• Anderson, T., and Coauthors, 2005: An “A-Train” strategy for quantifying direct climate forcing by anthropogenic aerosols. Bull. Amer. Meteor. Soc., 86, 17951809, doi:10.1175/BAMS-86-12-1795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., R. Engelmann, D. Althausen, U. Wandinger, M. Hu, Y. Zhang, and Q. He, 2005: High aerosol load over the Pearl River Delta, China, observed with Raman lidar and sun photometer. Geophys. Res. Lett., 32, L13815, doi:10.1029/2005GL023094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., H. Baars, M. Tesche, D. Müller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo, 2009a: Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett., 36, L11802, doi:10.1029/2009GL037923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2009b: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J. Geophys. Res., 114, D17208, doi:10.1029/2008JD011659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Babb, D. M., J. Verlinde, and B. A. Albrecht, 1999: Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. J. Atmos. Oceanic Technol., 16, 489503, doi:10.1175/1520-0426(1999)016<0489:ROCMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and J. Delanoë, 2013: Synergies and complementarities of CloudSat-CALIPSO snow observations. J. Geophys. Res. Atmos., 118, 721731, doi:10.1029/2012JD018092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergada, M., and Coauthors, 2016: The Ice Cloud Imager (ICI) preliminary design and performance. 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Espoo, Finland, IEEE, doi:10.1109/MICRORAD.2016.7530498.

    • Crossref
    • Export Citation
  • Bierwirth, E., and Coauthors, 2009: Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust. Tellus, 61B, 252269, doi:10.1111/j.1600-0889.2008.00395.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, doi:10.1029/2011RG000363.

  • Brückner, M., A. Pospichal, A. Macke, and M. Wendisch, 2014: A new multispectral cloud retrieval method for ship-based solar transmissivity measurements. J. Geophys. Res. Atmos., 119, 11 33811 354, doi:10.1002/2014JD021775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., and Coauthors, 2007: A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude. Quart. J. Roy. Meteor. Soc., 133, 109128, doi:10.1002/qj.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., and Coauthors, 2012: Observing ice clouds in the submillimeter spectral range: The CloudIce mission proposal for ESA’s Earth Explorer 8. Atmos. Meas. Tech., 5, 15291549, doi:10.5194/amt-5-1529-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühl, J., A. Ansmann, P. Seifert, H. Baars, and R. Engelmann, 2013: Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations. Geophys. Res. Lett., 40, 44044408, doi:10.1002/grl.50792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühl, J., P. Seifert, A. Myagkov, and A. Ansmann, 2016: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station. Atmos. Chem. Phys., 16, 10 60910 620, doi:10.5194/acp-16-10609-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., S. Blonski, W. Wang, X. Shao, T. Choi, Y. Bai, and X. Xiong, 2014: Overview of Suomi NPP VIIRS performance in the last 2.5 years. Earth Observing Missions and Sensors: Development, Implementation, and Characterization III, X. Xiong and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9264), 926402, doi:10.1117/12.2068991.

