• Abel, S. J., R. J Cotton, P. A. Barrett, and A. K. Vance, 2014: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft. Atmos. Meas. Tech., 7, 30073022, doi:10.5194/amt-7-3007-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abdelmonem, A., M. Schnaiter, P. Amsler, E. Hesse, J. Meyer, and T. Leisner, 2011: First correlated measurements of the shape and light scattering properties of cloud particles using the novel Particle Habit Imaging and Polar Scattering (PHIPS) probe. Atmos. Meas. Tech., 4, 21252142, doi:10.5194/amt-4-2125-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abdelmonem, A., E. Järvinen, D. Duft, E. Hirst, S. Vogt, T. Leisner, and M. Schnaiter, 2016: PHIPS–HALO: The airborne Particle Habit Imaging and Polar Scattering probe. Part I: Design and operation. Atmos. Meas. Tech., 9, 31313144, doi:10.5194/amt-9-3131-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachalo, W. D., 1980: A method for measuring the size and velocity of spheres by dual beam light scatter interferometry. Appl. Opt., 19, 363370, doi:10.1364/AO.19.000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachalo, W. D., J. W. Strapp, E. Biagio, A. Korolev, and M. Wolde, 2015: Performance of the newly developed High Speed Imaging (HSI) probe for measurements of size and concentration of ice crystals and identification of phase composition of clouds. Extended Abstracts, SAE 2015 Int. Conf. on Icing of Aircraft, Engines, and Structures, Prague, Czech Republic, SAE, 1–4.

  • Baker, B., Q. Mo, R. P. Lawson, D. O’Connor, and A. Korolev, 2009: The effects of precipitation on cloud droplet measurement devices. J. Atmos. Oceanic Technol., 26, 14041409, doi:10.1175/2009JTECHA1191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and B. Huebert, 1993: The airborne aerosol inlet workshop: Meeting report. J. Aerosol Sci., 24, 835846, doi:10.1016/0021-8502(93)90050-J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, doi:10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., J. W. Strapp, and J. E. Dye, 1985: Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol., 2, 626632, doi:10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, doi:10.1016/S0169-8095(01)00119-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011a: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 101, 1029, doi:10.1016/j.atmosres.2011.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011b: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds. Bull. Amer. Meteor. Soc., 93, 2934, doi:10.1175/BAMS-D-11-00123.1.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., R. Newton, M. Krämer, J. Meyer, A. Beyer, M. Wendisch, and P. Vochezer, 2014: The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals. Atmos. Res., 142, 214, doi:10.1016/j.atmosres.2013.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beswick, K., D. Baumgardner, M. Gallagher, A. Volz-Thomas, P. Nedelec, K. Y. Wang, and S. Lance, 2014: The backscatter cloud probe—A compact low-profile autonomous optical spectrometer. Atmos. Meas. Tech., 7, 14431457, doi:10.5194/amt-7-1443-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biter, C. J., J. E. Dye, D. Huffman, and W. D. King, 1987: The drop response of the CSIRO liquid water content. J. Atmos. Oceanic Technol., 4, 359367, doi:10.1175/1520-0426(1987)004<0359:TDSROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borrmann, S., L. Beiping, and M. Mishchenko, 2000: Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical particle counters. J. Aerosol Sci., 31, 789799, doi:10.1016/S0021-8502(99)00563-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J. M., E. Hesse, Z. Ulanowski, and P. H. Kaye, 2006: A 3D implementation of ray tracing combined with diffraction on facets. J. Quant. Spectrosc. Radiat. Transfer, 100, 103114, doi:10.1016/j.jqsrt.2005.11.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S., G. A. Isaacs, A. V. Korolev, and W. J. Strapp, 2001: Assessing cloud phase conditions. J. Appl. Meteor., 40, 19671983, doi:10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., M. J. Flynn, Z. Ulanowski, T. W. Choularton, M. W. Gallagher, and K. N. Bower, 2007: Calibration of 2-D imaging probes using calibration beads and ice crystal analogues. J. Atmos. Oceanic Technol., 24, 18601879, doi:10.1175/JTECH2096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol., 5, 823832, doi:10.1175/1520-0426(1988)005<0823:EOCOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303, doi:10.1175/2009JTECHA1282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, R., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, doi:10.1002/qj.2058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., A. G. Hallar, and L. M. Avallone, 2007: Measurement of total water with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463475, doi:10.1175/JTECH1975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, C. R., J. D. MacLeod, and J. W. Strapp, 2009: Naturally aspirating isokinetic total water content probe: Evaporator design and testing. First AIAA Atmospheric and Space Environments Conf., San Antonio, TX, AIAA, AIAA-2009-3861. [Available online at https://arc.aiaa.org/doi/pdf/10.2514/6.2009-3861.]

