Secondary Ice Production: Current State of the Science and Recommendations for the Future

P. R. Field Met Office, Exeter, United Kingdom
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by P. R. Field in
Current site
Google Scholar
PubMed
Close
,
R. P. Lawson SPEC Inc., Boulder, Colorado

Search for other papers by R. P. Lawson in
Current site
Google Scholar
PubMed
Close
,
P. R. A. Brown Met Office, Exeter, United Kingdom

Search for other papers by P. R. A. Brown in
Current site
Google Scholar
PubMed
Close
,
G. Lloyd School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by G. Lloyd in
Current site
Google Scholar
PubMed
Close
,
C. Westbrook Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by C. Westbrook in
Current site
Google Scholar
PubMed
Close
,
D. Moisseev Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by D. Moisseev in
Current site
Google Scholar
PubMed
Close
,
A. Miltenberger Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by A. Miltenberger in
Current site
Google Scholar
PubMed
Close
,
A. Nenes School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by A. Nenes in
Current site
Google Scholar
PubMed
Close
,
A. Blyth Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by A. Blyth in
Current site
Google Scholar
PubMed
Close
,
T. Choularton School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by T. Choularton in
Current site
Google Scholar
PubMed
Close
,
P. Connolly School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by P. Connolly in
Current site
Google Scholar
PubMed
Close
,
J. Buehl Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by J. Buehl in
Current site
Google Scholar
PubMed
Close
,
J. Crosier School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by J. Crosier in
Current site
Google Scholar
PubMed
Close
,
Z. Cui Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Z. Cui in
Current site
Google Scholar
PubMed
Close
,
C. Dearden School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by C. Dearden in
Current site
Google Scholar
PubMed
Close
,
P. DeMott Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by P. DeMott in
Current site
Google Scholar
PubMed
Close
,
A. Flossmann Blaise Pascal University, Clermont-Ferrand, France

Search for other papers by A. Flossmann in
Current site
Google Scholar
PubMed
Close
,
A. Heymsfield NCAR, Boulder, Colorado

Search for other papers by A. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Y. Huang Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Y. Huang in
Current site
Google Scholar
PubMed
Close
,
H. Kalesse Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by H. Kalesse in
Current site
Google Scholar
PubMed
Close
,
Z. A. Kanji Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Z. A. Kanji in
Current site
Google Scholar
PubMed
Close
,
A. Korolev Environment and Climate Change Canada, Toronto, Canada

Search for other papers by A. Korolev in
Current site
Google Scholar
PubMed
Close
,
A. Kirchgaessner British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by A. Kirchgaessner in
Current site
Google Scholar
PubMed
Close
,
S. Lasher-Trapp Department of Atmospheric Sciences at the University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by S. Lasher-Trapp in
Current site
Google Scholar
PubMed
Close
,
T. Leisner Met Office, Exeter, United Kingdom
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
SPEC Inc., Boulder, Colorado
School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
Department of Meteorology, University of Reading, Reading, United Kingdom
Department of Physics, University of Helsinki, Helsinki, Finland
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
Leibniz Institute for Tropospheric Research, Leipzig, Germany
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Blaise Pascal University, Clermont-Ferrand, France
NCAR, Boulder, Colorado
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Environment and Climate Change Canada, Toronto, Canada
British Antarctic Survey, Cambridge, United Kingdom
Department of Atmospheric Sciences at the University of Illinois at Urbana–Champaign, Urbana, Illinois
Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
Earth Observing Laboratory, NCAR, Boulder, Colorado
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by T. Leisner in
Current site
Google Scholar
PubMed
Close
,
G. McFarquhar Department of Atmospheric Sciences at the University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by G. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
V. Phillips Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by V. Phillips in
Current site
Google Scholar
PubMed
Close
,
J. Stith Earth Observing Laboratory, NCAR, Boulder, Colorado

Search for other papers by J. Stith in
Current site
Google Scholar
PubMed
Close
, and
S. Sullivan School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by S. Sullivan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Measured ice crystal concentrations in natural clouds at modest supercooling (temperature ~>−10°C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Paul Field, paul.field@metoffice.gov.uk

Abstract

Measured ice crystal concentrations in natural clouds at modest supercooling (temperature ~>−10°C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Paul Field, paul.field@metoffice.gov.uk
Save
  • Aleksić, N., 1989: Precipitation effects of hail suppression in Serbia. Theor. Appl. Climatol., 40, 271279, doi:10.1007/BF00865978.