    • Crossref
    • Export Citation
  • Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon, 2013: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations. J. Geophys. Res. Atmos., 118, 79627981, doi:10.1002/jgrd.50579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, doi:10.1175/2010JTECHA1488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Collier, C. G., 1999: The impact of wind drift on the utility of very high spatial resolution radar data over urban areas. Phys. Chem. Earth, 24B, 889893, doi:10.1016/S1464-1909(99)00099-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, doi:10.1002/qj.882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., H. Klein Baltink, J. S. Henzing, S. R. De Roode, and A. P. Siebesma, 2015: A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties. Atmos. Meas. Tech., 8, doi:10.5194/amt-8-237-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 1491, doi:10.1364/JOSAA.11.001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., E. Bierwirth, M. Wendisch, J.-F. Gayet, G. Mioche, A. Lampert, and J. Heintzenberg, 2008: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches. Atmos. Chem. Phys., 8, 74937505, doi:10.5194/acp-8-7493-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., E. Bierwirth, M. Wendisch, A. Herber, and J.-F. Gayet, 2012: Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera. Atmos. Chem. Phys., 12, 34933510, doi:10.5194/acp-12-3493-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, H., A. Ehrlich, M. Wendisch, G. Mioche, J.-F. Gayet, M. Wirth, C. Emde, and A. Minikin, 2009: Influence of ice crystal shape on retrieval of cirrus optical thickness and effective radius: A case study. J. Geophys. Res., 114, D19203, doi:10.1029/2009JD012215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eriksson, P., B. Rydberg, H. Sagawa, M. S. Johnston, and Y. Kasai, 2014: Overview and sample applications of SMILES and Odin-SMR retrievals of upper tropospheric humidity and cloud ice mass. Atmos. Chem. Phys., 14, 12 61312 629, doi:10.5194/acp-14-12613-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and G. L. Stephens, 1995: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I. Single scattering properties. J. Atmos. Sci., 52, 20412057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., A. H. Evans, I. G. Nolt, and B. T. Marshall, 1999: The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer. J. Appl. Meteor., 38, 514525, doi:10.1175/1520-0450(1999)038<0514:TPFRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., J. R. Wang, P. E. Racette, G. Heymsfield, and L. Li, 2005: Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE. J. Appl. Meteor., 44, 839859, doi:10.1175/JAM2250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, doi:10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finger, F., and Coauthors, 2016: Spectral optical layer properties of cirrus from collocated airborne measurements and simulations. Atmos. Chem. Phys., 16, 76817693, doi:10.5194/acp-16-7681-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 17791804, doi:10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, S., C. K. Lee, I. Rule, R. King, S. Rogers, C. Harlow, and A. Baran, 2014: ISMAR: A new submillimeter airborne radiometer. 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Pasadena, CA, IEEE, 128–132, doi:10.1109/MicroRad.2014.6878923.

