Mixed-Phase Clouds: Progress and Challenges

A. Korolev Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by A. Korolev in
Current site
Google Scholar
PubMed
Close
,
G. McFarquhar University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by G. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
P. R. Field Met Office, Exeter, United Kingdom
University of Leeds, Leeds, United Kingdom

Search for other papers by P. R. Field in
Current site
Google Scholar
PubMed
Close
,
C. Franklin Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by C. Franklin in
Current site
Google Scholar
PubMed
Close
,
P. Lawson Stratton Park Engineering Corporation, Boulder, Colorado

Search for other papers by P. Lawson in
Current site
Google Scholar
PubMed
Close
,
Z. Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Z. Wang in
Current site
Google Scholar
PubMed
Close
,
E. Williams Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by E. Williams in
Current site
Google Scholar
PubMed
Close
,
S. J. Abel Met Office, Exeter, United Kingdom

Search for other papers by S. J. Abel in
Current site
Google Scholar
PubMed
Close
,
D. Axisa National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. Axisa in
Current site
Google Scholar
PubMed
Close
,
S. Borrmann Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by S. Borrmann in
Current site
Google Scholar
PubMed
Close
,
J. Crosier School of Earth and Environment, University of Manchester, Manchester, United Kingdom
National Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Search for other papers by J. Crosier in
Current site
Google Scholar
PubMed
Close
,
J. Fugal Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

Search for other papers by J. Fugal in
Current site
Google Scholar
PubMed
Close
,
M. Krämer Forschungszentrum Jülich, Jülich, Germany

Search for other papers by M. Krämer in
Current site
Google Scholar
PubMed
Close
,
U. Lohmann ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

Search for other papers by U. Lohmann in
Current site
Google Scholar
PubMed
Close
,
O. Schlenczek Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

Search for other papers by O. Schlenczek in
Current site
Google Scholar
PubMed
Close
,
M. Schnaiter Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by M. Schnaiter in
Current site
Google Scholar
PubMed
Close
, and
M. Wendisch University of Leipzig, Leipzig, Germany

Search for other papers by M. Wendisch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represent in numerical weather prediction and climate models, and their description in theoretical cloud physics still presents complicated challenges. In this chapter, the current status of our knowledge on mixed-phase clouds, obtained from theoretical studies and observations, is reviewed. Recent progress, along with a discussion of problems and gaps in understanding the mixed-phase environment is summarized. Specific steps to improve our knowledge of mixed-phase clouds and their role in the climate and weather system are proposed.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Current affiliation: Droplet Measurement Technologies, Longmont, Colorado.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexei Korolev, alexei.korolev@canada.ca

Abstract

Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represent in numerical weather prediction and climate models, and their description in theoretical cloud physics still presents complicated challenges. In this chapter, the current status of our knowledge on mixed-phase clouds, obtained from theoretical studies and observations, is reviewed. Recent progress, along with a discussion of problems and gaps in understanding the mixed-phase environment is summarized. Specific steps to improve our knowledge of mixed-phase clouds and their role in the climate and weather system are proposed.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Current affiliation: Droplet Measurement Technologies, Longmont, Colorado.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexei Korolev, alexei.korolev@canada.ca
Save
  • Abdelmonem, A., E. Järvinen, D. Duft, E. Hirst, S. Vogt, T. Leisner, and M. Schnaiter, 2016: PHIPS–HALO: The airborne particle habit imaging and polar scattering probe—Part 1: Design and operation. Atmos. Meas. Tech., 9, 31313144, doi:10.5194/amt-9-3131-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adhikari, L., and Z. Wang, 2013: An A-Train satellite based stratiform mixed-phase cloud retrieval algorithm by combining active and passive sensor measurements. Br. J. Environ. Climate Change, 3, 587611, doi:10.9734/BJECC/2013/3055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1966: The balance level in convective storms. J. Atmos. Sci., 23, 635651, doi:10.1175/1520-0469(1966)023<0635:TBLICS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ávila, E. A., and R. G. Pereyra, 2000: Charge transfer during crystal-graupel collisions for two different cloud droplet size distributions. Geophys. Res. Lett., 27, 38373840, doi:10.1029/2000GL012302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ávila, E. A., R. E. Bürgesser, N. E. Castellano, R. G. Pereyra, and C. P. R. Saunders, 2011: Charge separation in low-temperature ice cloud regions. J. Geophys. Res., 116, D14202, doi:10.1029/2010JD015475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachalo, W. D., 2000: Spray diagnostics for the twenty-first century. Atomization Sprays, 10, 439474, doi:10.1615/AtomizSpr.v10.i3-5.110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachalo, W. D., and M. J. Houser, 1984: Phase Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Opt. Eng., 23, 583590, doi:10.1117/12.7973341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachalo, W. D., J. W. Strapp, E. Biagio, A. Korolev, and M. Wolde, 2015: Performance of the newly developed high speed imaging (HSI) probe for measurements of size and concentration of ice crystals and identification of phase composition of clouds. SAE 2015 Int. Conf. on Icing of Aircraft, Engines, and Structures, Prague, Czech Republic, SAE.