  • Bacon, N. J., B. D. Swanson, M. B. Baker, and E. J. Davis, 1998: Breakup of levitated frost particles. J. Geophys. Res., 103, 13 76313 775, doi:10.1029/98JD01162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 15251548, doi:10.1002/qj.49712152703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., A. M. Blyth, H. J. Christian, J. Latham, K. L. Miller, and A. M. Gadian, 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies. Atmos. Res., 51, 221236, doi:10.1016/S0169-8095(99)00009-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Beard, K. V., 1992: Ice initiation in warm-base convective clouds. An assessment of microphysical mechanisms. Atmos. Res., 28, 125152, doi:10.1016/0169-8095(92)90024-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1987: Microphysical properties of glaciating cumulus clouds: Comparison of measurements with a numerical simulation. Quart. J. Roy. Meteor. Soc., 113, 13771382, doi:10.1002/qj.49711347815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, B., C. Wolff, and F. McDonought, 2007: An inferred climatology of icing conditions aloft, including supercooled large drops. Part I: Canada and the continental United States. J. Appl. Meteor. Climatol., 46, 18571878, doi:10.1175/2007JAMC1607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120, doi:10.1002/qj.49711950905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1997: A multi-thermal model of cumulus glaciation via the Hallett-Mossop process. Quart. J. Roy. Meteor. Soc., 123, 11851198, doi:10.1002/qj.49712354104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, K. N., S. J. Moss, D. W. Johnson, T. W. Choularton, J. Latham, P. R. A. Brown, A. M. Blyth, and J. Cardwell, 1996: A parameterization of the ice water content observed in frontal and convective clouds. Quart. J. Roy. Meteor. Soc., 122, 18151844, doi:10.1002/qj.49712253605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., and H. P. Palmer, 1949: Condensation processes at low temperatures, and the production of new sublimation nuclei by the splintering of ice. Nature, 164, 312313, doi:10.1038/164312a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., and N. S. C. Thorndike, 1968: Freezing and shattering of water droplets in freefall. Nature, 220, 687689, doi:10.1038/220687a0.

  • Buehl, J., and Coauthors, 2017: Remote sensing. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0015.1.