    • Crossref
    • Export Citation
  • Davison, C. R., T. P. Ratvasky, and L. E. Lilie, 2011: Naturally aspirating isokinetic total water content probe: Wind tunnel test results and design modifications. SAE Tech. Paper 2011-38-0036, 14 pp., doi:10.4271/2011-38-0036.

    • Crossref
    • Export Citation
  • Emery, E., D. R. Miller, S. R. Plaskon, J. W. Strapp, and L. Lillie, 2004: Ice particle impact on cloud water content instrumentation. NASA Tech. Note, NASA/TM-2004-212964, 12 pp.

    • Crossref
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571370, doi:10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J., and R. Shaw, 2009: Cloud particle size distributions measured with an airborne digital in-line holographic instrument. Atmos. Meas. Tech., 2, 259271, doi:10.5194/amt-2-259-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A., and J. Hallett, 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., G. Febvre, and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 13001310, doi:10.1175/1520-0426(1996)013<1300:TROTPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., O. Crepel, J. Fournol, and S. Oshchepkov, 1997: A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part 1: Theoretical design. Ann. Geophys., 15, 451459, doi:10.1007/s00585-997-0451-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and Coauthors, 2002: Quantitative measurements of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals. Geophys. Res. Lett., 29, 2230, doi:10.1029/2001GL014342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. Arends, and A. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, doi:10.1016/0169-8095(94)90001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., C. H. Twohy, B. Gandrud, A. Heymsfield, G. McFarquhar, P. Demott, and D. Rogers, 1998: Measurements of wave-cloud microphysical properties made with two new aircraft cloud probes. Geophys. Res. Lett., 25, 11171120, doi:10.1029/97GL03310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., Y. Takano, T. J. Garrett, and P. V. Hobbs, 2000: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds. J. Atmos. Sci., 57, 30213034, doi:10.1175/1520-0469(2000)057<3021:NMOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glen, A., and S. D. Brooks, 2013: A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud and Aerosol Spectrometer with Polarization (CASPOL). Atmos. Chem. Phys., 13, 13451356, doi:10.5194/acp-13-1345-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, Eds., Wiley-Interscience, 711–720.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 24242451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.

    • Crossref
    • Export Citation
  • Hirst, E., P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, 2001: Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud. Atmos. Environ., 35, 3347, doi:10.1016/S1352-2310(00)00377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovenac, E. A., and E. D. Hirleman, 1991: Use of rotating pinholes and reticles for calibration of cloud droplet instrumentation. J. Atmos. Oceanic Technol., 8, 166171, doi:10.1175/1520-0426(1991)008<0166:UORPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifice removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, doi:10.1175/JTECH-D-13-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvinen, E., and Coauthors, 2016: Quasispherical ice in convective clouds. J. Atmos. Sci., 73, 38853910, doi:10.1175/JAS-D-15-0365.1.

  • Jensen, J., and H. Granek, 2002: Optoelectronic simulation of the PMS 260X optical array probe and application to drizzle in a marine stratocumulus. J. Atmos. Oceanic Technol., 19, 568585, doi:10.1175/1520-0426(2002)019<0568:OSOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., S. Lasher-Trapp, A. Bansemer, Z. Ulanowski, and A. J. Heymsfield, 2014: Difficulties in early ice detection with the Small Ice Detector-2 HIAPER (SID-2H) in maritime cumuli. J. Atmos. Oceanic Technol., 31, 12631275, doi:10.1175/JTECH-D-13-00079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaye, P. H., and Coauthors, 2008: Classifying atmospheric ice crystals by spatial light scattering. Opt. Lett., 33, 15451547, doi:10.1364/OL.33.001545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., 1984: Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol., 1, 513, doi:10.1175/1520-0426(1984)001<0005:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wired liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, doi:10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. E. Turvey, D. Williams, and D. J. Llewellyn, 1984: Air flow and particle trajectories around aircraft fuselages. II: Measurements. J. Atmos. Oceanic Technol., 1, 1421, doi:10.1175/1520-0426(1984)001<0014:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, doi:10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer probe, the forward scattering spectrometer probe, and the active scattering aerosol spectrometer. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 554–561.

