, C. Wang, M. Roesch, and D. J. Cziczo, 2017: Uncertainty in counting ice nucleating particles with continuous diffusion flow chambers. Atmos. Chem. Phys. Discuss., 2017, 128, doi:10.5194/acp-2016-1180.

    • Search Google Scholar
    • Export Citation
  • Gibbs, A., M. Charman, W. Schwarzacher, and A. C. Rust, 2015: Immersion freezing of supercooled water drops containing glassy volcanic ash particles. GeoResJ, 7, 6669, doi:10.1016/j.grj.2015.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32, 199215, doi:10.1016/S0021-8502(00)00077-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govindarajan, A. G., and S. E. Lindow, 1988: Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc. Natl. Acad. Sci. USA, 85, 13341338, doi:10.1073/pnas.85.5.1334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grawe, S., S. Augustin-Bauditz, S. Hartmann, L. Hellner, J. B. C. Pettersson, A. Prager, F. Stratmann, and H. Wex, 2016: The immersion freezing behavior of ash particles from wood and brown coal burning. Atmos. Chem. Phys., 16, 13 91113 928, doi:10.5194/acp-16-13911-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haag, W., B. Karcher, J. Strom, A. Minikin, U. Lohmann, J. Ovarlez, and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3, 17911806, doi:10.5194/acp-3-1791-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Harrison, A. D., T. F. Whale, M. A. Carpenter, M. A. Holden, L. Neve, D. O’Sullivan, J. Vergara Temprado, and B. J. Murray, 2016: Not all feldspars are equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys., 16, 10 92710 940, doi:10.5194/acp-16-10927-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., D. Niedermeier, J. Voigtländer, T. Clauss, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, 2011: Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies. Atmos. Chem. Phys., 11, 17531767, doi:10.5194/acp-11-1753-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., S. Augustin, T. Clauss, H. Wex, T. Santl Temkiv, J. Voigtländer, D. Niedermeier, and F. Stratmann, 2013: Immersion freezing of ice nucleating active protein complexes. Atmos. Chem. Phys., 13, 57515766, doi:10.5194/acp-13-5751-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., H. Wex, T. Clauss, S. Augustin-Bauditz, D. Niedermeier, M. Rösch, and F. Stratmann, 2016: Immersion freezing of kaolinite: Scaling with particle surface area. J. Atmos. Sci., 73, 263278, doi:10.1175/JAS-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, doi:10.1175/JAS-D-14-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.

    • Crossref
    • Export Citation
  • Hill, T. C. J., P. J. DeMott, Y. Tobo, J. Fröhlich-Nowoisky, B. F. Moffett, G. D. Franc, and S. M. Kreidenweis, 2016: Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys., 16, 71957211, doi:10.5194/acp-16-7195-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Mohler, 2014a: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles. Atmos. Chem. Phys., 14, 23152324, doi:10.5194/acp-14-2315-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2014b: A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: Laboratory study with hematite particles and its application to atmospheric models. Atmos. Chem. Phys., 14, 13 14513 158, doi:10.5194/acp-14-13145-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015: Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci., 8, 273277, doi:10.1038/ngeo2374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., D. Duft, A. Kiselev, and T. Leisner, 2013a: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: Quantitative size and temperature dependence for illite particles. Faraday Discuss., 165, 383390, doi:10.1039/c3fd00033h.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner, 2013b: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 23732382, doi:10.5194/amt-6-2373-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, doi:10.1088/1748-9326/3/2/025003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjansson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5, 024009, doi:10.1088/1748-9326/5/2/024009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyle, C., and Coauthors, 2011: Ice nucleation properties of volcanic ash from Eyjafjallajökull. Atmos. Chem. Phys., 11, 99119926, doi:10.5194/acp-11-9911-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, J. A., and Coauthors, 2013: High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys., 13, 61516164, doi:10.5194/acp-13-6151-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatius, K., and Coauthors, 2016: Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene. Atmos. Chem. Phys., 16, 64956509, doi:10.5194/acp-16-6495-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamphus, M., and Coauthors, 2010: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys., 10, 80778095, doi:10.5194/acp-10-8077-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n‐hexane soot samples. J. Geophys. Res., 111, D16204, doi:10.1029/2005JD006766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2010: Ice nucleation onto Arizona Test Dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem., 114A, 935941, doi:10.1021/jp908661m.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., O. Florea, and J. P. D. Abbatt, 2008: Ice formation via deposition nucleation on mineral dust and organics: Dependence of onset relative humidity on total particulate surface area. Environ. Res. Lett., 3, 025004, doi:10.1088/1748-9326/3/2/025004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., P. J. DeMott, O. Möhler, and J. P. D. Abbatt, 2011: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: Instrument intercomparison and ice onsets for different aerosol types. Atmos. Chem. Phys., 11, 3141, doi:10.5194/acp-11-31-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., A. Welti, C. Chou, O. Stetzer, and U. Lohmann, 2013: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys., 13, 90979118, doi:10.5194/acp-13-9097-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res. Atmos., 108, 4402, doi:10.1029/2002JD003220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and P. Spichtinger, 2009: Cloud-controlling factors of cirrus. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics and Precipitation, J. Heintzeberg and R. J. Charlson, Eds., MIT Press, 235–268.