    • Crossref
    • Export Citation
  • Bühl, J., P. Seifert, A. Myagkov, and A. Ansmann, 2016: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station. Atmos. Chem. Phys., 16, 10 60910 620, doi:10.5194/acp-16-10609-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, T. W., J. E. Dye, and V. Toutenhoofd, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus II. Sailplane measurements. J. Atmos. Sci., 31, 21482151, doi:10.1175/1520-0469(1974)031<2148:TMOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795807, doi:10.1175/BAMS-86-6-795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1974: A stochastic model of ice particle multiplication by drop splintering. Quart. J. Roy. Meteor. Soc., 100, 296308, doi:10.1002/qj.49710042504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1975: Multiplication of ice particles in slightly supercooled cumulus. J. Atmos. Sci., 32, 863866, doi:10.1175/1520-0469(1975)032<0863:MOIPIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1976: Ice particle multiplication in cumulus clouds. Quart. J. Roy. Meteor. Soc., 102, 133156, doi:10.1002/qj.49710243111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., D. J. Griggs, B. Y. Humood, and J. Latham, 1980: Laboratory studies of riming, and its relation to ice splinter production. Quart. J. Roy. Meteor. Soc., 106, 367374, doi:10.1002/qj.49710644809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P., T. W. Choularton, P. R. A. Brown, P. R. Field, A. J. Illingworth, and R. J. Hogan, 2005: Numerical modelling of mixed-phase frontal clouds observed during the CWVC project. Quart. J. Roy. Meteor. Soc., 131, 16771693, doi:10.1256/qj.03.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., T. W. Choularton, M. W. Gallagher, K. N. Bower, M. J. Flynn, and J. A. Whiteway, 2006a: Cloud-resolving simulations of intense tropical Hector thunderstorms: Implications for aerosol–cloud interactions. Quart. J. Roy. Meteor. Soc., 132, 30793106, doi:10.1256/qj.05.86.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., A. J. Heymsfield, and T. W. Choularton, 2006b: Modelling the influence of rimer surface temperature on the glaciation of intense thunderstorms: The rime–splinter mechanism of ice multiplication. Quart. J. Roy. Meteor. Soc., 132, 30593077, doi:10.1256/qj.05.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in nature clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Crossref
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. Rauber, and E. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680, doi:10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, I., and Coauthors, 2012: Ice formation and development in aged, wintertime cumulus over the UK: Observations and modelling. Atmos. Chem. Phys., 12, 49634985, doi:10.5194/acp-12-4963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys., 11, 257273, doi:10.5194/acp-11-257-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2014: Microphysical properties of cold frontal rainbands. Quart. J. Roy. Meteor. Soc., 140, 12571268, doi:10.1002/qj.2206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dearden, C., G. Vaughan, T. Tsai, and J. Chen, 2016: Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones. Mon. Wea. Rev., 144, 12491272, doi:10.1175/MWR-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, doi:10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 5797–5803, doi:10.1073/pnas.1514034112.

    • Crossref
    • Export Citation
  • Dong, Y. Y., and J. Hallett, 1989: Droplet accretion during rime growth and the formation of secondary ice crystals. Quart. J. Roy. Meteor. Soc., 115, 127142, doi:10.1002/qj.49711548507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., and E. Findeisen, 1943: Untersuchungen uber die Eissplitterbildung an Reifschichten (Ein Beitrag zur Frage der Entstehung der Gewitterelektrizitat und zur Mikrostruktur der Cumulonimben). Meteor. Z., 60, 145154.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geresdi, I., R. Rasmussen, W. Grabowski, and B. Bernstein, 2005: Sensitivity of freezing drizzle formation in stably stratifed clouds to ice processes. Meteor. Atmos. Phys., 88, 91105, doi:10.1007/s00703-003-0048-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griggs, D. J., and T. W. Choularton, 1983: Freezing modes of riming droplets with application to ice splinter production. Quart. J. Roy. Meteor. Soc., 109, 243253, doi:10.1002/qj.49710945912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griggs, D. J., and T. W. Choularton, 1986: The effect of rimer surface temperature on ice splinter production by the Hallett-Mossop process. Quart. J. Roy. Meteor. Soc., 112, 12541256, doi:10.1002/qj.49711247419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Hallett, J., R. I. Sax, D. Lamb, and A. S. R. Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631651, doi:10.1002/qj.49710444108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and Coauthors, 2015: Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. J. Climate, 28, 65166535, doi:10.1175/JCLI-D-15-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082, doi:10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and S. C. Mossop, 1984: Temperature dependence of secondary ice crystal production during soft hail growth by riming. Quart. J. Roy. Meteor. Soc., 110, 765770, doi:10.1002/qj.49711046512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, doi:10.1175/JAS-D-14-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 25232549, doi:10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722, doi:10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124, 20352071, doi:10.1002/qj.49712455012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, doi:10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2011: Development of ice particles in convective clouds observed over the black forest mountains during COPS. Quart. J. Roy. Meteor. Soc., 137, 275286, doi:10.1002/qj.749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2008: The development of ice in a cumulus cloud over southwest England. New J. Phys., 10, 105021, doi:10.1088/1367-2630/10/10/105021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalesse, H., W. Szyrmer, S. Kneifel, P. Kollias, and E. Luke, 2016: Fingerprints of a riming event on cloud radar Doppler spectra: Observations and modelling. Atmos. Chem. Phys., 16, 29973012, doi:10.5194/acp-16-2997-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keat, W. J., C. Westbrook, and A. Illingworth, 2015: Retrieving the microphysics of mixed-phase regions embedded within deep ice clouds using dual polarisation radar. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 1A.6. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper275777.html.]

