• Ackerman, T. P., K. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2012: “Cirrus.” Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Cirrus.]

  • Auer, A. H., Jr., and D. L. Veal, 1970: The dimensions of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auriol, F., J.-F. Gayet, G. Febvre, O. Jourdan, L. Labonnotte, and G. Brogniez, 2001: In situ observations of cirrus cloud scattering phase function with 22° and 46° halos: Cloud field study on 19 February 1998. J. Atmos. Sci., 58, 33763390, doi:10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544, doi:10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol, 45, 12821290, doi:10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2004: On the scattering and absorption properties of cirrus cloud. J. Quant. Spectrosc. Radiat. Transfer, 89, 1736, doi:10.1016/j.jqsrt.2004.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriaux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Quart. J. Roy. Meteor. Soc., 127, 23952416, doi:10.1002/qj.49712757711.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, doi:10.1175/2010JAMC2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter07_FINAL.pdf.]

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., A. G. Isaac, Q. Fu, and S. G. Cober, 2002: Parameterization of effective particle sizes for high latitude clouds. Int. J. Climatol., 22, 12671284, doi:10.1002/joc.774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, doi:10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and Coauthors, 2014: Growth and sublimation of rough ice crystals in a flow diffusion chamber. Extended Abstracts, 45th Annual Conf. of the British Association Crystal Growth, Leeds, United Kingdom, British Association for Crystal Growth, 704.

  • Cole, B. H., P. Yang, B. A. Baum, J. Riedi, L. C. Labonnote, F. Thieuleux, and S. Platnick, 2013: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J. Appl. Meteor. Climatol., 52, 186196, doi:10.1175/JAMC-D-12-097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

    • Crossref
    • Export Citation
  • Connolly, P. J., M. J. Flynn, Z. Ulanowski, T. W. Choularton, M. W. Gallagher, and K. N. Bower, 2007: Calibration of 2 D imaging probes using calibration beads and ice crystal analogues. J. Atmos. Oceanic Technol., 24, 18601879, doi:10.1175/JTECH2096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 13201324, doi:10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., L. Ladino-Moreno, Y. Boose, Z. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0008.1.

    • Crossref
    • Export Citation
  • Davis, C. I., 1974: The ice-nucleating characteristics of various AgI aerosols. Ph.D. dissertation, University of Wyoming, 267 pp.

  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and E. Berry, 2015: CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region. J. Geophys. Res., 120, 12 19812 208, doi:10.1002/2015JD023600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 5135–5144, doi:10.1175/2008JCLI2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873, doi:10.1175/2009JAS3046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. P., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571370, doi:10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. P., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, doi:10.1175/2007JAS2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145164, doi:10.1002/qj.49711447908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W., and Coauthors, 2011: In situ measurements of tropical cloud properties in the West African Monsoon: Upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus. Atmos. Chem. Phys., 11, 55695590, doi:10.5194/acp-11-5569-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 41404150, doi:10.1175/2007JAS2289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fusina, F., and P. Spichtinger, 2010: Cirrus clouds triggered by radiation, a multiscale phenomenon. Atmos. Chem. Phys., 10, 51795190, doi:10.5194/acp-10-5179-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallagher, M. W., and Coauthors, 2005: An overview of the microphysical structure of cirrus clouds observed during EMERALD-I. Quart. J. Roy. Meteor. Soc., 131, 11431169, doi:10.1256/qj.03.138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., 2008: Observational quantification of the optical properties of cirrus cloud. Light Scattering Reviews 3, A. A. Kokhanovsky, Ed., Springer, 3–26, doi:10.1007/978-3-540-48546-9_1.

    • Crossref
    • Export Citation
  • Garrett, T. J., and Coauthors 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62, 2352–2372, doi:10.1175/JAS3495.1.

    • Crossref
    • Export Citation
  • Gasparini, B., and U. Lohmann, 2016: Why cirrus cloud seeding cannot substantially cool the planet. J. Geophys. Res. Atmos., 121, 4877–4893, doi:10.1002/2015JD024666.