    • Crossref
    • Export Citation
  • Kärcher, B., O. Mohler, P. J. DeMott, S. Pechtl, and F. Yu, 2007: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys., 7, 42034227, doi:10.5194/acp-7-4203-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., B. Mayer, K. Gierens, U. Burkhardt, H. Mannstein, and R. Chatterjee, 2009: Aerodynamic contrails: Microphysics and optical properties. J. Atmos. Sci., 66, 227243, doi:10.1175/2008JAS2768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, L., C. Marcolli, J. Hofer, V. Pinti, C. R. Hoyle, and T. Peter, 2016: Ice nucleation efficiency of natural dust samples in the immersion mode. Atmos. Chem. Phys., 16, 11 17711 206, doi:10.5194/acp-16-11177-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, doi:10.1175/JCLI-D-11-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiselev, A., F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen, and T. Leisner, 2016: Active sites in heterogeneous ice nucleation—The example of K-rich feldspars. Science, 10, doi:10.1126/science.aai8034.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. Stuut, Eds., 2014: Mineral Dust: A Key Player in the Earth System. Springer, 509 pp.

    • Crossref
    • Export Citation
  • Knopf, D. A., and T. Koop, 2006: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111, D12201, doi:10.1029/2005JD006894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., B. Wang, A. Laskin, R. C. Moffet, and M. K. Gilles, 2010: Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett., 37, L11803, doi:10.1029/2010GL043362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., P. A. Alpert, B. Wang, and J. Y. Aller, 2011: Stimulation of ice nucleation by marine diatoms. Nat. Geosci., 4, 8890, doi:10.1038/ngeo1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., and Coauthors, 2009: Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys., 11, 79067920, doi:10.1039/b905334b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohn, M., U. Lohmann, A. Welti, and Z. A. Kanji, 2016: Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA). J. Geophys. Res. Atmos., 121, 47134733, doi:10.1002/2016JD024761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina, 1998: A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem., 102A, 89248931, doi:10.1021/jp9828078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, doi:10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., E. Emery, J. Strapp, S. Cober, G. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.

    • Crossref
    • Export Citation
  • Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 34633483, doi:10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher, 2014: Dust ice nuclei effects on cirrus clouds. Atmos. Chem. Phys., 14, 30273046, doi:10.5194/acp-14-3027-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., C. Sanders, K. Zhang, X. Liu, and C. Zhao, 2014: Ice nucleation of bare and sulfuric acid coated mineral dust particles and implication for cloud properties. J. Geophys. Res. Atmos., 119, 999310 011, doi:10.1002/2014JD021567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., and Coauthors, 2015a: Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles. Geophys. Res. Lett., 42, 30483055, doi:10.1002/2015GL063270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., K. Zhang, C. Zhao, M. Nandasiri, V. Shutthanandan, X. Liu, J. Fast, and L. Berg, 2015b: Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies. J. Geophys. Res. Atmos., 120, 76827698, doi:10.1002/2014JD022637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laaksonen, A., 2015: A unifying model for adsorption and nucleation of vapors on solid surfaces. J. Phys. Chem., 119A, 37363745, doi:10.1021/acs.jpca.5b00325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., O. Stetzer, F. Lüönd, A. Welti, and U. Lohmann, 2011: Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res., 116, D22202, doi:10.1029/2011JD015727.

