• Alpert, P., J. Aller, and D. Knopf, 2011: Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos. Chem. Phys., 11, 55395555, doi:10.5194/acp-11-5539-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., R. J. Charlson, and D. S. Covert, 1993: Calibration of a counterflow virtual impactor at aerodynamic diameters from 1 to 15 μm. Aerosol Sci. Technol., 19, 317329, doi:10.1080/02786829308959639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 26172634, doi:10.5194/acp-5-2617-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardon-Dryer, K., Y.-W. Huang, and D. J. Cziczo, 2015: Laboratory studies of collection efficiency of sub-micrometer particles by cloud droplets on a single droplet basis. Atmos. Chem. Phys., 15, 91599171, doi:10.5194/acp-15-9159-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2002: Nucleation effects on the habit of vapour grown ice crystals from −18 to −42°C. Quart. J. Roy. Meteor. Soc., 128, 14611483, doi:10.1002/qj.200212858304.

    • Search Google Scholar
    • Export Citation
  • Baustian, K., M. Wise, E. Jensen, G. Schill, M. Freedman, and M. Tolbert, 2013: State transformations and ice nucleation in amorphous (semi-) solid organic aerosol. Atmos. Chem. Phys., 13, 56155628, doi:10.5194/acp-13-5615-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, doi:10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016: Ice nucleating particle measurements at 241 K during winter months at 3580 m MSL in the Swiss Alps. J. Atmos. Sci., 73, 22032228, doi:10.1175/JAS-D-15-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulter, J. E., D. J. Cziczo, A. M. Middlebrook, D. S. Thomson, and D. M. Murphy, 2006: Design and performance of a pumped counterflow virtual impactor. Aerosol Sci. Technol., 40, 969979, doi:10.1080/02786820600840984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broadley, S., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condliffe, and L. Neve, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307, doi:10.5194/acp-12-287-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, S. D., K. Suter, and L. Olivarez, 2014: Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J. Phys. Chem., 118A, 10 03610 047, doi:10.1021/jp508809y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budke, C., and T. Koop, 2015: BINARY: An optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation. Atmos. Meas. Tech., 8, 689703, doi:10.5194/amt-8-689-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bundke, U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, and H. Bingemer, 2008: The Fast Ice Nucleus Chamber FINCH. Atmos. Res., 90, 180186, doi:10.1016/j.atmosres.2008.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particle analyses of INPs in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25, 13911394, doi:10.1029/97GL03261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • China, S., and Coauthors, 2015: Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties. Environ. Res. Lett., 10, 114010, doi:10.1088/1748-9326/10/11/114010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. A. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 47254738, doi:10.5194/acp-11-4725-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Henne, C. E. Morris, and C. Alewell, 2012: Atmospheric ice nucleators active ≥−12°C can be quantified on PM10 filters. Atmos. Meas. Tech., 5, 321327, doi:10.5194/amt-5-321-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, doi:10.5194/acp-12-2055-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cozic, J., S. Mertes, B. Verheggen, D. J. Cziczo, S. J. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113, D15209, doi:10.1029/2007JD009266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and K. D. Froyd, 2014: Sampling the composition of cirrus ice residuals. Atmos. Res., 142, 1531, doi:10.1016/j.atmosres.2013.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thompson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109, doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2009: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2, 333336, doi:10.1038/ngeo499.

  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, doi:10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, E. J., 1997: A history of single particle levitation. Aerosol Sci. Technol., 26, 212254, doi:10.1080/02786829708965426.

  • Davis, R. D., S. Lance, J. A. Gordon, S. B. Ushijima, and M. A. Tolbert, 2015: Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proc. Natl. Acad. Sci. USA, 112, 15 81515 820, doi:10.1073/pnas.1522860113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, doi:10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, doi:10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2015: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys., 15, 393409, doi:10.5194/acp-15-393-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of INPs. Proc. Natl. Acad. Sci. USA, 113, 57975803, doi:10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diehl, K., S. K. Mitra, M. Szakáll, N. von Blohn, S. Borrmann, and H. R. Pruppacher, 2011: The Mainz vertical wind tunnel facility: A review of 25 years of laboratory experiments on cloud physics and chemistry. Wind Tunnels: Aerodynamics, Models and Experiments, J. D. Pereira, Ed., Nova Press, 69–92.