  • Knollenberg, R., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Crossref
    • Export Citation
  • Korolev, A. V., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, doi:10.1175/JTECH1980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 10481057, doi:10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and P. R. Field, 2015: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech., 8, 761777, doi:10.5194/amt-8-761-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., S. V. Kuznetsov, Y. E. Makarov, and V. S. Novikov, 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol., 8, 514522, doi:10.1175/1520-0426(1991)008<0514:EOMOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998a: Evaluation of the accuracy of PMS Optical Array Probes. J. Atmos. Oceanic Technol., 15, 708720, doi:10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998b: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, doi:10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013a: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. A. Strapp, G. A. Isaac, and E. Emery, 2013b: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, doi:10.1175/JTECH-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., A. Shavkov, and H. Barker, 2014: Calibration and performance of the cloud extinction probe. J. Atmos. Oceanic Technol., 31, 326345, doi:10.1175/JTECH-D-13-00020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and A. Afchine, 2004: Sampling characteristics of inlets operated at low U/U0 ratios: New insights from computational fluid dynamics (CFX) modeling. J. Aerosol Sci., 35, 683694, doi:10.1016/j.jaerosci.2003.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 34633483, doi:10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., 2012: Coincidence errors in a cloud droplet probe (CDP) and a cloud and aerosol spectrometer (CAS), and the improved performance of a modified CDP. J. Atmos. Oceanic Technol., 29, 15321541, doi:10.1175/JTECH-D-11-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, doi:10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2DS (stereo) probe: Design and preliminary tests of a new airborne, high speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621471, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luebke, A. E., L. M. Avallone, C. Schiller, J. Meyer, C. Rolf, and M. Krämer, 2013: Ice water content of Arctic, midlatitude, and tropical cirrus—Part 2: Extension of the database and new statistical analysis. Atmos. Chem. Phys., 13, 64476459, doi:10.5194/acp-13-6447-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. C. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Crossref
    • Export Citation
  • Meyer, J., 2012: Ice Crystal Measurements with the New Particle Spectrometer NIXE-CAPS. Energy and Environment Series, Vol. 160, Jülich Research Centre, 132 pp.

  • Meyer, J., and Coauthors, 2015: Two decades of water vapor measurements with the FISH fluorescence hygrometer: A review. Atmos. Chem. Phys., 15, 85218538, doi:10.5194/acp-15-8521-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., J. Leighton, and R. Barker, 1990: A new fast response instrument for measuring total water content from aircraft. J. Atmos. Oceanic Technol., 7, 706718, doi:10.1175/1520-0426(1990)007<0706:ANFRIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8, 235244, doi:10.1080/02786828808959186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norment, H., 1985: Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow. NASA Tech. Rep. NASA-CR-3935, 168 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870002261.pdf.]

  • Norment, H., 1988: Three-dimensional trajectory analysis of two drop sizing instruments: PMS-OAP and PMS-FSSP. J. Atmos. Oceanic Technol., 5, 743756, doi:10.1175/1520-0426(1988)005<0743:TDTAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porcheron, E., P. Lemaitre, J. Van Beeck, R. Vetrano, M. Brunel, and G. Grehan, 2015: Development of a spectrometer for airborne measurement of droplet sizes in clouds. J. Eur. Opt. Soc. Rapid Publ., 10, 15030, doi:10.2971/jeos.2015.15030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, C., M. Krämer, A. Afchine, N. Spelten, and N. Sitnikov, 2008: Ice water content of Arctic, midlatitude, and tropical cirrus. J. Geophys. Res., 113, D24208, doi:10.1029/2008JD010342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal surface roughness in cirrus clouds. Atmos. Chem. Phys., 16, 50915110, doi:10.5194/acp-16-5091-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schön, R., and Coauthors, 2011: Particle habit imaging using incoherent light: A first step toward a novel instrument for cloud microphysics. J. Atmos. Oceanic Technol., 28, 493512, doi:10.1175/2011JTECHA1445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzenboeck, A., G. Mioche, A. Armetta, A. Herber, and J.-F. Gayet, 2009: Response of the Nevzorov hot wire probe in clouds dominated by droplet conditions in the drizzle size range. Atmos. Meas. Tech., 2, 779788, doi:10.5194/amt-2-779-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ström, J., and J. Heintzenberg, 1994: Water vapor, condensed water, and crystal concentration in orographically influenced cirrus clouds. J. Atmos. Sci., 51, 23682383, doi:10.1175/1520-0469(1994)051<2368:WVCWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and D. Rogers, 1993: Airflow and water drop trajectories at instrument sampling points around the Beechcraft King Air and Lockheed Electra. J. Atmos. Oceanic Technol., 10, 566578, doi:10.1175/1520-0426(1993)010<0566:AAWDTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202, doi:10.1175/1520-0426(1997)014<0197:MOCWCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., J. W. Strapp, and M. Wendisch, 2003: Performance of a counterflow virtual impactor in the NASA Icing Research Tunnel. J. Atmos. Oceanic Technol., 20, 781790, doi:10.1175/1520-0426(2003)020<0781:POACVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., and M. Schnaiter, 2011: UV and visible light scattering and absorption measurements on aerosols in the laboratory. Fundamentals and Applications of Aerosol Spectroscopy, J. P. Reid and R. Signorell, Eds., CRC Press, 243–268.