    • Crossref
    • Export Citation
  • Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: A case study during CIRCLE-2 experiment. Atmos. Chem. Phys., 11, 25372544, doi:10.5194/acp-11-2537-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Carbon Dioxide Information Analysis Center Numeric Data Package NDP-026E, 71 pp.

    • Crossref
    • Export Citation
  • Hallett, J., 1987: Faceted snow crystals. J. Opt. Soc. Amer., 4A, 581588, doi:10.1364/JOSAA.4.000581.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975a: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32, 799808, doi:10.1175/1520-0469(1975)032<0799:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975b: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulations of the cirrus uncinus generating head. J. Atmos. Sci., 32, 809819, doi:10.1175/1520-0469(1975)032<0809:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975c: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part III: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32, 820830, doi:10.1175/1520-0469(1975)032<0820:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367381, doi:10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of ambient temperature and their ice water content. J. Atmos. Sci., 41, 846855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50, 23352353, doi:10.1175/1520-0469(1993)050<2335:HINASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52, 43024326, doi:10.1175/1520-0469(1995)052<4302:RHATIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus: Microphysical properties. Cirrus, D. Lynch et al., Ed., Oxford University Press, 78–101.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, and W. Hall, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C. J. Atmos. Sci., 66, 35303562, doi:10.1175/2009JAS3107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., M. Krämer, N. B. Wood, A. Gettelman, P. R. Field, and G. Liu, 2017: Dependence of the ice water content and snowfall rate on temperature, globally: Comparison of in situ observations, satellite active remote sensing retrievals, and global climate model simulations. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-16-0230.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huschke, R. E., 1970: Glossary of Meteorology. Amer. Meteor. Soc., 638 pp.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Ivanova, D. C., D. L. Mitchell, W. Patrick Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59–60, 89113, doi:10.1016/S0169-8095(01)00111-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of anti-shattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 21312144, doi:10.1175/JTECH-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of anti-shattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, doi:10.1175/JTECH-D-13-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, A. Fridlind, and R. Atlas, 2015: The dependence of cirrus gamma size distributions expressed as volumes in N0λμ phase space and bulk cloud properties on environmental conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS). J. Geophys. Res., 120, 10 35110 377, doi:10.1002/2015JD023492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101, 21 36121 375, doi:10.1029/95JD03575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, H., P. Spichtinger, P. Reutter, and F. Fusina, 2014: Influence of heterogeneous freezing on the microphysical and radiative properties of orographic cirrus clouds. Atmos. Chem. Phys., 14, 68356852, doi:10.5194/acp-14-6835-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. Cziczo, and M. Krämer, 2017: Heterogeneous ice nucleation. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Crossref
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2002: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107, AAC 4-1–AAC 4-10, doi:10.1029/2001JD000470.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res., 108, 4402, doi:10.1029/2002JD003220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 111, D01205, doi:10.1029/2005JD006219.

    • Crossref
    • Export Citation
  • Kay, J. E., M. Baker, and D. Hegg, 2006: Microphysical and dynamical controls on cirrus cloud optical depth distributions. J. Geophys. Res., 111, D24205, doi:10.1029/2005JD006916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties. J. Atmos. Sci., 55, 18221845, doi:10.1175/1520-0469(1998)055<1822:CCSUEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, doi:10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, doi:10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, I. P. Mazin, and H. Barker, 2001: Microphysical properties of continental clouds from in-situ measurements. Quart. J. Roy. Meteor. Soc., 127, 2117–2151, doi:10.1002/qj.49712757614.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and E. Emery, 2013: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, doi:10.1175/JTECH-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kox, S., L. Bugliaro, and A. Ostler, 2014: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. Atmos. Meas. Tech., 7, 32333246, doi:10.5194/amt-7-3233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, doi:10.5194/acp-9-3505-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds. Part I: Cirrus types. Atmos. Chem. Phys., 16, 34633483, doi:10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher, 2014: Dust ice nuclei effects on cirrus clouds. Atmos. Chem. Phys., 14, 30273046, doi:10.5194/acp-14-3027-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lampert, A., and Coauthors, 2009: Microphysical and radiative characterization of a subvisible midlevel Arctic ice cloud by airborne observations—A case study. Atmos. Chem. Phys., 9, 26472661, doi:10.5194/acp-9-2647-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. J. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45, 15941605, doi:10.1175/1520-0469(1988)045<1594:COD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and B. Kärcher, 2002: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J. Geophys. Res., 107, 4105–4118, doi:10.1029/2001JD000767.