    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., S. Zhou, J. D. Yakobi-Hancock, D. Aljawhary, and J. P. D. Abbatt, 2014: Factors controlling the ice nucleating abilities of α-pinene SOA particles. J. Geophys. Res. Atmos., 119, 90419051, doi:10.1002/2014JD021578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., and Coauthors, 2016: Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ., 132, 110, doi:10.1016/j.atmosenv.2016.02.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., A. Korolev, I. Heckmann, M. Wolde, A. Fridlind, and A. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 15741582, doi:10.1002/2016GL072455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino Moreno, L., O. Stetzer, and U. Lohmann, 2013: Contact freezing: A review of experimental studies. Atmos. Chem. Phys., 13, 97459769, doi:10.5194/acp-13-9745-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langham, E. J., and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc. London, 247A, 493504, doi:10.1098/rspa.1958.0207.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., D. C. Leon, P. J. DeMott, C. M. Villanueva-Birriel, A. V. Johnson, D. H. Moser, C. S. Tully, and W. Wu, 2016: A multisensor investigation of rime splintering in tropical maritime cumuli. J. Atmos. Sci., 73, 25472564, doi:10.1175/JAS-D-15-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290, doi:10.1029/2003GL018567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, E., G. McMeeking, P. DeMott, C. McCluskey, C. Stockwell, R. Yokelson, and S. Kreidenweis, 2014: A new method to determine the number concentrations of refractory black carbon ice nucleating particles. Aerosol Sci. Technol., 48, 12641275, doi:10.1080/02786826.2014.977843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lienhard, D. M., and Coauthors, 2015: Viscous organic aerosol particles in the upper troposphere: Diffusivity-controlled water uptake and ice nucleation? Atmos. Chem. Phys., 15, 13 59913 613, doi:10.5194/acp-15-13599-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindow, S. E., D. C. Arny, and C. D. Upper, 1982: Bacterial ice nucleation: A factor in frost injury to plants. Plant Physiol., 70, 10841089, doi:10.1104/pp.70.4.1084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288299, doi:10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, doi:10.5194/acp-15-12953-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 89178934, doi:10.5194/acp-9-8917-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüönd, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, doi:10.1029/2009JD012959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupi, L., A. Hudait, and V. Molinero, 2014: Heterogeneous nucleation of ice on carbon surfaces. J. Amer. Chem. Soc., 136, 31563164, doi:10.1021/ja411507a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamouri, R. E., and A. Ansmann, 2016: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters. Atmos. Chem. Phys., 16, 59055931, doi:10.5194/acp-16-5905-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys., 14, 20712104, doi:10.5194/acp-14-2071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091, doi:10.5194/acp-7-5081-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015a: Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys., 15, 12 54712 566, doi:10.5194/acp-15-12547-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015b: The micro-oriFice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation. Atmos. Meas. Tech., 8, 24492462, doi:10.5194/amt-8-2449-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCluskey, C. S., and Coauthors, 2014: Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires. J. Geophys. Res. Atmos., 119, 10 45810 470, doi:10.1002/2014JD021980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertes, S., and Coauthors, 2007: Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study. Aerosol Sci. Technol., 41, 848864, doi:10.1080/02786820701501881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2003: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys., 3, 211223, doi:10.5194/acp-3-211-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., C. Linke, H. Saathoff, M. Schnaiter, R. Wagner, A. Mangold, M. Krämer, and U. Schurath, 2005: Ice nucleation on flame soot aerosol of different organic carbon