  • Diehl, K., M. Debertshäuser, O. Eppers, H. Schmithüsen, S. K. Mitra, and S. Borrmann, 2014: Particle surface area dependence of mineral dust in immersion freezing mode: Investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel. Atmos. Chem. Phys., 14, 12 34312 355, doi:10.5194/acp-14-12343-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, L., 1862: Über das Gefrieren des Wassers und über die Bildung des Hagels. Ann. Phys. Chem., 190, 530554, doi:10.1002/andp.18621901203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durant, A., and R. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, doi:10.1029/2005GL024175.

  • Eastwood, M. L., S. Cremel, C. Gehrke, E. Girard, and A. K. Bertram, 2008: Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles. J. Geophys. Res., 113, D22203, doi:10.1029/2008JD010639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, M., A. Worringen, N. Benker, S. Mertes, E. Weingartner, and S. Weinbruch, 2011: Chemical composition and mixing-state of IRs sampled within mixed-phase clouds. Atmos. Chem. Phys., 11, 28052816, doi:10.5194/acp-11-2805-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, M. A., 2015: Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett., 6, 38503858, doi:10.1021/acs.jpclett.5b01326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froyd, K. D., D. M. Murphy, P. Lawson, D. Baumgardner, and R. L. Herman, 2010: Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys., 10, 209218, doi:10.5194/acp-10-209-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garimella, S., and Coauthors, 2016: The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation. Atmos. Meas. Tech., 9, 27812795, doi:10.5194/amt-9-2781-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Hartmann, S., D. Niedermeier, J. Voigtländer, T. Clauss, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, 2011: Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies. Atmos. Chem. Phys., 11, 17531767, doi:10.5194/acp-11-1753-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., H. Wex, T. Clauss, S. Augustin-Bauditz, D. Niedermeier, M. Rösch, and F. Stratmann, 2016: Immersion freezing of kaolinite: Scaling with particle surface area. J. Atmos. Sci., 73, 263278, doi:10.1175/JAS-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., K. Okada, and J. Ström, 1996: On the composition of non-volatile material in upper tropospheric aerosols and cirrus crystals. Atmos. Res., 41, 8188, doi:10.1016/0169-8095(95)00042-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, T. C., B. F. Moffett, P. J. DeMott, D. G. Georgakopoulos, W. L. Stump, and G. D. Franc, 2014: Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR. Appl. Environ. Microbiol., 80, 12561267, doi:10.1128/AEM.02967-13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015a: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 24892518, doi:10.5194/acp-15-2489-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015b: Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci., 8, 273277, doi:10.1038/ngeo2374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., D. Duft, A. Kiselev, and T. Leisner, 2013a: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: Quantitative size and temperature dependence for illite particles. Faraday Discuss., 165, 383390, doi:10.1039/c3fd00033h.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner, 2013b: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 23732382, doi:10.5194/amt-6-2373-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isono, K., 1955: On ice-crystal nuclei and other substances found in snow crystals. J. Meteor., 12, 456462, doi:10.1175/1520-0469(1955)012<0456:OICNAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamphus, M., and Coauthors, 2010: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys., 10, 80778095, doi:10.5194/acp-10-8077-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res., 111, D16204, doi:10.1029/2005JD006766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2009: The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC): A simple design for ice nucleation studies. Aerosol Sci. Technol., 43, 730738, doi:10.1080/02786820902889861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2010: Ice nucleation onto Arizona Test Dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem., 114A, 935941, doi:10.1021/jp908661m.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. Cziczo, and M. Krämer, 2017: Heterogeneous ice nucleation. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Crossref
    • Export Citation
  • Kaye, P. H., E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, 2008: Classifying atmospheric ice crystals by spatial light scattering. Opt. Lett., 33, 15451547, doi:10.1364/OL.33.001545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., B. Wang, A. Laskin, R. C. Moffet, and M. K. Gilles, 2010: Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett., 37, L11803, doi:10.1029/2010GL043362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohn, M., U. Lohmann, A. Welti, and Z. A. Kanji, 2016: Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA). J. Geophys. Res., 121, 47134733, doi:10.1002/2016JD024761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kojima, T., P. R. Buseck, J. C. Wilson, J. M. Reeves, and M. J. Mahoney, 2004: Particles from tropical convective systems: Cloud tops and cirrus anvils. J. Geophys. Res., 109, D12201, doi:10.1029/2003JD004504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina, 1998: A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem., 102A, 89248931, doi:10.1021/jp9828078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumai, M., 1961: Snow crystals and the identification of the nuclei in the northern United States of America. J. Meteor., 18, 139150, doi:10.1175/1520-0469(1961)018<0139:SCATIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kupiszewski, P., and Coauthors, 2015: The Ice Selective Inlet: A novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds. Atmos. Meas. Tech., 8, 30873106, doi:10.5194/amt-8-3087-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kupiszewski, P., and Coauthors, 2016: Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site. J. Geophys. Res. Atmos., 121, 12 34312 362, doi:10.1002/2016JD024894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., O. Stetzer, F. Lüönd, A. Welti, and U. Lohmann, 2011: Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res., D22202, doi:10.1029/2011JD015727.