  • Knight, C. A., 2012: Ice growth from the vapor at −5°C. J. Atmos. Sci., 69, 20312040, doi:10.1175/JAS-D-11-0287.1.

  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, doi:10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1965: Drop freezing through drop breakup. J. Atmos. Sci., 22, 448451, doi:10.1175/1520-0469(1965)022<0448:DFTDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1977: The rime-splintering hypothesis of cumulus glaciation examined using a field-of-flow cloud model. Quart. J. Roy. Meteor. Soc., 103, 585606, doi:10.1002/qj.49710343805.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. Emery, J. Strapp, S. Cober, G. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in-situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622, doi:10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachlan-Cope, T., R. Ladkin, J. Turner, and P. Davison, 2001: Observations of cloud and precipitation particles on the Avery Plateau, Antarctic Peninsula. Antarct. Sci., 13, 339348, doi:10.1017/S0954102001000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., A. Korolev, I. Heckman, M. Wolde, A. M. Fridlind, and A. S. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 15741582, doi:10.1002/2016GL072455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., D. C. Leon, P. J. DeMott, C. M. Villanueva-Birriel, A. V. Johnson, D. H. Moser, C. S. Tully, and W. Wu, 2016: A multisensor investigation of rime splintering in tropical maritime cumuli. J. Atmos. Sci., 73, 25472564, doi:10.1175/JAS-D-15-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., A. M. Blyth, H. J. Christian Jr., W. Deierling, and A. M. Gadian, 2004: Determination of precipitation rates and yields from lightning measurements. J. Hydrol., 288, 1319, doi:10.1016/j.jhydrol.2003.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (Stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle Imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisner, T., T. Pander, P. Handmann, and A. Kiselev, 2014: Secondary ice processes upon heterogeneous freezing of cloud droplets. 14th Conf. on Cloud Physics and Atmospheric Radiation, Boston, MA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250221.html.]

  • Levkov, L. B., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Atmos., 65, 3558.

    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, doi:10.5194/acp-15-12953-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, E., and Coauthors, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, doi:10.1175/JAS-D-12-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., 2017: Pre-activation of aerosol particles by ice preserved in pores. Atmos. Chem. Phys., 17, 15951622, doi:10.5194/acp-17-1595-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1996: The rapid glaciation of slightly supercooled cumulus clouds. Quart. J. Roy. Meteor. Soc., 122, 357365, doi:10.1002/qj.49712253003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1998: The production of high ice-crystal concentrations in stratiform clouds. Quart. J. Roy. Meteor. Soc., 124, 353356, doi:10.1002/qj.49712454516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., and J. Maybank, 1960: The fragmentation and electrification of freezing water drops. Quart. J. Roy. Meteor. Soc., 86, 176185, doi:10.1002/qj.49708636806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Crossref
    • Export Citation
  • Mizuno, H., and T. Matsuo, 1992: Collision between graupel particles: A field observation and theory. J. Meteor. Soc. Japan, 70, 10371043.

  • Morrison, H., J. A. Curry, and V. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1985: Secondary ice particle production during rime growth. the effect of drop size distribution and rimer velocity. Quart. J. Roy. Meteor. Soc., 111, 11131124, doi:10.1002/qj.49711147012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., A. Ono, and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc., 96, 487508, doi:10.1002/qj.49709640910.