  • Ulanowski, Z., P. Connolly, M. Flynn, M. Gallagher, A. J. M. Clarke, and E. Hesse, 2004: Using ice crystal analogues to validate cloud ice parameter retrievals from the CPI ice spectrometer. Proc. 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, ICCP, 1175–1178.

  • Ulanowski, Z., E. Hesse, P. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382392, doi:10.1016/j.jqsrt.2005.11.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., E. Hirst, P. H. Kaye, and R. Greenaway, 2012: Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns. J. Quant. Spectrosc. Radiat. Transfer, 113, 24572464, doi:10.1016/j.jqsrt.2012.06.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 16491662, doi:10.5194/acp-14-1649-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2015: Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size. J. Quant. Spectrosc. Radiat. Transfer, 165, 134152, doi:10.1016/j.jqsrt.2015.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidaurre, G., and J. Hallett, 2009: Particle impact and breakup in aircraft measurements. J. Atmos. Oceanic Technol., 26, 972983, doi:10.1175/2008JTECHA1147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2016: In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinstock, E. M., and Coauthors, 2006: Measurements of the total water content of cirrus clouds. Part I: Instrument details and calibration. J. Atmos. Oceanic Technol., 23, 13971409, doi:10.1175/JTECH1928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and J. L. Brenguier, Eds., 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley and Sons, 641 pp.

    • Crossref
    • Export Citation
  • Wendisch, M., T. Garrett, and J. Strapp, 2002: Wind tunnel tests of the airborne PVM-100A response to large droplets. J. Atmos. Oceanic Technol., 19, 15771584, doi:10.1175/1520-0426(2002)019<1577:WTTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2004: Aircraft particle inlets: State-of-the-art and future needs. Bull. Amer. Meteor. Soc., 85, 8991, doi:10.1175/BAMS-85-1-89.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072 ,doi:10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 65
PDF Downloads 115 115 58

Cloud Ice Properties: In Situ Measurement Challenges

View More View Less
  • 1 Droplet Measurement Technologies, Inc., Boulder, Colorado
  • 2 Met Office, Exeter, United Kingdom
  • 3 National Center for Atmospheric Research, Boulder, Colorado
  • 4 University of Manchester, Manchester, United Kingdom
  • 5 Stratton Park Engineering Corporation, Boulder, Colorado
  • 6 Environment Canada, Toronto, Ontario, Canada
  • 7 Forschungszentrum Jülich, Jülich, Germany
  • 8 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • 9 University of Hertfordshire, Hertfordshire, United Kingdom
© Get Permissions
Restricted access

Abstract

Understanding the formation and evolution of ice in clouds requires detailed information on the size, shape, mass, and optical properties of individual cloud hydrometeors and their bulk properties over a broad range of atmospheric conditions. Since the 1960s, instrumentation and research aircraft have evolved, providing increasingly more accurate and larger quantities of data about cloud particle properties. In this chapter, the current status of electrical powered, in situ measurement systems are reviewed with respect to their strengths and weaknesses and their limitations and uncertainties are documented. There remain many outstanding challenges. These are summarized and accompanied by recommendations for moving forward through new developments that fill the remaining information gaps. Closing these gaps will remove the obstacles that continue to hinder our understanding of cloud processes in general and the evolution of ice in particular.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: D. Baumgardner, darrel.baumgardner@gmail.com

Abstract

Understanding the formation and evolution of ice in clouds requires detailed information on the size, shape, mass, and optical properties of individual cloud hydrometeors and their bulk properties over a broad range of atmospheric conditions. Since the 1960s, instrumentation and research aircraft have evolved, providing increasingly more accurate and larger quantities of data about cloud particle properties. In this chapter, the current status of electrical powered, in situ measurement systems are reviewed with respect to their strengths and weaknesses and their limitations and uncertainties are documented. There remain many outstanding challenges. These are summarized and accompanied by recommendations for moving forward through new developments that fill the remaining information gaps. Closing these gaps will remove the obstacles that continue to hinder our understanding of cloud processes in general and the evolution of ice in particular.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: D. Baumgardner, darrel.baumgardner@gmail.com
Save