content. Meteor. Z., 14, 477484, doi:10.1127/0941-2948/2005/0055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 30073021, doi:10.5194/acp-6-3007-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2008: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett., 3, 025007, doi:10.1088/1748-9326/3/2/025007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, doi:10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delanoe, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, doi:10.1002/2015GL064604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, doi:10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., and Coauthors, 2010: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci., 3, 233237, doi:10.1038/ngeo817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills, 2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 41914207, doi:10.5194/acp-11-4191-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, doi:10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagare, B., C. Marcolli, A. Welti, O. Stetzer, and U. Lohmann, 2016: Comparing contact and immersion freezing from continuous flow diffusion chambers. Atmos. Chem. Phys., 16, 88998914, doi:10.5194/acp-16-8899-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2010: Heterogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys., 10, 36013614, doi:10.5194/acp-10-3601-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2011a: Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmos. Chem. Phys., 11, 11 13111 144, doi:10.5194/acp-11-11131-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., R. A. Shaw, S. Hartmann, H. Wex, T. Clauss, J. Voigtländer, and F. Stratmann, 2011b: Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior. Atmos. Chem. Phys., 11, 87678775, doi:10.5194/acp-11-8767-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., B. Ervens, T. Clauss, J. Voigtländer, H. Wex, S. Hartmann, and F. Stratmann, 2014: A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model. Geophys. Res. Lett., 41, 736741, doi:10.1002/2013GL058684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., S. Augustin-Bauditz, S. Hartmann, H. Wex, K. Ignatius, and F. Stratmann, 2015: Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation? J. Geophys. Res. Atmos., 120, 50365046, doi:10.1002/2014JD022814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehaus, J., and W. Cantrell, 2015: Contact freezing of water by salts. J. Phys. Chem. Lett., 6, 34903495, doi:10.1021/acs.jpclett.5b01531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehaus, J., K. W. Bunker, S. China, A. Kostinski, C. Mazzoleni, and W. Cantrell, 2014: A technique to measure ice nuclei in the contact mode. J. Atmos. Oceanic Technol., 31, 913922, doi:10.1175/JTECH-D-13-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niemand, M., and Coauthors, 2012: A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci., 69, 30773092, doi:10.1175/JAS-D-11-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and Coauthors, 2014: Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14, 18531867, doi:10.5194/acp-14-1853-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., B. J. Murray, J. F. Ross, T. F. Whale, H. C. Price, J. D. Atkinson, N. S. Umo, and M. E. Webb, 2015: The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep., 5, 8082, doi:10.1038/srep08082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., B. J. Murray, J. F. Ross, and M. E. Webb, 2016: The adsorption of fungal ice-nucleating proteins on mineral dusts: A terrestrial reservoir of atmospheric ice-nucleating particles. Atmos. Chem. Phys., 16, 78797887, doi:10.5194/acp-16-7879-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, R., and Coauthors, 2016: Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv., 2, e1501630, doi:10.1126/sciadv.1501630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peckhaus, A., A. Kiselev, T. Hiron, M. Ebert, and T. Leisner, 2016: A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay. Atmos. Chem. Phys., 16, 11 47711 496, doi:10.5194/acp-16-11477-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedevilla, P., S. J. Cox, B. Slater, and A. Michaelides, 2016: Can ice-like structures form on non-ice-like substrates? The example of the k feldspar microcline. J. Phys. Chem., 120C, 67046713, doi:10.1021/acs.jpcc.6b01155.