  • Bacon, N. J., M. B. Baker, and B. D. Swanson, 2003: Initial stages in the morphological evolution of vapor-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129, 19031928, doi:10.1256/qj.02.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63, 31603185, doi:10.1175/JAS3802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., M. B. Baker, E. R. Jayaratne, J. Latham, and C. P. R. Saunders, 1987: The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quart. J. Roy. Meteor. Soc., 113, 11931215, doi:10.1002/qj.49711347807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, and W. P. Menzel, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11 78111 792, doi:10.1029/1999JD901090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., R. A. Frey, G. G. Mace, M. K. Harkey, and P. Yang, 2003: Nighttime multilayered cloud detection using MODIS and ARM data. J. Appl. Meteor., 42, 905919, doi:10.1175/1520-0450(2003)042<0905:NMCDUM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, 11451163, doi:10.1175/JAMC-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Rodi, 1989: Laboratory and wind tunnel evaluations of the Rosemount Icing Detector. J. Atmos. Oceanic Technol., 6, 971979, doi:10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60, 251264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., J. F. Gayet, H. Gerber, A. Korolev, and C. Twohy, 2002: Clouds: Measurement techniques in-situ. Encyclopedia of Atmospheric Science, J. Curry, J. Holton, and J. Pyle, Eds., Academic Press, 489–498.

    • Crossref
    • Export Citation
  • Baumgardner, D., R. Newton, M. Kramer, J. Meyer, A. Beyer, M. Wendisch, and P. Vochezer, 2014: The cloud particle spectrometer with polarization detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals. Atmos. Res., 142, 214, doi:10.1016/j.atmosres.2013.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Berdeklis, P., and R. List, 2001: The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci., 58, 27512770, doi:10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse. Geophys. Norv., 5 (6), 1111.

  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proces Verbaux de l’Association de Météorologie, International Union of Geodesy and Geophysics, 156–178.

  • Biter, C. J., J. E. Dye, D. Huffman, and W. D. King, 1987: The drop-size response of the CSIRO liquid water probe. J. Atmos. Oceanic Technol., 4, 359367, doi:10.1175/1520-0426(1987)004<0359:TDSROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, doi:10.1175/JCLI-D-15-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., and R. M. Mitchell, 1994: Absorption feedback in stratocumulus clouds: Influence on cloud top albedo. Tellus, 46A, 229241, doi:10.3402/tellusa.v46i3.15476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borovikov, A. M., I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. K. Khrgian, and S. M. Shmeter, 1963: Cloud Physics. Israel Program for Scientific Translations, 392 pp.

  • Borrmann, S., B. Luot, and M. Mishchenko, 2000: Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical particle counters. J. Aerosol Sci., 31, 789799, doi:10.1016/S0021-8502(99)00563-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602, doi:10.1016/S1352-2310(99)00492-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., T. Bourrianne, A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Wechsler, 1998: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic. Technol., 15, 10771090, doi:10.1175/1520-0426(1998)015<1077:IODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., and Coauthors, 2013: In situ measurements of cloud and precipitation particles. Airborne Measurements for Environmental Research: Methods and Instruments, M. Wendisch and J. L. Brenguier, Eds., Wiley, 225–302, doi:10.1002/9783527653218.ch5.

    • Crossref
    • Export Citation
  • Buriez, J. C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 27852813, doi:10.1080/014311697217332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.

  • Cadeddu, M. P., J. C. Liljegren, and D. D. Turner, 2013: The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech., 6, 23592372, doi:10.5194/amt-6-2359-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano, N. E., E. E. Avila, and C. P. R. Saunders, 2004: Theoretical model of the Bergeron–Findeisen mechanism of ice crystal growth in clouds. Atmos. Environ., 38, 67516761, doi:10.1016/j.atmosenv.2004.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano, N. E., E. E. Avila, and C. P. R. Saunders, 2008: Vapour density field of mixed-phase clouds. Atmos. Res., 88, 5665, doi:10.1016/j.atmosres.2007.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., D. E. Waliser, X. Jiang, and J.-L. F. Li, 2015: Multi-model evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res. Atmos., 120, 78717892, doi:10.1002/2014JD022932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 83058314, doi:10.1029/JD093iD07p08305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., and C. Borel, 2004: Mixed-phase cloud water/ice structure from high spatial resolution satellite data. Geophys. Res. Lett., 31, L14104, doi:10.1029/2004GL020428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001a: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18, 515528, doi:10.1175/1520-0426(2001)018<0515:ATRIDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001b: Assessing cloud phase conditions. J. Appl. Meteor., 40, 19671983, doi:10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, A., and Coauthors, 2017: Classification of Arctic, mid-latitude and tropical clouds in the mixed-phase temperature regime. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303, doi:10.1175/2009JTECHA1282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, C. R., T. Rutke, J. W. Strapp, T. P. Ratvasky, and E. F. Emery, 2012: Naturally aspirating isokinetic total water content probe: Pre-flight wind tunnel testing and design modifications. Fourth AIAA Atmospheric and Space Environments Conf., New Orleans, LA, AIAA, 2012-3040, doi:10.2514/6.2012-3040.