    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., O. Stetzer, and U. Lohmann, 2013: Contact freezing: A review of experimental studies. Atmos. Chem. Phys., 13, 97459769, doi:10.5194/acp-13-9745-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langer, G., J. Rosinski, and C. P. Edwards, 1967: A continuous ice nucleus counter and its application to tracking in the troposphere. J. Appl. Meteor., 6, 114125, doi:10.1175/1520-0450(1967)006<0114:ACINCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, M. L., and E. E. Ávila, 2013: Measurements of natural deposition ice nuclei in Córdoba, Argentina. Atmos. Chem. Phys., 13, 31113119, doi:10.5194/acp-13-3111-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüönd, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, doi:10.1029/2009JD012959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys., 14, 20712104, doi:10.5194/acp-14-2071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015a: The micro-orifice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation. Atmos. Meas. Tech., 8, 24492462, doi:10.5194/amt-8-2449-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015b: Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys., 15, 12 54712 566, doi:10.5194/acp-15-12547-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2016: Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmos. Chem. Phys., 16, 16371651, doi:10.5194/acp-16-1637-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertes, S., A. Schwarzenböck, P. Laj, W. Wobrock, J.-M. Pichon, G. Orsi, and J. Heintzenberg, 2001: Changes of cloud microphysical properties during the transition from supercooled to mixed-phase conditions during CIME. Atmos. Res., 58, 267294, doi:10.1016/S0169-8095(01)00095-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertes, S., and Coauthors, 2007: Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study. Aerosol Sci. Technol., 41, 848864, doi:10.1080/02786820701501881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffet, R. C., and Coauthors, 2010: Microscopic characterization of carbonaceous particle aging in the outflow from Mexico City. Atmos. Chem. Phys., 10, 961976, doi:10.5194/acp-10-961-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2003: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys., 3, 211223, doi:10.5194/acp-3-211-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, doi:10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., 2007: The design of single particle laser mass spectrometers. Mass Spectrom. Rev., 26, 150165, doi:10.1002/mas.20113.

