Cirrus Clouds

Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Martina Krämer Forschungszentrum Jülich GmbH, Jülich, Germany

Search for other papers by Martina Krämer in
Current site
Google Scholar
PubMed
Close
,
Anna Luebke Forschungszentrum Jülich GmbH, Jülich, Germany

Search for other papers by Anna Luebke in
Current site
Google Scholar
PubMed
Close
,
Phil Brown Met Office, Exeter, United Kingdom

Search for other papers by Phil Brown in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Cziczo Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Daniel J. Cziczo in
Current site
Google Scholar
PubMed
Close
,
Charmaine Franklin CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

Search for other papers by Charmaine Franklin in
Current site
Google Scholar
PubMed
Close
,
Paul Lawson SPEC Inc., Boulder, Colorado

Search for other papers by Paul Lawson in
Current site
Google Scholar
PubMed
Close
,
Ulrike Lohmann ETH, Zurich, Switzerland

Search for other papers by Ulrike Lohmann in
Current site
Google Scholar
PubMed
Close
,
Greg McFarquhar University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Zbigniew Ulanowski University of Hertfordshire, Hatfield, United Kingdom

Search for other papers by Zbigniew Ulanowski in
Current site
Google Scholar
PubMed
Close
, and
Kristof Van Tricht Katholieke Universiteit Leuven, Leuven, Belgium

Search for other papers by Kristof Van Tricht in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The goal of this chapter is to synthesize information about what is now known about one of the three main types of clouds, cirrus, and to identify areas where more knowledge is needed. Cirrus clouds, composed of ice particles, form in the upper troposphere, where temperatures are generally below −30°C. Satellite observations show that the maximum-occurrence frequency of cirrus is near the tropics, with a large latitudinal movement seasonally. In situ measurements obtained over a wide range of cirrus types, formation mechanisms, temperatures, and geographical locations indicate that the ice water content and particle size generally decrease with decreasing temperature, whereas the ice particle concentration is nearly constant or increases slightly with decreasing temperature. High ice concentrations, sometimes observed in strong updrafts, result from homogeneous nucleation. The satellite-based and in situ measurements indicate that cirrus ice crystals typically differ from the simple, idealized geometry for smooth hexagonal shapes, indicating complexity and/or surface roughness. Their shapes significantly impact cirrus radiative properties and feedbacks to climate. Cirrus clouds, one of the most uncertain components of general circulation models (GCM), pose one of the greatest challenges in predicting the rate and geographical pattern of climate change. Improved measurements of the properties and size distributions and surface structure of small ice crystals (about 20 μm) and identifying the dominant ice nucleation process (heterogeneous versus homogeneous ice nucleation) under different cloud dynamical forcings will lead to a better representation of their properties in GCM and in modeling their current and future effects on climate.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Bureau of Meteorology, Docklands, Victoria, Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martina Krämer, m.kraemer@fz-juelich.de

Abstract

The goal of this chapter is to synthesize information about what is now known about one of the three main types of clouds, cirrus, and to identify areas where more knowledge is needed. Cirrus clouds, composed of ice particles, form in the upper troposphere, where temperatures are generally below −30°C. Satellite observations show that the maximum-occurrence frequency of cirrus is near the tropics, with a large latitudinal movement seasonally. In situ measurements obtained over a wide range of cirrus types, formation mechanisms, temperatures, and geographical locations indicate that the ice water content and particle size generally decrease with decreasing temperature, whereas the ice particle concentration is nearly constant or increases slightly with decreasing temperature. High ice concentrations, sometimes observed in strong updrafts, result from homogeneous nucleation. The satellite-based and in situ measurements indicate that cirrus ice crystals typically differ from the simple, idealized geometry for smooth hexagonal shapes, indicating complexity and/or surface roughness. Their shapes significantly impact cirrus radiative properties and feedbacks to climate. Cirrus clouds, one of the most uncertain components of general circulation models (GCM), pose one of the greatest challenges in predicting the rate and geographical pattern of climate change. Improved measurements of the properties and size distributions and surface structure of small ice crystals (about 20 μm) and identifying the dominant ice nucleation process (heterogeneous versus homogeneous ice nucleation) under different cloud dynamical forcings will lead to a better representation of their properties in GCM and in modeling their current and future effects on climate.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Bureau of Meteorology, Docklands, Victoria, Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martina Krämer, m.kraemer@fz-juelich.de
Save
  • Ackerman, T. P., K. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2012: “Cirrus.” Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Cirrus.]