    • Crossref
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445461, doi:10.1175/1520-0442(2003)016<0445:ASCPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., W. P. Winn, J. J. Jones, and D. W. Breed, 1989: The electrification of New Mexico thunderstorms 1. Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94, 86438656, doi:10.1029/JD094iD06p08643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., E. Bierwirth, M. Wendisch, J.-F. Gayet, G. Mioche, A. Lampert, and J. Heintzenberg, 2008: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches. Atmos. Chem. Phys., 8, 74937505, doi:10.5194/acp-8-7493-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327340, doi:10.1016/j.atmosres.2010.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, E. F., D. R. Miller, S. R. Plaskon, J. W. Strapp, and L. Lilie, 2004: Ice particle impact on cloud water content instrumentation. Preprints, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, 2004-0731, doi:10.2514/6.2004-731.

    • Crossref
    • Export Citation
  • Fahrenheit, D. G., 1724: Experimenta & observationes de congelatione aquæ in vacuo factæ. Philos. Trans., 33, 7884, doi:10.1098/rstl.1724.0016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain, 2009: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.

    • Search Google Scholar
    • Export Citation
  • Fan, J., S. Ghan, M. Ovchinnikov, X. Liu, P. Rasch, and A. Korolev, 2011: Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, doi:10.1029/2010JD015375.

    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, doi:10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrington, R., and Coauthors, 2016: Discriminating between liquid and ice particles measured in mixed-phase cloud during the INUPIAQ campaign. Int. Conf. on Clouds and Precipitation, Manchester, UK, P16.18.

  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, doi:10.1002/2015GL065497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a Fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m-scale. Quart. J. Roy. Meteor. Soc., 130, 18771904, doi:10.1256/qj.03.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, B. J. Shipway, P. J. DeMott, K. A. Pratt, D. C. Rogers, J. Stith, and K. A. Prather, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 10661079, doi:10.1175/JAS-D-11-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870880. doi:10.1002/qj.2175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121133.

  • Findeisen, W., 1940: On the origin of thunderstorm electricity. Meteor. Z., 57, 201215.

  • Findeisen, W., 1942: Results of cloud and precipitation observations in weather reconnaissance flights over sea. Forsch. Erfahr. Reichsamt Wetterdienst, 8B, 112.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., and E. Findeisen, 1943: Investigations on the ice splinter formation on rime layers (A contribution to the origin of storm electricity and to the microstructure of cumulonimbi). Meteor. Z., 60 (5), 145154.

    • Search Google Scholar
    • Export Citation
  • Fleenor, S. A., C. J. Biagi, K. L. Cummins, E. P. Krider, and X.-M. Shao, 2009: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains. Atmos. Res., 91, 333352, doi:10.1016/j.atmosres.2008.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 17791804, doi:10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489529, doi:10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freer, M., D. Baumgardner, M. W. Gallagher, A. Dean, A. Petzold, and J. Dorsey, 2014: Droplets, ice crystal or ash? Real time detection using the next generation Backscatter Cloud Probe. 14th Conf. on Cloud Physics, Boston, MA, Amer. Meteor. Soc., P2.20. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper249408.html.]

    • Crossref
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2012a: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., B. van Diedenhoven, A. S. Ackerman, A. Avramov, A. Morrie, H. Morrison, P. Zuidema, and M. D. Snipe, 2012b: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365389, doi:10.1175/JAS-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Hollars, 2004: Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE–ACE observations. J. Atmos. Sci., 61, 20832091, doi:10.1175/1520-0469(2004)061<2083:TMCWVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, B. R., and Coauthors, 2015: Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. Atmos., 120, 65756596, doi:10.1002/2015JD023271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., and R. A. Shaw, 2009: Cloud particle size distributions measured with an airborne digital in-line holographic instrument. Atmos. Meas. Tech., 2, 259271, doi:10.5194/amt-2-259-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., T. J. Schultz, and R. A. Shaw, 2009: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol., 20, 075501, doi:10.1088/0957-0233/20/7/075501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., 1969: Experimental studies on the growth of small ice crystals. J. Atmos. Sci., 26, 522531, doi:10.1175/1520-0469(1969)026<0522:ESOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, K., P. R. Field, I. A. Boutle, C. J. Morcrette, and J. M. Wilkinson, 2016: A physically based subgrid parameterization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci., 73, 279291, doi:10.1175/JAS-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., and A. F. H. Goetz, 1990: Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data. J. Geophys. Res., 95, 35493564, doi:10.1029/JD095iD04p03549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A. and J. Hallett, 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., S. Asano, A. Yamazaki, A. Uchiyama, A. Sinyuk, O. Jourdan, and F. Auriol, 2002: Two case studies of winter continental-type water and mixed-phase stratocumuli over the sea. 1: Microphysical and optical properties. J. Geophys. Res., 107, 4569, doi:10.1029/2001JD001106.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, and A. J. Conley, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girard, E., G. Dueymes, P. Du, and A. K. Bertram, 2013: Assessment of the effects of acid-coated ice nuclei on the Arctic cloud microstructure, atmospheric dehydration, radiation and temperature during winter. Int. J. Climatol., 33, 599614, doi:10.1002/joc.3454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gliki, N. V., and A. A. Eliseev, 1962: Effect of supersaturation and temperature of the development of the initial growth forms on a sphere of ice. Kristallografia, 7, 802804.

    • Search Google Scholar
    • Export Citation
  • Gliki, N. V., A. A. Eliseev, and N. M. Marchenko, 1962: The growth of spherical ice crystals. Kristallografia, 7, 609612.