  • Murphy, D. M., D. J. Cziczo, P. K. Hudson, D. S. Thomson, J. C. Wilson, T. Kojima, and P. R. Buseck, 2004: Particle generation and resuspension in aircraft inlets when flying in clouds. Aerosol Sci. Technol., 38, 401409, doi:10.1080/02786820490443094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2011: Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmos. Chem. Phys., 11, 11 13111 144, doi:10.5194/acp-11-11131-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehaus, J., K. W. Bunker, S. China, A. Kostinski, C. Mazzoleni, and W. Cantrell, 2014: A technique to measure ice nuclei in the contact mode. J. Atmos. Oceanic Technol., 31, 913922, doi:10.1175/JTECH-D-13-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8, 235244, doi:10.1080/02786828808959186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., H.-C. Hansson, and R. K. A. M. Mallant, 1992: Droplet sampling from crosswinds: An inlet efficiency calibration. J. Aerosol Sci., 23, 153164, doi:10.1016/0021-8502(92)90051-V.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogren, J. A., J. Heintzenberg, and R. J. Charlson, 1985: In-situ sampling of clouds with a droplet to aerosol converter. Geophys. Res. Lett., 12, 121124, doi:10.1029/GL012i003p00121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, H. P., 1949: Natural ice-particle nuclei. Quart. J. Roy. Meteor. Soc., 75, 1722, doi:10.1002/qj.49707532303.

  • Pekour, M., and D. J. Cziczo, 2011: Wake capture, particle break-up and other artifacts associated with counterflow virtual impaction. Aerosol Sci. Technol., 45, 758764, doi:10.1080/02786826.2011.558942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perring, A. E., J. P. Schwarz, R. S. Gao, A. J. Heymsfeld, C. G. Schmitt, M. Schnaiter, and D. W. Fahey, 2013: Evaluation of a perpendicular inlet for airborne sampling of interstitial submicron aerosol. Aerosol Sci. Technol., 47, 10661072, doi:10.1080/02786826.2013.821196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 87588766, doi:10.1002/2015GL065733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petzold, A., J. Ström, S. Ohlsson, and F. P. Schroder, 1998: Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails. Atmos. Res., 49, 2134, doi:10.1016/S0169-8095(97)00083-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401, doi:10.1038/ngeo521.

  • Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149181, doi:10.1016/0169-8095(88)90005-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18, 725741, doi:10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and G. Vali, 1978: Recent developments in meteorological physics. Phys. Rep., 48, 65177, doi:10.1016/0370-1573(78)90078-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosinski, J., P. L. Haagenson, C. T. Nagamoto, and F. Parungo, 1986: Ice-forming nuclei of maritime origin. J. Aerosol Sci., 17, 2346, doi:10.1016/0021-8502(86)90004-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, G. P., D. O. De Haan, and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated secondary organic aerosol. Environ. Sci. Technol., 48, 16751682, doi:10.1021/es4046428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., 1977: Ice nuclei in seawater, fog water and marine air off the coast of Nova Scotia: Summer 1975. J. Atmos. Sci., 34, 12991305, doi:10.1175/1520-0469(1977)034<1299:INISFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci., 33, 15541564, doi:10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, M., J. Ström, R. Krejci, A. Minikin, A. Petzold, J.-F. Gayet, U. Schumann, and J. Olvarlez, 2003: In situ observations of particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses. Atmos. Chem. Phys., 3, 10371049, doi:10.5194/acp-3-1037-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, M., and Coauthors, 2004: Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: Comparing clean and polluted air masses. Atmos. Chem. Phys., 4, 13431353, doi:10.5194/acp-4-1343-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shilling, J. E., T. J. Fortin, and M. A. Tolbert, 2006: Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res., 111, D05207, doi:10.1029/2005JD006664.