    • Crossref
    • Export Citation
  • Lohmann, U., P. Spichtinger, S. Jess, T. Peter, and H. Smit, 2008: Cirrus cloud formation and ice supersaturated regions in a global climate model. Environ. Res. Lett., 3, 045022, doi:10.1088/1748-9326/3/4/045022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luebke, A. E., L. M. Avallone, C. Schiller, J. Meyer, C. Rolf, and M. Krämer, 2013: Ice water content of Arctic, midlatitude, and tropical cirrus—Part 2: Extension of the database and new statistical analysis. Atmos. Chem. Phys., 13, 64476459, doi:10.5194/acp-13-6447-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luebke, A. E., and Coauthors, 2016: The origin of midlatitude ice clouds and the resulting influence on their microphysical properties. Atmos. Chem. Phys., 16, 57935809, doi:10.5194/acp-16-5793-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., K. Sassen, D. O’C. Starr, and G. Stephens, Eds., 2002: Cirrus, Oxford University Press, 504 pp.

    • Crossref
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar–lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res., 9441–9462, doi:10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 28132825, doi:10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12 35712 371, doi:10.5194/acp-14-12357-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment (CEPEX). J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54, 21872200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 20392052, doi:10.1175/1520-0469(1998)055<2039:TDASOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 18411853, doi:10.1175/1520-0469(2000)057<1841:TASTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478, doi:10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007a: The importance of small ice crystals to cirrus properties: Observations from the Tropical Western Pacific International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007b: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., T.-L. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0λμ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, doi:10.1175/JAS-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Crossref
    • Export Citation
  • Miloshevich, L. M., and A. J. Heymsfield, 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol., 14, 753768, doi:10.1175/1520-0426(1997)014<0753:ABBCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and A. Macke, 1999: How big should hexagonal ice crystals be to produce halos? Appl. Opt., 38, 16261629, doi:10.1364/AO.38.001626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817832, doi:10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and W. Finnegan, 2009: Modification of cirrus clouds to reduce global warming. Environ. Res. Lett., 4, 045102, doi:10.1088/1748-9326/4/4/045102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong, 1996: Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53, 2952–2966, doi:10.1175/1520-0469(1996)053<2952:MCCPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Phillip, D. Ivanova, G. M. McFarquhar, and T. Nousiainen, 2008: Impacts of small ice crystal assumption on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. P. d’Entremont, and R. P. Lawson, 2010: Inferring cirrus size distributions through satellite remote sensing and microphysical databases. J. Atmos. Sci., 67, 11061125, doi:10.1175/2009JAS3150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., T. P. Ackerman, J. M. Comstock, G. S. Diskin, S. M. Evans, R. P. Lawson, and R. T. Marchand, 2014: Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus. J. Geophys. Res., 119, 3976–3996, doi:10.1002/2013JD020035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazaryan, H., M. P. McCormick, and W. P. Menzel, 2008: Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res., 113, D16211, doi:10.1029/2007JD009481.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci., 55, 14521465, doi:10.1175/1520-0469(1998)055<1452:SCHCEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., and G. M. McFarquhar, 2004: Radiative properties of small quasi-spherical ice crystals. J. Atmos. Sci., 61, 22292248, doi:10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ou, S. C., and K. N. Liou, 1995: Ice microphysics and climatic temperature feedback. Atmos. Res., 35, 127138, doi:10.1016/0169-8095(94)00014-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., C. Zhou, and X. Liu, 2015: Can cirrus cloud seeding be used for geoengineering? Geophys. Res. Lett., 43, 8775–8782, doi:10.1002/2015GL065992.

    • Search Google Scholar
    • Export Citation
  • Pfalzgraff, W. C., R. M. Hulscher, and S. P. Neshyba, 2010: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys., 10, 29272935, doi:10.5194/acp-10-2927-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation, 2nd ed. Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Publishers, 954 pp., doi:10.1007/978-0-306-48100-0.