  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105, 14 74714 759, doi:10.1029/1999JD901183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonda, T., and T. Yamazaki, 1984: Initial growth forms of snow crystals growing from frozen droplets. J. Meteor. Soc. Japan, 62, 190192, doi:10.2151/jmsj1965.62.1_190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, R. O., T. H. Painter, D. A. Roberts, and J. Dozier, 2006: Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow. Water Resour. Res., 42, W10402, doi:10.1029/2005WR004509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and D. Morris, 1996: The sensitivity of climate simulations to the specification of mixed-phase clouds. Climate Dyn., 12, 641651, doi:10.1007/BF00216271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, doi:10.1029/96JD03436.

  • Harrington, J. Y., and P. Q. Olsson, 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106, 27 47327 484, doi:10.1029/2000JD000236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulation of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51, 4575, doi:10.1016/S0169-8095(98)00098-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, doi:10.1175/2008JAMC1882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367381, doi:10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1989: Evaluation of liquid water measuring instruments in cold clouds sampled during FIRE. J. Atmos. Oceanic Technol., 6, 378388, doi:10.1175/1520-0426(1989)006<0378:EOLWMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50, 23352353, doi:10.1175/1520-0469(1993)050<2335:HINASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 24242451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.

    • Crossref
    • Export Citation
  • Hill, A. A., P. R. Field, K. Furtado, A. Korolev, and B. J. Shipway, 2014: Mixed-phase clouds in a turbulent environment. Part 1: Large-eddy simulation experiments. Quart. J. Roy. Meteor. Soc., 140, 855869, doi:10.1002/qj.2177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and L. F. Radke, 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part II: Techniques for the physical evaluation of seeding. J. Appl. Meteor., 14, 805818, doi:10.1175/1520-0450(1975)014<0805:TNOWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124, 20352071, doi:10.1002/qj.49712455012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci., 30, 813823, doi:10.1175/1520-0469(1973)030<0813:ATSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodapp, C. L., L. D. Carey, and R. E. Orville, 2008: Evolution of radar reflectivity and total lightning structure of the 21 April 2006 mesoscale convective system over Texas. Atmos. Res., 89, 113137, doi:10.1016/j.atmosres.2008.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, doi:10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003a: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE98. Quart. J. Roy. Meteor. Soc., 129, 20892116, doi:10.1256/rj.01.208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. J. Illingworth, E. J. O’Connor, and J. P. V. Poiares Baptista, 2003b: Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar. Quart. J. Roy. Meteor. Soc., 129, 21172134, doi:10.1256/qj.01.209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, P. Steir, B. Verheggen, and E. Weingartner, 2008: Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations. J. Geophys. Res., 113, D07210, doi:10.1029/2007JD009251.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2007: The depolarization–attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express, 15, 53275332, doi:10.1364/OE.15.005327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., S. Rodier, K.-M. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi:10.1029/2009JD012384.

    • Search Google Scholar
    • Export Citation
  • Huang, D., K. Johnson, Y. Liu, and W. Wiscombe, 2009: High-resolution retrieval of liquid water vertical distributions using collocated Ka-band and W-band cloud radars. Geophys. Res. Lett., 36, L24807, doi:10.1029/2009GL041364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanöe, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JB009424.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000jc000423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and R. S. Schemenauer, 1979: Large particles in supercooled regions of northern Canadian cumulus clouds. J. Appl. Meteor., 18, 10561065, doi:10.1175/1520-0450(1979)018<1056:LPISRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwabuchi, T., and C. Magono, 1975: A laboratory experiment on the freezing electrification of freely falling water droplets. J. Meteor. Soc. Japan, 53, 393401, doi:10.2151/jmsj1965.53.6_393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of Arctic mixed-phase stratus ice cloud microphysics on aerosol concentration using observations acquired during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103117, doi:10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jäkel, E., J. Walter, and M. Wendisch, 2013: Thermodynamic phase retrieval of convective clouds: Impact of sensor viewing geometry and vertical distribution of cloud properties. Atmos. Meas. Tech., 6, 539547, doi:10.5194/amt-6-539-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2002: Ice clouds in numerical weather prediction models: Progress, problems, and prospects. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 327–345.

    • Crossref
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354, doi:10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Järvinen, E., and Coauthors, 2016: Quasi-spherical ice in convective clouds. J. Atmos. Sci., 73, 38853910, doi:10.1175/JAS-D-15-0365.1.

  • Jayaratne, E. R., and C. P. R. Saunders, 1985: Thunderstorm electrification: The effect of cloud droplets. J. Geophys. Res., 90, 13 06313 066, doi:10.1029/JD090iD07p13063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., and C. P. R. Saunders, 2016: The interaction of ice crystals with hailstones in wet growth and its possible role in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 142, 18091815, doi:10.1002/qj.2777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609630, doi:10.1002/qj.49710946111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. Pinto, J. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 21052117, doi:10.1175/1520-0469(2000)057<2105:CRSOMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., S. Lasher-Trapp, A. Bansemer, Z. Ulanowski, and A. J. Heymsfield, 2014: Difficulties in early ice detection with the Small Ice Detector-2 HIAPER (SID-2H) in maritime cumuli. J. Atmos. Oceanic Technol., 31, 12631275, doi:10.1175/JTECH-D-13-00079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaltenboeck, R., and A. Ryzhkov, 2013: Comparison of hail signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323336, doi:10.1016/j.atmosres.2012.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanitz, T., P. Seifert, A. Ansmann, R. Engelmann, D. Althausen, C. Casiccia, and E. G. Rohwer, 2011: Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett., 38, L17802, doi:10.1029/2011GL048532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model. J. Climate, 29, 46174636, doi:10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., J. Lutz, and J. Vivekanandan, 2000: S-Pol: NCAR’s polarimetric Doppler research radar. Proc. Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1570–1573.