    • Search Google Scholar
    • Export Citation
  • Sihvonen, S. K., G. P. Schill, N. A. Lyktey, D. P. Veghte, M. A. Tolbert, and M. A. Freedman, 2014: Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation. J. Phys. Chem., 118A, 87878796, doi:10.1021/jp504846g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stetzer, O., B. Baschek, F. Lüönd, and U. Lohmann, 2008: The Zurich Ice Nucleation Chamber (ZINC)—A new instrument to investigate atmospheric ice formation. Aerosol Sci. Technol., 42, 6474, doi:10.1080/02786820701787944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., C. H. Twohy, P. J. DeMott, D. Baumgardner, T. Campos, R. Gao, and J. Anderson, 2011: Observations of ice nuclei and heterogeneous freezing in a western Pacific extratropical storm. Atmos. Chem. Phys., 11, 62296249, doi:10.5194/acp-11-6229-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ström, J., and J. Heintzenberg, 1994: Water vapor, condensed water and crystal concentration in orographically influenced cirrus clouds. J. Atmos. Sci., 51, 23682383, doi:10.1175/1520-0469(1994)051<2368:WVCWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ström, J., B. Strauss, T. Anderson, J. Schröder, J. Heintzenberg, and P. Wendling, 1997: In situ observations of the microphysical properties of young cirrus clouds. J. Atmos. Sci., 54, 25422553, doi:10.1175/1520-0469(1997)054<2542:ISOOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1997: Biogenic and anthropogenic sources of ice-forming nuclei: A review. Bull. Amer. Meteor. Soc., 78, 209228, doi:10.1175/1520-0477(1997)078<0209:BAASOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Targino, A. C., R. Krejci, K. J. Noone, and P. Glantz, 2006: Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos. Chem. Phys., 6, 19771990, doi:10.5194/acp-6-1977-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tenberken-Pötzsch, B., M. Schwikowski, and H. W. Gäggeler, 2000: A method to sample and separate ice crystals and supercooled cloud droplets in mixed phase clouds for subsequent chemical analysis. Atmos. Environ., 34, 36293633, doi:10.1016/S1352-2310(00)00140-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and B. W. Gandrud, 1998: Electron microscope analysis of residual particles from aircraft contrails. Geophys. Res. Lett., 25, 13591362, doi:10.1029/97GL03162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and M. R. Poellot, 2005: Chemical characteristics of IR nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation. Atmos. Chem. Phys., 5, 22892297, doi:10.5194/acp-5-2289-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202, doi:10.1175/1520-0426(1997)014<0197:MOCWCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., J. W. Strapp, and M. Wendisch, 2003: Performance of a counterflow virtual impactor in the NASA Icing Research Tunnel. J. Atmos. Oceanic Technol., 20, 781790, doi:10.1175/1520-0426(2003)020<0781:POACVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 1966: Sizes of atmospheric ice nuclei. Nature, 212, 384385, doi:10.1038/212384a0.

  • Vali, G., M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, 1976: Biogenic ice nuclei. Part II: Bacterial sources. J. Atmos. Sci., 33, 15651570, doi:10.1175/1520-0469(1976)033<1565:BINPIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, doi:10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veghte, D. P., D. R. Bittner, and M. A. Freedman, 2014: Cryo-transmission electron microscopy imaging of the morphology of submicrometer aerosol containing organic acids and ammonium sulfate. Anal. Chem., 86, 24362442, doi:10.1021/ac403279f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidaurre, G., and J. Hallett, 2009: Particle impact and breakup in aircraft measurement. J. Atmos. Oceanic Technol., 26, 972983, doi:10.1175/2008JTECHA1147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2016: In situ characterization of mixed phase clouds using the small ice detector and the particle phase discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Wang, B. B., A. T. Lambe, P. Massoli, T. B. Onasch, P. Davidovits, D. R. Worsnop, and D. A. Knopf, 2012a: The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed‐phase cloud formation. J. Geophys. Res., 117, D16209, doi:10.1029/2012JD018063.

    • Search Google Scholar
    • Export Citation
  • Wang, B. B., A. Laskin, T. Roedel, M. K. Gilles, R. C. Moffet, A. V. Tivanski, and D. A. Knopf, 2012b: Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K. J. Geophys. Res., 117, D00V19, doi:10.1029/2012JD017446.