    • Search Google Scholar
    • Export Citation
  • Peng, L., J. R. Snider, and Z. Wang, 2015: Ice crystal concentrations in wave clouds: Dependencies on temperature, D > 0.5 μm aerosol particle concentration, and duration of cloud processing. Atmos. Chem. Phys., 15, 61136125, doi:10.5194/acp-15-6113-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 87588766, doi:10.1002/2015GL065733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, doi:10.1175/2007JAS2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409, doi:10.1175/JAS-D-12-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polen, M., E. Lawlis, and R. C. Sullivan, 2016: The unstable ice nucleation properties of Snomax bacterial particles. J. Geophys. Res. Atmos., 121, 11 66611 678, doi:10.1002/2016JD025251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovicheva, O., E. Kireeva, N. Persiantseva, T. Khokhlova, N. Shonija, V. Tishkova, and B. Demirdjian, 2008: Effect of soot on immersion freezing of water and possible atmospheric implications. Atmos. Res., 90, 326337, doi:10.1016/j.atmosres.2008.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, K. A., and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 75507555, doi:10.1073/pnas.1300262110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401, doi:10.1038/ngeo521.

  • Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009a: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436448, doi:10.1111/j.1600-0889.2009.00415.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., M. D. Petters, A. Faulhaber, C. M. Carrico, P. J. Ziemann, S. M. Kreidenweis, and P. J. DeMott, 2009b: Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophys. Res. Lett., 36, L06808, doi:10.1029/2008GL036957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. DeMott, A. P. Sullivan, R. C. Sullivan, S. M. Kreidenweis, and D. C. Rogers, 2012: Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. Geophys. Res. Lett., 39, L11805, doi:10.1029/2012GL051915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2013: The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett., 40, 227231, doi:10.1029/2012GL053953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96, 33963403, doi:10.1073/pnas.96.7.3396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 976 pp.

  • Pummer, B. G., H. Bauer, J. Bernardi, S. Bleicher, and H. Grothe, 2012: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys., 12, 25412550, doi:10.5194/acp-12-2541-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pummer, B. G., and Coauthors, 2015: Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys., 15, 40774091, doi:10.5194/acp-15-4077-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2006: New ground deicing hazard associated with freezing drizzle ingestion by jet engines. J. Aircr., 43, 14481457, doi:10.2514/1.20799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitz, P., and Coauthors, 2011: Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities. Atmos. Chem. Phys., 11, 78397858, doi:10.5194/acp-11-7839-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149181, doi:10.1016/0169-8095(88)90005-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Vol. 113, Pergamon Press, 290 pp.

  • Rosinski, J., P. L. Haagenson, C. T. Nagamoto, and F. Parungo, 1987: Nature of ice-forming nuclei in marine air masses. J. Aerosol Sci., 18, 291309, doi:10.1016/0021-8502(87)90024-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salam, A., U. Lohmann, and G. Lesins, 2007: Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles. Atmos. Chem. Phys., 7, 39233931, doi:10.5194/acp-7-3923-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santachiara, G., L. Di Matteo, F. Prodi, and F. Belosi, 2010: Atmospheric particles acting as ice forming nuclei in different size ranges. Atmos. Res., 96, 266272, doi:10.1016/j.atmosres.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res. Atmos., 120, 76997725, doi:10.1002/2014JD023006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, G. P., and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated sea-spray aerosol using Raman microscopy. J. Phys. Chem., 118C, 29 23429 241, doi:10.1021/jp505379j.

    • Search Google Scholar
    • Export Citation
  • Schill, G. P., D. O. De Haan, and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated secondary organic aerosol. Environ. Sci. Technol., 48, 16751682, doi:10.1021/es4046428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, G. P., K. Genareau, and M. Tolbert, 2015a: Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy. Atmos. Chem. Phys., 15, 75237536, doi:10.5194/acp-15-7523-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, S. R., and Coauthors, 2015b: The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Cent. Sci., 1, 132141, doi:10.1021/acscentsci.5b00174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrod, J., A. Danielczok, D. Weber, M. Ebert, E. S. Thomson, and H. G. Bingemer, 2016: Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation. Atmos. Meas. Tech., 9, 13131324, doi:10.5194/amt-9-1313-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, P., and Coauthors, 2011: Ice formation in ash-influenced clouds after the eruption of the Eyjafjallajokull volcano in April 2010. J. Geophys. Res., 116, D00U04, doi:10.1029/2011JD015702.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., A. J. Durant, and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B, 98659868, doi:10.1021/jp0506336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shilling, J., T. Fortin, and M. Tolbert, 2006: Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res., 111, D12204, doi:10.1029/2005JD006664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2009: Cloud-controlling factors. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics and Precipitation, J. Heintzeberg and R. J. Charlson, Eds., MIT Press, 269–290.