  • Keith, W. D., and C. P. R. Saunders, 1990: Further laboratory studies of the charging of graupel during ice crystal interactions. Atmos. Res., 25, 445464, doi:10.1016/0169-8095(90)90028-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J. R., and J. M. Intrieri, 2000: Cloud particle phase determination with AVHRR. J. Appl. Meteor., 39, 17971804, doi:10.1175/1520-0450-39.10.1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, doi:10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, doi:10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 15–89.

    • Crossref
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars—New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komurcu, M., and Coauthors, 2014: Intercomparison of the cloud water phase among global climate models. J. Geophys. Res. Atmos., 119, 33723400, doi:10.1002/2013JD021119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2008: Rates of phase transformations in mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 134, 595608, doi:10.1002/qj.230.

  • Korolev, A. V., and J. W. Strapp, 2002: Accuracy of measurements of cloud ice water content by the Nevzorov probe. 40th Aerospace Science Meeting and Exhibit, Reno, NV, AIAA, AIAA 2002-0679. [Available online at https://www.eol.ucar.edu/homes/dcrogers/C130/Probes/Nevzorov/IWC_AIAA.pdf.]

    • Crossref
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, doi:10.1256/qj.01.203.

  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase and ice clouds. J. Atmos. Sci., 63, 28652880, doi:10.1175/JAS3784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2008: The effect of spatial averaging on the relative humidity and phase composition of clouds. Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, P1.3. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_01/Korolev&Isaac_extended.pdf.]

  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, doi:10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, S. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3966, doi:10.1256/qj.01.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622, doi:10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, and K. Creelman, 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and E. Emery, 2013c: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, doi:10.1175/JTECH-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., and E. P. Krider, 1989: Analysis of lightning field changes during active Florida thunderstorms. J. Geophys. Res., 94, 11651186, doi:10.1029/JD094iD01p01165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kou, L., D. Labrie, and P. Chylek, 1993: Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt., 32, 35313540, doi:10.1364/AO.32.003531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, doi:10.5194/acp-9-3505-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1981: An Analysis of the Electric Field Change Produced by Lightning. Vols. I and II, New Mexico Mining and Technology Rep. T-11, 490 pp.

  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academy Press, 90–113.

  • Krehbiel, P. R., M. Brook, and R. A. McCrory, 1979: An analysis of the charge structure of lightning discharges to ground. J. Geophys. Res., 84, 24322456, doi:10.1029/JC084iC05p02432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000: Lightning mapping observations in central Oklahoma. Eos, Trans. Amer. Geophys. Union, 81, 2125, doi:10.1029/00EO00014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., A. Korolev, I. Heckman, M. Wolde, A. M. Fridlind, and A. S. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 15741582, doi:10.1002/2016GL072455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, B. Dolan, P. Krehbiel, W. Rison, and D. T. Lindsey, 2014: Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Wea. Rev., 142, 489507, doi:10.1175/MWR-D-13-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, P., C. Gurganus, S. Woods, and R. Bruintjes, 2017: Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a “new” secondary ice process. J. Atmos. Sci., 174, 28992920, doi:10.1175/JAS-D-17-0033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and A. Gettelman, 2014: Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA, 111, 18 15618 161, doi:10.1073/pnas.1418197111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBlanc, S. E., P. Pilewskie, K. S. Schmidt, and O. Coddington, 2015: A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra. Atmos. Meas. Tech., 8, 13611383, doi:10.5194/amt-8-1361-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leon, D. C., and Coauthors, 2016: The Convective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern United Kingdom. Bull. Amer. Meteor. Soc., 97, 10031020, doi:10.1175/BAMS-D-14-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1987: A 94-GHz Doppler radar for cloud observations. J. Atmos. Oceanic Technol., 4, 3648, doi:10.1175/1520-0426(1987)004<0036:AGDRFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and E. Williams, 1985: Thunderstorm electrification: A case study. J. Geophys. Res., 90, 60716078, doi:10.1029/JD090iD04p06071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-X., and H. Le Treut, 1992: Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modeling assumptions. Climate Dyn., 7, 133139, doi:10.1007/BF00211155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, doi:10.1029/2001GL014357.

  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 89178934, doi:10.5194/acp-9-8917-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Henneberger, O. Henneberg, J. P. Fugal, J. Bühl, and Z. A. Kanji, 2016: Persistence of orographic mixed-phase clouds. Geophys. Res. Lett., 43, 10 51210 519, doi:10.1002/2016GL071036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, M. L., and E. E. Ávila, 2012: Deformations of frozen droplets formed at −40°C. Geophys. Res. Lett., 39, L01805, doi:10.1029/2011GL050185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubin, D., 2004: Thermodynamic phase of maritime Antarctic clouds from FTIR and supplementary radiometric data. J. Geophys. Res., 109, D04204, doi:10.1029/2003JD003979.

