• Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse. Geophys. Publ., 5 (6), 1111.

  • Beswick, K., and Coauthors, 2015: Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, 67B, 27876, doi:10.3402/tellusb.v67.27876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dionisi, D., P. Keckhut, C. Hoareau, N. Montoux, and F. Congeduti, 2013: Cirrus crystal fall velocity estimates using the Match method with ground-based lidars: First investigation through a case study. Atmos. Meas. Tech., 6, 457470, doi:10.5194/amt-6-457-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung. Meteor. Z., 55, 121133.

  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 41404150, doi:10.1175/2007JAS2289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, doi:10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein, 1999: The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941965, doi:10.1002/qj.49712555510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., L. J. Angus, and A. J. Heymsfield, 1998: Cloud particle measurements in thunderstorm anvils and possible weather threat to aviation. AIAA J. Aircr., 35 (1), 113121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, D., E. Fontaine, A. Schwarzenboeck, and J. W. Strapp, 2016: Ice crystal sizes in high ice water content clouds. Part I: On the computation of median mass diameter from in situ measurements. J. Atmos. Oceanic Technol., 33, 24612476, doi:10.1175/JTECH-D-15-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12 35712 371, doi:10.5194/acpd-14-8393-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, J. G., J. W. Strapp, and P. Chow, 2006: The ice particle threat to engines in flight. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA 2006-206, doi:10.2514/6.2006-206.

    • Crossref
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2000: Use of Doppler radar to assess ice cloud particle fall velocity–size relations for remote sensing and climate studies. J. Geophys. Res., 105, 22 42722 436, doi:10.1029/2000JD900353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 20392052, doi:10.1175/1520-0469(1998)055<2039:TDASOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single-scattering solar radiative properties for tropical ice clouds using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478, doi:10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. C. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., P. Rasch, D. Ivanova, G. McFarquhar, and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 22292248, doi:10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfalzgraff, W. C., R. M. Hulscher, and S. P. Neshyba, 2010: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys., 10, 29272935, doi:10.5194/acp-10-2927-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., C. Piani, W. J. Ingram, D. A. Stone, and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, doi:10.1007/s00382-007-0280-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 50915110, doi:10.5194/acp-16-5091-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2016: The High Ice Water Content (HIWC) study of deep convective clouds: Report on science and technical plan. FAA Rep. DOT/FAA/TC-14/31, 105 pp. [Available online at www.tc.faa.gov/its/worldpac/techrpt/tc14-31.pdf.]

  • Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775, doi:10.1175/JAM2501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171, doi:10.5194/acp-11-3159-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys., 15, 39333956, doi:10.5194/acp-15-3933-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. M. Fridlind, B. Cairns, and A. S. Ackerman, 2014: Variation of ice crystal size, shape and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11 80911 825, doi:10.1002/2014JD022385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud properties to observed fluxes: A critical assessment. J. Atmos. Sci., 52, 42854301, doi:10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth, 331 pp.

  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79-80, 11591169, doi:10.1016/S0022-4073(02)00347-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 19481957, doi:10.1109/TGRS.2008.916472.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 135 0
PDF Downloads 263 150 0

Background and Overview

View More View Less
  • 1 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 Droplet Measurement Technologies, Boulder, Colorado
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
Restricted access
Motivation

Ice crystals, with their myriad of shapes, sizes, and densities, play an important role in the formation, evolution, and subsequent impact of glaciating clouds on weather and climate. There are numerous pathways through which ice crystals nucleate, grow, and dissipate. Although many of these are understood theoretically, and have been simulated in the laboratory and cloud chambers, they are less well documented in natural clouds due to the challenges of making measurements from moving platforms in an environment that is spatially inhomogeneous and temporally unsteady, as well as difficult to sample given the high altitudes and icing potential

Motivation

Ice crystals, with their myriad of shapes, sizes, and densities, play an important role in the formation, evolution, and subsequent impact of glaciating clouds on weather and climate. There are numerous pathways through which ice crystals nucleate, grow, and dissipate. Although many of these are understood theoretically, and have been simulated in the laboratory and cloud chambers, they are less well documented in natural clouds due to the challenges of making measurements from moving platforms in an environment that is spatially inhomogeneous and temporally unsteady, as well as difficult to sample given the high altitudes and icing potential

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Prof. Greg McFarquhar, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@illinois.edu
Motivation

Ice crystals, with their myriad of shapes, sizes, and densities, play an important role in the formation, evolution, and subsequent impact of glaciating clouds on weather and climate. There are numerous pathways through which ice crystals nucleate, grow, and dissipate. Although many of these are understood theoretically, and have been simulated in the laboratory and cloud chambers, they are less well documented in natural clouds due to the challenges of making measurements from moving platforms in an environment that is spatially inhomogeneous and temporally unsteady, as well as difficult to sample given the high altitudes and icing potential

Motivation

Ice crystals, with their myriad of shapes, sizes, and densities, play an important role in the formation, evolution, and subsequent impact of glaciating clouds on weather and climate. There are numerous pathways through which ice crystals nucleate, grow, and dissipate. Although many of these are understood theoretically, and have been simulated in the laboratory and cloud chambers, they are less well documented in natural clouds due to the challenges of making measurements from moving platforms in an environment that is spatially inhomogeneous and temporally unsteady, as well as difficult to sample given the high altitudes and icing potential

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Prof. Greg McFarquhar, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@illinois.edu
Save