  • Sihvonen, S. K., G. P. Schill, N. A. Lyktey, D. P. Veghte, M. A. Tolbert, and M. A. Freedman, 2014: Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation. J. Phys. Chem., 118A, 87878796, doi:10.1021/jp504846g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., and D. J. Cziczo, 2010: Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds. J. Geophys. Res., 115, D14208, doi:10.1029/2009JD012168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinke, I., and Coauthors, 2011: Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010. Atmos. Chem. Phys., 11, 12 94512 958, doi:10.5194/acp-11-12945-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J., C. Twohy, P. DeMott, D. Baumgardner, T. Campos, R. Gao, and J. Anderson, 2011: Observations of ice nuclei and heterogeneous freezing in a western Pacific extratropical storm. Atmos. Chem. Phys., 11, 62296243, doi:10.5194/acp-11-6229-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, R. C., and Coauthors, 2010b: Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys., 10, 11 47111 487, doi:10.5194/acp-10-11471-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, R. C., L. Minambres, P. J. DeMott, A. J. Prenni, C. M. Carrico, E. J. T. Levin, and S. M. Kreidenweis, 2010a: Chemical processing does not always impair heterogeneous ice nucleation of mineral dust particles. Geophys. Res. Lett., 37, L24805, doi:10.1029/2010GL045540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzanne, J., D. Ferry, O. Popovitcheva, and N. K. Shonija, 2003: Ice nucleation by kerosene soot under upper tropospheric conditions. Can. J. Phys., 81, 423429, doi:10.1139/p03-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352, 224227, doi:10.1126/science.aad5300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, E. S., X. Kong, P. Papagiannakopoulos, and J. B. C. Pettersson, 2015: Deposition-mode ice nucleation reexamined at temperatures below 200 K. Atmos. Chem. Phys., 15, 16211632, doi:10.5194/acp-15-1621-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobo, Y., and Coauthors, 2013: Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res. Atmos., 118, 10 10010 110, doi:10.1002/jgrd.50801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobo, Y., P. DeMott, T. Hill, A. Prenni, N. Swoboda-Colberg, G. Franc, and S. Kreidenweis, 2014: Organic matter matters for ice nuclei of agricultural soil origin. Atmos. Chem. Phys., 14, 85218531, doi:10.5194/acp-14-8521-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trainer, M. G., O. B. Toon, and M. A. Tolbert, 2009: Measurements of depositional ice nucleation on insoluble substrates at low temperatures: Implications for Earth and Mars. J. Phys. Chem., 113C, 20362040, doi:10.1021/jp805140p.

    • Search Google Scholar
    • Export Citation
  • Turner, M. A., F. Arellano, and L. M. Kozloff, 1990: Three separate classes of bacterial ice nucleation structures. J. Bacteriol., 172, 25212526, doi:10.1128/jb.172.5.2521-2526.1990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, M. A., F. Arellano, and L. M. Kozloff, 1991: Components of ice nucleation structures of bacteria. J. Bacteriol., 173, 65156527, doi:10.1128/jb.173.20.6515-6527.1991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2010: Relationships of biomass-burning aerosols to ice in orographic wave clouds. J. Atmos. Sci., 67, 24372450, doi:10.1175/2010JAS3310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umo, N. S., and Coauthors, 2015: Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds. Atmos. Chem. Phys., 15, 51955210, doi:10.5194/acp-15-5195-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 1971: Quantitative evaluation of experimental results on heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci., 28, 402409, doi:10.1175/1520-0469(1971)028<0402:qeoera>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 18431856, doi:10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 2008: Repeatability and randomness in heterogeneous freezing nucleation. Atmos. Chem. Phys., 8, 50175031, doi:10.5194/acp-8-5017-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 2014: Interpretation of freezing nucleation experiments: Singular and stochastic; sites and surfaces. Atmos. Chem. Phys., 14, 52715294, doi:10.5194/acp-14-5271-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., and J. R. Snider, 2015: Time-dependent freezing rate parcel model. Atmos. Chem. Phys., 15, 20712079, doi:10.5194/acp-15-2071-2015.

  • Vali, G., P. J. DeMott, O. Moehler, and T. F. Whale, 2015: Technical Note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, doi:10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Wagner, R., and O. Möhler, 2013: Heterogeneous ice nucleation ability of crystalline sodium chloride dihydrate particles. J. Geophys. Res. Atmos., 118, 46104622, doi:10.1002/jgrd.50325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R., ——, H. Saathoff, M. Schnaiter, and T. Leisner, 2010: High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate. Atmos. Chem. Phys., 10, 76177641, doi:10.5194/acp-10-7617-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R., and Coauthors, 2012: Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability. Atmos. Chem. Phys., 12, 85898610, doi:10.5194/acp-12-8589-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R., O. Möhler, H. Saathoff, and M. Schnaiter, 2014: Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature. J. Geophys. Res. Atmos., 119, 82128230, doi:10.1002/2014JD021741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R., A. Kiselev, O. Möhler, H. Saathoff, and I. Steinke, 2016: Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism. Atmos. Chem. Phys., 16, 20252042, doi:10.5194/acp-16-2025-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., A. T. Lambe, P. Massoli, T. B. Onasch, P. Davidovits, D. R. Worsnop, and D. A. Knopf, 2012: The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation. J. Geophys. Res., 117, D16209, doi:10.1029/2012JD018063.