    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1951: The heat economy of a rimed cylinder. Quart. J. Roy. Meteor. Soc., 77, 663666, doi:10.1002/qj.49707733410.

  • Luke, E. P., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luque, M. Y., R. Burgesser, and E. Avila, 2016: Thunderstorm graupel charging in the absence of supercooled water droplets. Quart. J. Roy. Meteor. Soc., 142, 24182423, doi:10.1002/qj.2834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., T. E. Nelson, E. R. Williams, J. Cramer, and T. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke. Science, 282, 7781, doi:10.1126/science.282.5386.77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697, doi:10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. P. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 71417157, doi:10.1029/JC087iC09p07141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattos, E. V., L. A. T. Machado, E. R. Williams, S. J. Goodman, R. J. Blakeslee, and J. C. Bailey, 2017: Electrification life cycle of incipient thunderstorms. J. Geophys. Res. Atmos., 122, 46704697, doi:10.1002/2016JD025772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, doi:10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., 1986: Relation of clouds phase structure to vertical motion. Sov. Meteor. Hydrol., 11, 2735.

  • Mazin, I. P., A. V. Korolev, A. Heymsfield, G. A. Isaac, and S. G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. J. Atmos. Oceanic Technol., 18, 543558, doi:10.1175/1520-0426(2001)018<0543:TOICFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 88368857, doi:10.1175/JCLI-D-14-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, doi:10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. J. Adv. Model. Earth Syst., 8, 650668, doi:10.1002/2015MS000589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17, 37993813, doi:10.1175/1520-0442(2004)017<3799:SPOMAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, and A. J. Heymsfield, 2007: Ice properties of single layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (MPACE). Part I: Observations. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small particle shape in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, J., 2013: Ice Crystal Measurements with the New Particle Spectrometer NIXE-CAPS. Forschungszentrum Jülich, 132 pp.

  • Miller, S. D., Y.-J. Noh, and A. K. Heidinger, 2014: Liquid-top mixed-phase cloud detection from shortwave-infrared satellite radiometer observations: A physical basis. J. Geophys. Res. Atmos., 119, 82458267, doi:10.1002/2013JD021262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioche, G., O. Jourdan, M. Ceccaldi, and J. Delanöe, 2015: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing. Atmos. Chem. Phys., 15, 24452461, doi:10.5194/acp-15-2445-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, and M. J. Manton, 2011: A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific. J. Climate, 24, 24052418, doi:10.1175/2010JCLI3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk parameterization implemented into a single-column model. J. Geophys. Res., 108, 4255, doi:10.1029/2002JD002229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multilayered cloud. Quart. J. Roy. Meteor. Soc., 135, 10031019, doi:10.1002/qj.415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2011: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst., 3, M05001, doi:10.1029/2011MS000066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, S. J., and D. W. Johnson, 1994: Aircraft measurements to validate and improve numerical model parametrization of ice to water ratios in clouds. Atmos. Res., 34, 125, doi:10.1016/0169-8095(94)90078-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., A. Ono, and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc., 96, 487508, doi:10.1002/qj.49709640910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2009: Sensitivity studies of aerosol–cloud interactions in mixed-phase orographic precipitation. J. Atmos. Sci., 66, 25172538, doi:10.1175/2009JAS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., T. Hashino, L. Xue, A. Teller, U. Lohmann, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 81738196, doi:10.5194/acp-10-8173-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, doi:10.1002/2015GL064604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., and T. Matsuo, 1990: Development of the hydrometeor videosonde. J. Atmos. Oceanic Technol., 7, 613620, doi:10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A., R. M. Rauber, G. M. McFarquhar, B. F. Jewett, D. M. Plummer, J. A. Finlon, and A. A. Rosenow, 2017: Microphysical structure of elevated convection in winter cyclones. J. Atmos. Sci., 74, 6991, doi:10.1175/JAS-D-16-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47, 28952910, doi:10.1175/2008JAMC1879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, doi:10.1175/JCLI-D-13-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neel, C. B., 1955: Heated-wire-liquid-water content instrument and results of initial flight tests in icing conditions. National Advisory Committee for Aeronautics Research Memo. RMA54123, 33 pp.

  • Nichman, L., and Coauthors, 2016: Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments. Atmos. Chem. Phys., 16, 36513664, doi:10.5194/acp-16-3651-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., J. Leighton, and R. Barker, 1990: A new fast response instrument for measuring total water content from aircraft. J. Atmos. Oceanic Technol., 7, 706718, doi:10.1175/1520-0426(1990)007<0706:ANFRIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y. J., C. J. Seaman, T. H. Vonder Haar, and G. Liu, 2013: In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. J. Appl. Meteor., 52, 269279, doi:10.1175/JAMC-D-11-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. J. Aerosol. Sci. Technol., 8, 235244, doi:10.1080/02786828808959186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, D., B. Baker, and R. P. Lawson, 2008: Upgrades to the FSSP-100 electronics. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, P13.6. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_13/O-Connor_extended_final.pdf.]