  • Auer, A. H., Jr., and D. L. Veal, 1970: The dimensions of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auriol, F., J.-F. Gayet, G. Febvre, O. Jourdan, L. Labonnotte, and G. Brogniez, 2001: In situ observations of cirrus cloud scattering phase function with 22° and 46° halos: Cloud field study on 19 February 1998. J. Atmos. Sci., 58, 33763390, doi:10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544, doi:10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol, 45, 12821290, doi:10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2004: On the scattering and absorption properties of cirrus cloud. J. Quant. Spectrosc. Radiat. Transfer, 89, 1736, doi:10.1016/j.jqsrt.2004.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriaux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Quart. J. Roy. Meteor. Soc., 127, 23952416, doi:10.1002/qj.49712757711.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, doi:10.1175/2010JAMC2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter07_FINAL.pdf.]

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., A. G. Isaac, Q. Fu, and S. G. Cober, 2002: Parameterization of effective particle sizes for high latitude clouds. Int. J. Climatol., 22, 12671284, doi:10.1002/joc.774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, doi:10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and Coauthors, 2014: Growth and sublimation of rough ice crystals in a flow diffusion chamber. Extended Abstracts, 45th Annual Conf. of the British Association Crystal Growth, Leeds, United Kingdom, British Association for Crystal Growth, 704.

  • Cole, B. H., P. Yang, B. A. Baum, J. Riedi, L. C. Labonnote, F. Thieuleux, and S. Platnick, 2013: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J. Appl. Meteor. Climatol., 52, 186196, doi:10.1175/JAMC-D-12-097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

    • Crossref
    • Export Citation
  • Connolly, P. J., M. J. Flynn, Z. Ulanowski, T. W. Choularton, M. W. Gallagher, and K. N. Bower, 2007: Calibration of 2 D imaging probes using calibration beads and ice crystal analogues. J. Atmos. Oceanic Technol., 24, 18601879, doi:10.1175/JTECH2096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 13201324, doi:10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., L. Ladino-Moreno, Y. Boose, Z. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0008.1.

    • Crossref
    • Export Citation
  • Davis, C. I., 1974: The ice-nucleating characteristics of various AgI aerosols. Ph.D. dissertation, University of Wyoming, 267 pp.

  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and E. Berry, 2015: CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region. J. Geophys. Res., 120, 12 19812 208, doi:10.1002/2015JD023600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 5135–5144, doi:10.1175/2008JCLI2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873, doi:10.1175/2009JAS3046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. P., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571370, doi:10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. P., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, doi:10.1175/2007JAS2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145164, doi:10.1002/qj.49711447908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W., and Coauthors, 2011: In situ measurements of tropical cloud properties in the West African Monsoon: Upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus. Atmos. Chem. Phys., 11, 55695590, doi:10.5194/acp-11-5569-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 41404150, doi:10.1175/2007JAS2289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fusina, F., and P. Spichtinger, 2010: Cirrus clouds triggered by radiation, a multiscale phenomenon. Atmos. Chem. Phys., 10, 51795190, doi:10.5194/acp-10-5179-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallagher, M. W., and Coauthors, 2005: An overview of the microphysical structure of cirrus clouds observed during EMERALD-I. Quart. J. Roy. Meteor. Soc., 131, 11431169, doi:10.1256/qj.03.138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., 2008: Observational quantification of the optical properties of cirrus cloud. Light Scattering Reviews 3, A. A. Kokhanovsky, Ed., Springer, 3–26, doi:10.1007/978-3-540-48546-9_1.

    • Crossref
    • Export Citation
  • Garrett, T. J., and Coauthors 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62, 2352–2372, doi:10.1175/JAS3495.1.

    • Crossref
    • Export Citation
  • Gasparini, B., and U. Lohmann, 2016: Why cirrus cloud seeding cannot substantially cool the planet. J. Geophys. Res. Atmos., 121, 4877–4893, doi:10.1002/2015JD024666.

    • Crossref
    • Export Citation
  • Gayet, J.-F., G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, 2011: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: A case study during CIRCLE-2 experiment. Atmos. Chem. Phys., 11, 25372544, doi:10.5194/acp-11-2537-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Carbon Dioxide Information Analysis Center Numeric Data Package NDP-026E, 71 pp.

    • Crossref
    • Export Citation
  • Hallett, J., 1987: Faceted snow crystals. J. Opt. Soc. Amer., 4A, 581588, doi:10.1364/JOSAA.4.000581.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975a: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32, 799808, doi:10.1175/1520-0469(1975)032<0799:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975b: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulations of the cirrus uncinus generating head. J. Atmos. Sci., 32, 809819, doi:10.1175/1520-0469(1975)032<0809:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975c: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part III: Numerical computations of the growth of the ice phase. J. Atmos. Sci., 32, 820830, doi:10.1175/1520-0469(1975)032<0820:CUGCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367381, doi:10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of ambient temperature and their ice water content. J. Atmos. Sci., 41, 846855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar