• Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse. Geophys. Publ., 5 (6), 1111.

  • Beswick, K., and Coauthors, 2015: Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, 67B, 27876, doi:10.3402/tellusb.v67.27876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dionisi, D., P. Keckhut, C. Hoareau, N. Montoux, and F. Congeduti, 2013: Cirrus crystal fall velocity estimates using the Match method with ground-based lidars: First investigation through a case study. Atmos. Meas. Tech., 6, 457470, doi:10.5194/amt-6-457-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung. Meteor. Z., 55, 121133.

  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 41404150, doi:10.1175/2007JAS2289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, doi:10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein, 1999: The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941965, doi:10.1002/qj.49712555510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., L. J. Angus, and A. J. Heymsfield, 1998: Cloud particle measurements in thunderstorm anvils and possible weather threat to aviation. AIAA J. Aircr., 35 (1), 113121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, D., E. Fontaine, A. Schwarzenboeck, and J. W. Strapp, 2016: Ice crystal sizes in high ice water content clouds. Part I: On the computation of median mass diameter from in situ measurements. J. Atmos. Oceanic Technol., 33, 24612476, doi:10.1175/JTECH-D-15-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12 35712 371, doi:10.5194/acpd-14-8393-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, J. G., J. W. Strapp, and P. Chow, 2006: The ice particle threat to engines in flight. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA 2006-206, doi:10.2514/6.2006-206.

    • Crossref
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2000: Use of Doppler radar to assess ice cloud particle fall velocity–size relations for remote sensing and climate studies. J. Geophys. Res., 105, 22 42722 436, doi:10.1029/2000JD900353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 20392052, doi:10.1175/1520-0469(1998)055<2039:TDASOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single-scattering solar radiative properties for tropical ice clouds using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478, doi:10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. C. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., P. Rasch, D. Ivanova, G. McFarquhar, and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 22292248, doi:10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfalzgraff, W. C., R. M. Hulscher, and S. P. Neshyba, 2010: Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys., 10, 29272935, doi:10.5194/acp-10-2927-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., C. Piani, W. J. Ingram, D. A. Stone, and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, doi:10.1007/s00382-007-0280-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., and Coauthors, 2016: Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys., 16, 50915110, doi:10.5194/acp-16-5091-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2016: The High Ice Water Content (HIWC) study of deep convective clouds: Report on science and technical plan. FAA Rep. DOT/FAA/TC-14/31, 105 pp. [Available online at www.tc.faa.gov/its/worldpac/techrpt/tc14-31.pdf.]

  • Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775, doi:10.1175/JAM2501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171, doi:10.5194/acp-11-3159-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys., 15, 39333956, doi:10.5194/acp-15-3933-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. M. Fridlind, B. Cairns, and A. S. Ackerman, 2014: Variation of ice crystal size, shape and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11 80911 825, doi:10.1002/2014JD022385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud properties to observed fluxes: A critical assessment. J. Atmos. Sci., 52, 42854301, doi:10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth, 331 pp.

  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79-80, 11591169, doi:10.1016/S0022-4073(02)00347-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Hong, G. W. Kattawar, P. Minnis, and Y. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II—Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 19481957, doi:10.1109/TGRS.2008.916472.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 8
PDF Downloads 40 40 10

Background and Overview

View More View Less
  • 1 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • 2 Droplet Measurement Technologies, Boulder, Colorado
  • 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Prof. Greg McFarquhar, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@illinois.edu

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Prof. Greg McFarquhar, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@illinois.edu
Save