  • Okamoto, H., K. Sato, and Y. Hagihara, 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. J. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., A. Korolev, and J. Fan, 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geophys. Res., 116, D00T06, doi:10.1029/2011JD015888.

    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., and Coauthors, 2014: Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223248, doi:10.1002/2013MS000282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., and A. K. Heidinger, 2004: Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteor., 43, 762778, doi:10.1175/2099.1.

  • Pawar, S. D., V. Gopalakrishnan, P. Murugavel, N. E. Veremey, and A. A. Sinkevich, 2017: Possible role of aerosols in the charge structure of isolated thunderstorms. Atmos. Res., 183, 331340, doi:10.1016/j.atmosres.2016.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, C. D., T. J. Schuur, D. R. MacGorman, K. M. Kuhlman, and W. D. Rust, 2010: Polarimetric and electrical characteristics of a lightning ring in a supercell storm. Mon. Wea. Rev., 138, 24052425, doi:10.1175/2009MWR3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peppler, W., 1940: Unterkühtle Wasserwolken und Eiswolken. Forsch. Erfahr. Reichsamt Wetterdienst, 1B, 368.

  • Pilewskie, P., and S. Twomey, 1987: Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm. J. Atmos. Sci., 44, 34193420, doi:10.1175/1520-0469(1987)044<3419:CPDBRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372, 250252, doi:10.1038/372250a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and A. Korolev, 2014: Analytical investigation of glaciation time in mixed-phase adiabatic cloud volumes. J. Atmos. Sci., 71, 41434157, doi:10.1175/JAS-D-13-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and A. Korolev, 2015: Phase transformations in an ascending adiabatic mixed-phase cloud volume. J. Geophys. Res., 120, 33293353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162037, doi:10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, doi:10.1007/s00382-013-1964-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502505, doi:10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., S. Goeke, R. M. Rauber, and L. DiGirolamo, 2010: Discrimination of mixed- versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions. J. Appl. Meteor. Climatol., 49, 920935, doi:10.1175/2009JAMC2267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical structure of fall streaks in stratiform areas within winter cyclones. J. Atmos. Sci., 72, 24652483, doi:10.1175/JAS-D-14-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X., T. Zhang, G. Zhang, T. Zhang, and Z. Kong, 2009: Electrical characteristics of thunderstorms in different plateau regions of China. Atmos. Res., 91, 244249, doi:10.1016/j.atmosres.2008.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106, 15 06515 075, doi:10.1029/2000JD900286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of Northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25, 489504, doi:10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the tops of cold clouds. J. Atmos. Sci., 48, 10051023, doi:10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., and H. W. Neill, 1955: The distribution and discharge of thunderstorm charge centers. J. Meteor., 12, 112, doi:10.1175/1520-0469(1955)012<0001:TDADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426436, doi:10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riedi, J., and Coauthors, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865, doi:10.5194/acp-10-11851-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rollins, A. W., T. D. Thornberry, R. S. Gao, S. Woods, R. P. Lawson, T. P. Bui, E. J. Jensen, and D. W. Fahey, 2016: Observational constraints on the efficiency of dehydration mechanisms in the tropical tropopause layer. Geophys. Res. Lett., 43, 29122918, doi:10.1002/2016GL067972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, doi:10.1038/35013030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., E. Williams, M. O. Andreae, E. Freud, U. Pöschl, and N. O. Rennó, 2012: The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds. Atmos. Meas. Tech., 5, 20392055, doi:10.5194/amt-5-2039-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271, doi:10.1016/j.atmosres.2004.11.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., E. R. Wishart, and D. E. Shaw, 1976: The growth rates and densities of ice crystals between −3°C and −21°C. J. Atmos. Sci., 33, 842850, doi:10.1175/1520-0469(1976)033<0842:TGRADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 2008: Charge separation mechanisms in clouds. Space Sci. Rev., 137, 335353, doi:10.1007/s11214-008-9345-0.

  • Saunders, C. P. R., and I. Brooks, 1992: The effects of high liquid water content on thunderstorm charging. J. Geophys. Res., 97, 14 67114 676, doi:10.1029/92JD01186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water content on thunderstorm charging. J. Geophys. Res., 96, 11 00711 017, doi:10.1029/91JD00970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlenczek, O., J. Fugal, G. Lloyd, K. N. Bower, T. W. Choularton, M. Flynn, J. Crosier, and S. Borrmann, 2017: Microphysical properties of ice crystal precipitation and surface-generated ice crystals in a high Alpine environment in Switzerland. J. Appl. Meteor. Climatol., 56, 433453, doi:10.1175/JAMC-D-16-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2009: The size distribution and mass-weighted terminal velocity of low-latitude tropopause cirrus crystal populations. J. Atmos. Sci., 66, 20132028, doi:10.1175/2009JAS3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnaiter, M., E. Järvinen, A. Abdelmonem, and T. Leisner, 2017: PHIPS-HALO: The airborne Particle Habit Imaging and Polar Scattering probe—Part 2: Characterization and first results. Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-304.

    • Search Google Scholar
    • Export Citation
  • Schumann, T. E. W., 1938: The theory of hail formation. Quart. J. Roy. Meteor. Soc., 64, 321, doi:10.1002/qj.49706427303.