    • Search Google Scholar
    • Export Citation
  • Whale, T. F., and Coauthors, 2015: A technique for quantifying heterogeneous ice nucleation in microliter supercooled water droplets. Atmos. Meas. Tech., 8, 24372447, doi:10.5194/amt-8-2437-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, doi:10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, M. E., K. J. Baustian, T. Koop, M. A. Freedman, E. J. Jensen, and M. A. Tolbert, 2012: Depositional ice nucleation onto crystalline hydrated NaCl particles: A new mechanism for ice formation in the troposphere. Atmos. Chem. Phys., 12, 11211134, doi:10.5194/acp-12-1121-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worringen, A., and Coauthors, 2015: Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques. Atmos. Chem. Phys., 15, 41614178, doi:10.5194/acp-15-4161-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, T. P., and M. D. Petters, 2013: The role of time in heterogeneous freezing nucleation. J. Geophys. Res. Atmos., 118, 37313743, doi:10.1002/jgrd.50365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G., and Coauthors, 2016: Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign. Atmos. Chem. Phys., 16, 40634079, doi:10.5194/acp-16-4063-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmermann, F., M. Ebert, A. Worringen, L. Schütz, and S. Weinbruch, 2007: Environmental scanning electron microscopy (ESEM) as a new technique to determine the ice nucleation capability of individual atmospheric particles. Atmos. Environ., 41, 82198227, doi:10.1016/j.atmosenv.2007.06.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolles, T., J. Burkart, T. Häusler, B. Pummer, R. Hitzenberger, and H. Grothe, 2015: Identification of ice nucleation active sites on feldspar dust particles. J. Phys. Chem., 119A, 26922700, doi:10.1021/jp509839x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuberi, B., A. K. Bertram, T. Koop, L. T. Molina, and M. J. Molina, 2001: Heterogeneous freezing of aqueous particles induced by crystallized (NH4)2SO4, ice, and letovicite. J. Phys. Chem., 105A, 64586464, doi:10.1021/jp010094e.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 35
PDF Downloads 80 80 32

Measurements of Ice Nucleating Particles and Ice Residuals

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 3 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
  • 4 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 5 Paul Scherrer Institute, Villigen, Switzerland
  • 6 University at Albany, State University of New York, Albany, New York
  • 7 Leibniz Institute for Tropospheric Research, Leipzig, Germany
© Get Permissions
Restricted access

Abstract

It has been known that aerosol particles act as nuclei for ice formation for over a century and a half (see Dufour). Initial attempts to understand the nature of these ice nucleating particles were optical and electron microscope inspection of inclusions at the center of a crystal (see Isono; Kumai). Only within the last few decades has instrumentation to extract ice crystals from clouds and analyze the residual material after sublimation of condensed-phase water been available (see Cziczo and Froyd). Techniques to ascertain the ice nucleating potential of atmospheric aerosols have only been in place for a similar amount of time (see DeMott et al.). In this chapter the history of measurements of ice nucleating particles, both in the field and complementary studies in the laboratory, are reviewed. Remaining uncertainties and artifacts associated with measurements are described and suggestions for future areas of improvement are made.

Denotes content that is immediately available upon publication as open access.

Publisher’s Note: This chapter was revised on 12 April 2017 to include acknowledgments originally missing in the Acknowledgments section.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Daniel J. Cziczo, djcziczo@mit.edu

Abstract

It has been known that aerosol particles act as nuclei for ice formation for over a century and a half (see Dufour). Initial attempts to understand the nature of these ice nucleating particles were optical and electron microscope inspection of inclusions at the center of a crystal (see Isono; Kumai). Only within the last few decades has instrumentation to extract ice crystals from clouds and analyze the residual material after sublimation of condensed-phase water been available (see Cziczo and Froyd). Techniques to ascertain the ice nucleating potential of atmospheric aerosols have only been in place for a similar amount of time (see DeMott et al.). In this chapter the history of measurements of ice nucleating particles, both in the field and complementary studies in the laboratory, are reviewed. Remaining uncertainties and artifacts associated with measurements are described and suggestions for future areas of improvement are made.

Denotes content that is immediately available upon publication as open access.

Publisher’s Note: This chapter was revised on 12 April 2017 to include acknowledgments originally missing in the Acknowledgments section.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Daniel J. Cziczo, djcziczo@mit.edu
Save