    • Crossref
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, doi:10.1038/351027a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and A. Detwiler, 1986: Interdependence of radiation and microphysics in cirrus clouds. J. Atmos. Sci., 43, 22892301, doi:10.1175/1520-0469(1986)043<2289:IORAMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riese, M., F. Ploeger, A. Rap, B. Vogel, P. Konopka, M. Dameris, and P. Forster, 2012: Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J. Geophys. Res., 117, D16305, doi:10.1029/2012JD017751.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Benedetti, 2002: Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model. J. Appl. Meteor., 41, 620628, doi:10.1175/1520-0450(2002)041<0620:CCIWCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2009: Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.

    • Search Google Scholar
    • Export Citation
  • Schiller, C., M. Krämer, A. Afchine, N. Spelten, and N. Sitnikov, 2008: Ice water content in Arctic, midlatitude, and tropical cirrus. J. Geophys. Res., 113, D24208, doi:10.1029/2008JD010342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 50915110, doi:10.5194/acp-16-5091-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbakov, V., J. F. Gayet, O. Jourdan, J. Ström, and A. Minikin, 2006: Light scattering by single ice crystals of cirrus clouds. Geophys. Res. Lett., 33, L15809, doi:10.1029/2006GL026055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., and D. J. Cziczo, 2010: Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds. J. Geophys. Res., 115, D14208, doi:10.1029/2009JD012168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starr, D. O’C., and S. K. Cox, 1985: Cirrus clouds. Part II: Numerical experiment on the formation and maintenance of cirrus. J. Atmos. Sci., 42, 26822694, doi:10.1175/1520-0469(1985)042<2682:CCPINE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., J. E. Kristjansson, H. Muri, M. A. Pfeffer, D. Barahona, and A. Nenes, 2013: Cirrus cloud seeding has potential to cool climate. Geophys. Res. Lett., 40, 178182, doi:10.1029/2012GL054201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818837, doi:10.1175/1520-0469(1995)052<0818:RTICCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., 2005: Ice analog halos. Appl. Opt., 44, 57545758, doi:10.1364/AO.44.005754.

  • Ulanowski, Z., P. Connolly, M. Flynn, M. Gallagher, A. J. M. Clarke, and E. Hesse, 2004: Using ice crystal analogues to validate cloud ice parameter retrievals from the CPI ice spectrometer data. Proc. 14th Int. Conf. on Clouds & Precipitation, Bologna, Italy, International Commission on Clouds and Precipitation, 11751178.

  • Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382392, doi:10.1016/j.jqsrt.2005.11.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J. S., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775, doi:10.1175/JAM2501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J. S., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates from TWP-ICE. Quart. J. Roy. Meteor. Soc., 135, 291304, doi:10.1002/qj.378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J. S., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 3159–3171, doi:10:5914/acp-11-3159-2011.

    • Crossref
    • Export Citation
  • Um, J. S., and G. M. McFarquhar, 2015: Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and crystal size. J. Quant. Spectrosc. Radiat. Transfer, 165, 134152, doi:10.1016/j.jqsrt.2015.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys., 15, 39333956, doi:10.5194/acp-15-3933-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud radiative properties to observed fluxes—A critical assessment. J. Atmos. Sci., 52, 42854301, doi:10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, R., A. Kiselev, O. Moehler, H. Saathoff, and I. Steinke, 2016: Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism. Atmos. Chem. Phys., 16, 20252042, doi:10.5194/acp-16-2025-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickman, H. K., 1948: Die Eisphase in der Atmosphare. Royal Aircraft Establishment, 96 pp.

  • Winker, D. M., M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1956: International Cloud Atlas (abridged). World Meteorological Organization, 62 pp.