    • Search Google Scholar
    • Export Citation
  • Wang, B., D. A. Knopf, S. China, B. W. Arey, T. H. Harder, M. K. Gilles, and A. Laskin, 2016: Direct observation of ice nucleation events on individual atmospheric particles. Phys. Chem. Chem. Phys., 18, 29 72129 731, doi:10.1039/C6CP05253C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2015: Microbial control of sea spray aerosol composition: A tale of two blooms. ACS Cent. Sci., 1, 124131, doi:10.1021/acscentsci.5b00148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welti, A., F. Lüönd, O. Stetzer, and U. Lohmann, 2009: Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys., 9, 67056715, doi:10.5194/acp-9-6705-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welti, A., F. Lüönd, Z. A. Kanji, O. Stetzer, and U. Lohmann, 2012: Time dependence of immersion freezing: An experimental study on size selected kaolinite particles. Atmos. Chem. Phys., 12, 98939907, doi:10.5194/acp-12-9893-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welti, A., Z. A. Kanji, O. Stetzer, U. Lohmann, and F. Lüönd, 2014: Exploring the mechanisms of ice nucleation on kaolinite: From deposition nucleation to condensation freezing. J. Atmos. Sci., 71, 1636, doi:10.1175/JAS-D-12-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., and A. J. Illingworth, 2013: The formation of ice in a long-lived supercooled layer cloud. Quart. J. Roy. Meteor. Soc., 139, 22092221, doi:10.1002/qj.2096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wex, H., and Coauthors, 2014: Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings. Atmos. Chem. Phys., 14, 55295546, doi:10.5194/acp-14-5529-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wex, H., and Coauthors, 2015: Intercomparing different devices for the investigation of ice nucleating particles using Snomax as test substance. Atmos. Chem. Phys., 15, 14631485, doi:10.5194/acp-15-1463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and Coauthors, 2012: Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures. Atmos. Chem. Phys., 12, 86118632, doi:10.5194/acp-12-8611-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, doi:10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, M. E., K. J. Baustian, T. Koop, M. A. Freedman, E. J. Jensen, and M. A. Tolbert, 2012: Depositional ice nucleation onto crystalline hydrated NaCl particles: A new mechanism for ice formation in the troposphere. Atmos. Chem. Phys., 12, 11211134, doi:10.5194/acp-12-1121-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, T. P., and M. D. Petters, 2013: The role of time in heterogeneous freezing nucleation. J. Geophys. Res. Atmos., 118, 37313743, doi:10.1002/jgrd.50365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, T. P., M. D. Petters, J. D. Hader, T. Morton, and A. L. Holder, 2013: Minimal cooling rate dependence of ice nuclei activity in the immersion mode. J. Geophys. Res. Atmos., 118, 10 53510 543, doi:10.1002/jgrd.50810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yakobi-Hancock, J. D., L. A. Ladino, and J. P. D. Abbatt, 2013: Feldspar minerals as efficient deposition ice nuclei. Atmos. Chem. Phys., 13, 11 17511 185, doi:10.5194/acp-13-11175-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmermann, F., S. Weinbruch, L. Schütz, H. Hofmann, M. Ebert, K. Kandler, and A. Worringen, 2008: Ice nucleation properties of the most abundant mineral dust phases. J. Geophys. Res., 113, D23204, doi:10.1029/2008JD010655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zobrist, B., and Coauthors, 2006: Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect. Atmos. Chem. Phys., 6, 31153129, doi:10.5194/acp-6-3115-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolles, T., J. Burkart, T. Haeusler, B. Pummer, R. Hitzenberger, and H. Grothe, 2015: Identification of ice nucleation active sites on feldspar dust particles. J. Phys. Chem., 119A, 26922700, doi:10.1021/jp509839x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17479 4567 377
PDF Downloads 11230 2705 300