    • Crossref
    • Export Citation
  • Frey, W., H. Eichler, M. de Reus, R. Maser, M. Wendisch, and S. Borrmann, 2009: A new airborne tandem platform for collocated measurements of microphysical cloud and radiation properties. Atmos. Meas. Tech., 2, 147158, doi:10.5194/amt-2-147-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson, 2013: The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurements. J. Geophys. Res. Atmos., 118, 56675678, doi:10.1002/jgrd.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., and D. L. Wu, 2017: Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements. Atmos. Chem. Phys., 17, 27412757, doi:10.5194/acp-17-2741-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., and Coauthors, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 9, 285304, doi:10.5194/tc-9-285-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Görsdorf, U., V. Lehmann, M. Bauer-Pfundstein, G. Peters, D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, doi:10.1175/JTECH-D-14-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenier, P., J. Blanchet, and R. Muñoz-Alpizar, 2009: Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during midwinter 2007. J. Geophys. Res., 114, D09201, doi:10.1029/2008JD010927.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., 2009: The SAMUM-1 experiment over Southern Morocco: Overview and introduction. Tellus, 61B, 211, doi:10.1111/j.1600-0889.2008.00403.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., P. R. Field, M. Bailey, D. Rogers, J. Stith, C. Twohy, Z. Wang, and S. Haimov, 2011: Ice in Clouds Experiment—Layer Clouds. Part I: Ice growth rates derived from lenticular wave cloud penetrations. J. Atmos. Sci., 68, 26282654, doi:10.1175/JAS-D-11-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. J. Illingworth, 1999: The potential of spaceborne dual-wavelength radar to make global measurements of cirrus clouds. J. Atmos. Oceanic Technol., 16, 518531, doi:10.1175/1520-0426(1999)016<0518:TPOSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and S. F. Kew, 2005: A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds. Quart. J. Roy. Meteor. Soc., 131, 25852608, doi:10.1256/qj.04.144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, doi:10.1175/JAS-D-13-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holl, G., S. Eliasson, J. Mendrok, and S. A. Buehler, 2014: SPARE-ICE: Synergistic ice water path from passive operational sensors. J. Geophys. Res. Atmos., 119, 15041523, doi:10.1002/2013JD020759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. N. Franklin, S. T. Siems, M. J. Manton, T. Chubb, A. Lock, S. Alexander, and A. Klekociuk, 2015: Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in situ, space-borne and ground-based observations. Quart. J. Roy. Meteor. Soc., 141, 22592276, doi:10.1002/qj.2519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883, doi:10.1175/BAMS-88-6-883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, doi:10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Islam, T., and P. K. Srivastava, 2015: Synergistic multi-sensor and multi-frequency retrieval of cloud ice water path constrained by CloudSat collocations. J. Quant. Spectrosc. Radiat. Transfer, 161, 2134, doi:10.1016/j.jqsrt.2015.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jäkel, E., J. Walter, and M. Wendisch, 2013: Thermodynamic phase retrieval of convective clouds: Impact of sensor viewing geometry and vertical distribution of cloud properties. Atmos. Meas. Tech., 6, 539547, doi:10.5194/amt-6-539-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, T. P. Bui, P. Lawson, and D. Baumgardner, 2010: Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos. Chem. Phys., 10, 13691384, doi:10.5194/acp-10-1369-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, C., S. A. Buehler, B. Rydberg, P. Eriksson, and K. F. Evans, 2007: Performance simulations for a submillimeter-wave satellite instrument to measure cloud ice. Quart. J. Roy. Meteor. Soc., 133, 129149, doi:10.1002/qj.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalesse, H., W. Szyrmer, S. Kneifel, P. Kollias, and E. Luke, 2016: Fingerprints of a riming event on cloud radar Doppler spectra: Observations and modeling. Atmos. Chem. Phys., 16, 29973012, doi:10.5194/acp-16-2997-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanitz, T., P. Seifert, A. Ansmann, R. Engelmann, D. Althausen, C. Casiccia, and E. G. Rohwer, 2011: Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett., 38, L17802, doi:10.1029/2011GL048532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. L. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingebiel, M., and Coauthors, 2015: Arctic low-level boundary layer clouds: In situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds. Atmos. Chem. Phys., 15, 617631, doi:10.5194/acp-15-617-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler, 2010: Snow scattering signals in ground-based passive microwave radiometer measurements. J. Geophys. Res. Atmos., 115, D16214, doi:10.1029/2010JD013856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, doi:10.1029/2010JD015430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., S. Redl, E. Orlandi, U. Löhnert, M. P. Cadeddu, D. D. Turner, and M. Chen, 2014: Absorption properties of supercooled liquid water between 31 and 225 GHz: Evaluation of absorption models using ground-based observations. J. Appl. Meteor. Climatol., 53, 10281045, doi:10.1175/JAMC-D-13-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, doi:10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, M. Maahn, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 22252233, doi:10.1002/2015GL067618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, and F. D. Marks, 2001: Raindrop sorting induced by vertical drafts in convective clouds. Geophys. Res. Lett., 28, 27872790, doi:10.1029/2001GL013131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., N. Bharadwaj, K. Widener, I. Jo, and K. Johnson, 2014: Scanning ARM cloud radars. Part I: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569582, doi:10.1175/JTECH-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., M. J. Hiley, R. Bennartz, S. Kneifel, and S. Tanelli, 2014: Triple-frequency radar reflectivity signatures of snow: Observations and comparisons with theoretical ice particle scattering models. J. Appl. Meteor. Climatol., 53, 10801098, doi:10.1175/JAMC-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lack, S. A., and N. I. Fox, 2007: An examination of the effect of wind drift on radar-derived surface rainfall estimations. Atmos. Res., 85, 217229, doi:10.1016/j.atmosres.2006.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauri, T., J. Koistinen, and D. Moisseev, 2012: Advection-based adjustment of radar measurements. Mon. Wea. Rev., 140, 10141022, doi:10.1175/MWR-D-11-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laviola, S., and V. Levizzani, 2011: The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design. Atmos. Res., 99, 443461, doi:10.1016/j.atmosres.2010.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., F. Lüönd, and F. Mahrt, 2016: Introduction to Clouds: From the Microscale to Climate. Cambridge University Press, 399 pp., doi:10.1017/CBO9781139087513.