  • Wong, R. K. W., N. Chidambaram, L. Cheng, and M. English, 1988: The sampling variations of hailstone size distributions. J. Appl. Meteor., 27, 254260, doi:10.1175/1520-0450(1988)027<0254:TSVOHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 19721986, doi:10.1175/1520-0442(1994)007<1972:FYOGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Q. Fu, 2009: Dependence of ice crystal optical properties on particle aspect ratio. J. Quant. Spectrosc. Radiat. Transfer, 110, 16041614, doi:10.1016/j.jqsrt.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, M. I. Mishchenko, D. M. Winker, and S. L. Nasiri, 2001: Asymptotic solutions for optical properties of large particles with strong absorption. Appl. Opt., 40, 15321547, doi:10.1364/AO.40.001532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2003: Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res., 108, 4569, doi:10.1029/2002JD003291.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, doi:10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. X. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 19481957, doi:10.1109/TGRS.2008.916472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, L. Bi, C. Liu, B. Yi, and B. A. Baum, 2015: On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci., 32, 3263, doi:10.1007/s00376-014-0011-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, X. T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 241 107
PDF Downloads 214 214 96

Cirrus Clouds

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • 2 Forschungszentrum Jülich GmbH, Jülich, Germany
  • 3 Met Office, Exeter, United Kingdom
  • 4 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 5 CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
  • 6 SPEC Inc., Boulder, Colorado
  • 7 ETH, Zurich, Switzerland
  • 8 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • 9 University of Hertfordshire, Hatfield, United Kingdom
  • 10 Katholieke Universiteit Leuven, Leuven, Belgium
© Get Permissions
Restricted access

Abstract

The goal of this chapter is to synthesize information about what is now known about one of the three main types of clouds, cirrus, and to identify areas where more knowledge is needed. Cirrus clouds, composed of ice particles, form in the upper troposphere, where temperatures are generally below −30°C. Satellite observations show that the maximum-occurrence frequency of cirrus is near the tropics, with a large latitudinal movement seasonally. In situ measurements obtained over a wide range of cirrus types, formation mechanisms, temperatures, and geographical locations indicate that the ice water content and particle size generally decrease with decreasing temperature, whereas the ice particle concentration is nearly constant or increases slightly with decreasing temperature. High ice concentrations, sometimes observed in strong updrafts, result from homogeneous nucleation. The satellite-based and in situ measurements indicate that cirrus ice crystals typically differ from the simple, idealized geometry for smooth hexagonal shapes, indicating complexity and/or surface roughness. Their shapes significantly impact cirrus radiative properties and feedbacks to climate. Cirrus clouds, one of the most uncertain components of general circulation models (GCM), pose one of the greatest challenges in predicting the rate and geographical pattern of climate change. Improved measurements of the properties and size distributions and surface structure of small ice crystals (about 20 μm) and identifying the dominant ice nucleation process (heterogeneous versus homogeneous ice nucleation) under different cloud dynamical forcings will lead to a better representation of their properties in GCM and in modeling their current and future effects on climate.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Bureau of Meteorology, Docklands, Victoria, Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martina Krämer, m.kraemer@fz-juelich.de

Abstract

The goal of this chapter is to synthesize information about what is now known about one of the three main types of clouds, cirrus, and to identify areas where more knowledge is needed. Cirrus clouds, composed of ice particles, form in the upper troposphere, where temperatures are generally below −30°C. Satellite observations show that the maximum-occurrence frequency of cirrus is near the tropics, with a large latitudinal movement seasonally. In situ measurements obtained over a wide range of cirrus types, formation mechanisms, temperatures, and geographical locations indicate that the ice water content and particle size generally decrease with decreasing temperature, whereas the ice particle concentration is nearly constant or increases slightly with decreasing temperature. High ice concentrations, sometimes observed in strong updrafts, result from homogeneous nucleation. The satellite-based and in situ measurements indicate that cirrus ice crystals typically differ from the simple, idealized geometry for smooth hexagonal shapes, indicating complexity and/or surface roughness. Their shapes significantly impact cirrus radiative properties and feedbacks to climate. Cirrus clouds, one of the most uncertain components of general circulation models (GCM), pose one of the greatest challenges in predicting the rate and geographical pattern of climate change. Improved measurements of the properties and size distributions and surface structure of small ice crystals (about 20 μm) and identifying the dominant ice nucleation process (heterogeneous versus homogeneous ice nucleation) under different cloud dynamical forcings will lead to a better representation of their properties in GCM and in modeling their current and future effects on climate.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Bureau of Meteorology, Docklands, Victoria, Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martina Krämer, m.kraemer@fz-juelich.de
Save