    • Crossref
    • Export Citation
  • Löhnert, U., S. Kneifel, A. Battaglia, M. Hagen, L. Hirsch, and S. Crewell, 2011: A multisensor approach toward a better understanding of snowfall microphysics: The TOSCA project. Bull. Amer. Meteor. Soc., 92, 613628, doi:10.1175/2010BAMS2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, E. P., and P. Kollias, 2013: Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra. J. Atmos. Oceanic Technol., 30, 16561671, doi:10.1175/JTECH-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, E. P., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed‐phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., and U. Löhnert, 2017: Potential of higher order moments of the radar Doppler spectrum for retrieving microphysical and kinematic properties of Arctic ice clouds. J. Appl. Meteor. Climatol., 56, 263282, doi:10.1175/JAMC-D-16-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. van Lipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13 60413 620, doi:10.1002/2014JD022079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., U. Löhnert, P. Kollias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and evaluating ice cloud parameterizations for forward modeling of radar moments using in situ aircraft observations. J. Atmos. Oceanic Technol., 32, 880903, doi:10.1175/JTECH-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, doi:10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamouri, R. E., and A. Ansmann, 2015: Estimated desert-dust ice nuclei profiles from polarization lidar: Methodology and case studies. Atmos. Chem. Phys., 15, 34633477, doi:10.5194/acp-15-3463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, doi:10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629, doi:10.1175/BAMS-89-5-629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., K. Nitschke, T. P. Ackerman, W. R. Ferrell, N. Hickmon, and M. Ivey, 2016: The ARM Mobile Facilities. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0051.1.

    • Crossref
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031, doi:10.1364/AO.39.001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, P. M., J. R. Hogan, and J. A. Illingworth, 2004: Using mesoscale model winds for correcting wind-drift errors in radar estimates of surface rainfall. Quart. J. Roy. Meteor. Soc., 130, 21052123, doi:10.1256/qj.03.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtagh, D., and Coauthors, 2002: An overview of the Odin atmospheric mission. Can. J. Phys., 80, 309319, doi:10.1139/p01-157.

  • Myagkov, A., P. Seifert, U. Wandinger, M. Bauer-Pfundstein, and S. Y. Matrosov, 2015: Effects of antenna patterns on cloud radar polarimetric measurements. J. Atmos. Oceanic Technol., 32, 18131828, doi:10.1175/JTECH-D-15-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myagkov, A., P. Seifert, M. Bauer-Pfundstein, and U. Wandinger, 2016: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals. Atmos. Meas. Tech., 9, 469489, doi:10.5194/amt-9-469-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, doi:10.1175/JCLI-D-13-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, S. R., W. Steinbrecht, and A. I. Carswell, 1992: Automated method for lidar determination of cloud-base height and vertical extent. Appl. Opt., 31, 14881494, doi:10.1364/AO.31.001488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. 2nd ed. Sundog, 459 pp.

  • Pilewskie, P., and S. Twomey, 1987: Discrimination of ice from water in clouds by optical remote sensing. Atmos. Res., 21, 113122, doi:10.1016/0169-8095(87)90002-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and Coauthors, 2003: Solar spectral radiative forcing during the Southern African Regional Science Initiative. J. Geophys. Res., 108, 8486, doi:10.1029/2002JD002411.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of Cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, E. J. O’Connor, and T. S. L’Ecuyer, 2010: The evaluation of Cloudsat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J. Atmos. Oceanic Technol., 27, 793810, doi:10.1175/2009JTECHA1397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rambukkange, M. P., J. Verlinde, E. W. Eloranta, C. J. Flynn, and E. E. Clothiaux, 2011: Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds. IEEE Geosci. Remote Sens. Lett., 8, 108112, doi:10.1109/LGRS.2010.2052781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2014: Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys., 52, 750808, doi:10.1002/2013RG000441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. Zhu, 2009: A global survey of CALIPSO linear depolarization ratios in ice clouds: Initial findings. J. Geophys. Res., 114, D00H07, doi:10.1029/2009JD012279.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2009: Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and H. Okamoto, 2006: Characterization of Z and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals. J. Geophys. Res., 111, D22213, doi:10.1029/2005JD006959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, M., E. Bierwirth, A. Ehrlich, E. Jäkel, and M. Wendisch, 2015: Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes. Atmos. Chem. Phys., 15, 81478163, doi:10.5194/acp-15-8147-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, K. S., and Coauthors, 2010: A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B. Atmos. Chem. Phys., 10, 78297843, doi:10.5194/acp-10-7829-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, E. G., D. M. Babb, and J. Verlinde, 2001: Processing millimeter wave profiler radar spectra. J. Atmos. Oceanic Technol., 18, 15771583, doi:10.1175/1520-0426(2001)018<1577:PMWPRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, P., and Coauthors, 2010: Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site. J. Geophys. Res., 115, D20201, doi:10.1029/2009JD013222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, P., and Coauthors, 2015: Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin. Geophys. Res. Lett., 42, 55875593, doi:10.1002/2015GL064068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, S. Y. Matrosov, and T. L. Schneider, 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21, 660670, doi:10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, P. O. G. Persson, and G. M. McFarquhar, 2008: Vertical motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 13041322, doi:10.1175/2007JAS2479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186, doi:10.1175/BAMS-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, doi:10.1175/BAMS-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) Program and Mission: An overview. Measuring Precipitation from Space, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 611–653.

  • Stein, T. H. M., D. J. Parker, J. Delanoë, N. S. Dixon, R. J. Hogan, P. Knippertz, R. I. Maidment, and J. H. Marsham, 2011: The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. J. Geophys. Res., 116, D22205, doi:10.1029/2011JD016029.

    • Search Google Scholar
    • Export Citation
  • Stephens,G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, N., and F. Weng, 2012: Retrieval of cloud ice water path from Special Sensor Microwave Imager/Sounder (SSMIS). J. Appl. Meteor. Climatol., 51, 366379, doi:10.1175/JAMC-D-11-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and D. H. Staelin, 2009: Satellite retrievals of Arctic and equatorial rain and snowfall rates using millimeter wavelengths. IEEE Trans. Geosci. Remote Sens., 47, 36973707, doi:10.1109/TGRS.2009.2029093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., Q. Fu, and J. Comstock, 2011: Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites. J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., I. V. Gorodetskaya, S. Lhermitte, D. D. Turner, J. H. Schween, and N. P. M. Van Lipzig, 2014: An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets. Atmos. Meas. Tech., 7, 11531167, doi:10.5194/amt-7-1153-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, doi:10.1175/2009JTECHA1228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., M. P. Rambukkange, E. E. Clothiaux, G. M. McFarquhar, and E. W. Eloranta, 2013: Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra. J. Geophys. Res. Atmos., 118, 13 19913 213, doi:10.1002/2013JD020183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinden, K. L., D. W. J. Thompson, and G. L. Stephens, 2011: The three-dimensional distribution of clouds over the Southern Hemisphere high latitudes. J. Climate, 24, 57995811, doi:10.1175/2011JCLI3922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, C., and Coauthors, 2017: ML-CIRRUS: The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO. Bull. Amer. Meteor. Soc., 98, 271288, doi:10.1175/BAMS-D-15-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. R., P. E. Racette, J. R. E. Piepmeier, B. Monosmith, and W. Manning, 2007: Airborne CoSMIR observations between 50 and 183 GHz over snow-covered Sierra Mountains. IEEE Trans. Geosci. Remote Sens., 45, 5561, doi:10.1109/TGRS.2006.885410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waters, J. W., and Coauthors, 2006: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 10751092, doi:10.1109/TGRS.2006.873771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and A. Ehrlich, 2011: Bodengebunde und flugzeuggetragene passive Fernerkundung von Wolken mit Hilfe von solaren Strahlungsmessungen (Ground and airborne passive remote sensing of clouds by means of solar radiation measurements). Promet, 36, 119128.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and J. L. Brenguier, Eds., 2013: Airborne Measurements for Environmental Research: Methods and Instruments. John Wiley & Sons, 641 pp.

    • Crossref
    • Export Citation
  • Wendisch, M., J. Heintzenberg, and M. Bussemer, 2001: Measurement-based aerosol forcing calculations: The influence of model complexity. Meteor. Z., 10, 4560, doi:10.1127/0941-2948/2001/0010-0045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., P. Yang, and A. Ehrlich, 2013a: Amplified climate changes in the Arctic: Role of clouds and atmospheric radiation. Conference Reports of the Mathematical and Natural Sciences, Vol. 132, Saxon Academy of Sciences, 34 pp.

  • Wendisch, M., and Coauthors, 2013b: Atmospheric radiation measurements. Airborne Measurements for Environmental Research: Methods and Instruments, M. Wendisch and J.-L. Brenguier, Eds., Wiley, 343–411.

    • Crossref
    • Export Citation
  • Wendisch, M., and Coauthors, 2016: The ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc., 97, 18851908, 10.1175/BAMS-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, Trans. Amer. Geophys. Union, 98, doi:10.1029/2017EO064803.

    • Search Google Scholar
    • Export Citation
  • Werner, F., H. Siebert, P. Pilewskie, T. Schmeissner, R. A. Shaw, and M. Wendisch, 2013: New airborne retrieval approach for trade wind cumulus properties under overlying cirrus. J. Geophys. Res. Atmos., 118, 36343649, doi:10.1002/jgrd.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, F., and Coauthors, 2014: Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. J. Geophys. Res. Atmos., 119, 15341545, doi:10.1002/2013JD020131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., and A. J. Illingworth, 2013: The formation of ice in a long-lived supercooled layer cloud. Quart. J. Roy. Meteor. Soc., 139, 22092221, doi:10.1002/qj.2096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and Coauthors, 2008: Validation of the Aura MLS cloud ice water content measurements. J. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.

    • Crossref
    • Export Citation
  • Wu, D. L., and Coauthors, 2009: Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res., 114, D00A24, doi:10.1029/2008JD009946.

    • Search Google Scholar
    • Export Citation
  • Xie, X., U. Löhnert, S. Kneifel, and S. Crewell, 2012: Snow particle orientation observed by ground-based microwave radiometry. J. Geophys. Res., 117, D02206, doi:10.1029/2011JD016369.

    • Search Google Scholar
    • Export Citation
  • Xie, X., S. Crewell, U. Löhnert, C. Simmer, and J. Miao, 2015: Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption. J. Geophys. Res. Atmos., 120, 61456160, doi:10.1002/2015JD023158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115, D00H32, doi:10.1029/2009JD012334.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., F. Fabry, and W. Szyrmer, 2001: Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59, 343359, doi:10.1016/S0169-8095(01)00124-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace, 2013: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 49634982, doi:10.5194/acp-13-4963-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. A. Klein, J. Boyle, and G. G. Mace, 2010: Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data. J. Geophys. Res., 115, D12205, doi:10.1029/2009JD012006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 14
PDF Downloads 34 34 13

Remote Sensing

View More View Less
  • 1 Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • 2 Australian Antarctic Division, Kingston, Tasmania, Australia
  • 3 Antarctic Climate and Ecosystems Co-operative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
  • 4 University of Cologne, Cologne, Germany
  • 5 Physical Meteorology Section, Mesoscale and Microscale Meteorology Laboratory, NCAR, Boulder, Colorado
  • 6 Hebrew University of Jerusalem, Jerusalem, Israel
  • 7 University of Colorado Boulder, Boulder, Colorado
  • 8 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • 9 University of Leuven, Leuven, Belgium
  • 10 Leipzig Institute for Meteorology, Leipzig, Germany
© Get Permissions
Restricted access

Abstract

State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Bühl, buehl@tropos.de

Abstract

State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Bühl, buehl@tropos.de
Save