  • Shifrin, K. S., and A. Y. Perelman, 1960: The kinetics of distillation of supercooled systems (in Russian). Dokl. Akad. Nauk SSSR, 132, 11481151.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Shupe, M. D., T. Uttal, S. Y. Matrosov, and A. S. Rrisch, 2001: Cloud water contents and hydrometeor sizes during the FIRE Arctic clouds experiment. J. Geophys. Res., 106, 15 01515 028, doi:10.1029/2000JD900476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562, doi:10.1175/JAM2297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds: The status of ground-based observational methods. Bull. Amer. Meteor. Soc., 89, 15491562, doi:10.1175/2008BAMS2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, doi:10.1175/2010JAMC2467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., D. D. Turner, A. Zwink, M. M. Theimann, M. J. Mlawer, and T. R. Shippert, 2015: Deriving Arctic cloud microphysics at Barrow: Algorithms, results, and radiative closure. J. Appl. Meteor. Climatol., 54, 16751689, doi:10.1175/JAMC-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J. Atmos. Sci., 71, 574595, doi:10.1175/JAS-D-13-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steen, L. C. E., R. F. Ide, and J. F. Van Zante, 2016: An assessment of the icing blade and the SEA multi-element sensor for liquid water content calibration of the NASA GRC Icing Research Tunnel. Eighth AIAA Atmospheric and Space Environments Conf., Washington, DC, AIAA, 2016-4051. [Available online at https://doi.org/10.2514/6.2016-4051.]

    • Crossref
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat Mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, doi:10.1175/2104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, and P. R. Krehbiel, 2015: Initial electrification to the first lightning flash in New Mexico thunderstorms. J. Geophys. Res. Atmos., 120, 11 25311 276, doi:10.1002/2015JD023988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., J. E. Kristjánsson, and U. Lohmann, 2008a: Aerosol influence on mixed-phase clouds in CAM-Oslo. J. Atmos. Sci., 65, 32143230, doi:10.1175/2008JAS2430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., J. E. Kristjansson, U. Lohmann, T. Iversen, A. Kirkevag, and O. Seland, 2008b: Modeling of the Wegener–Bergeron–Findeisen process—Implications for aerosol indirect effects. Environ. Res. Lett., 3, 045001, doi:10.1088/1748-9326/3/4/045001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., C. Hoose, and P. Eriksson, 2011: Global modeling of mixed-phase clouds: The albedo and lifetime effect of aerosols. J. Geophys. Res., 116, D05207, doi:10.1029/2010JD014724.

    • Search Google Scholar
    • Export Citation
  • Strangeways, I., 2006: Precipitation: Theory, Measurement and Distribution. Cambridge University Press, 302 pp.

    • Crossref
    • Export Citation
  • Strapp, J. W., and Coauthors, 2003: Wind tunnel measurements of the response of hot-wire liquid water content instruments to large droplets. J. Atmos. Oceanic Technol., 20, 791806, doi:10.1175/1520-0426(2003)020<0791:WTMOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. P. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137, doi:10.1002/qj.49712051508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., 1975: Deformations of frozen water drops and their frequencies. J. Meteor. Soc. Japan, 53, 402411, doi:10.2151/jmsj1965.53.6_402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., 1979: Formation of poly-crystalline snow crystals by riming process. J. Meteor. Soc. Japan, 57, 458464, doi:10.2151/jmsj1965.57.5_458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Suzuki, 2010: Development of negative dipoles in a stratiform cloud layer in Okinawa “Baiu” MCS system. Atmos. Res., 98, 317326, doi:10.1016/j.atmosres.2010.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Tajiri, and Y. Sonoi, 1999: Charges on graupel and snow crystals and the electrical structure of winter thunderstorms. J. Atmos. Sci., 56, 15611578, doi:10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., S. Sugimoto, T. Kawano, and K. Suzuki, 2017: Riming electrification in Hokuriku winter clouds and comparison with laboratory observations. J. Atmos. Sci., 74, 431447, doi:10.1175/JAS-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, I., T. Storelvmo, and Y.-S. Choi, 2014: Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds. J. Geophys. Res. Atmos., 119, 66536665, doi:10.1002/2013JD021333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352, 224227, doi:10.1126/science.aad5300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. W., and Coauthors, 2016: Observations of cloud microphysics and ice formation during COPE. Atmos. Chem. Phys., 16, 799826, doi:10.5194/acp-16-799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2012: The Queensland Cloud Seeding Research Program. Bull. Amer. Meteor. Soc., 93, 7590, doi:10.1175/BAMS-D-11-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., B. Boe, B. Geerts, M. J. Manton, S. Parkinson, and R. Rasmussen, 2015: The future of winter orographic cloud seeding: A view from scientists and stakeholders. Bull. Amer. Meteor. Soc., 96, 21952198, doi:10.1175/BAMS-D-15-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., B.-C. Gao, R. O. Green, D. A. Roberts, P. E. Dennison, and S. Lundeen, 2015: Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign. Remote Sens. Environ., 167, 6477, doi:10.1016/j.rse.2015.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., and Coauthors, 2016: Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy. J. Geophys. Res. Atmos., 121, 91749190, doi:10.1002/2016JD024999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, A., A. Glazer, W. Yu, and R. Benoit, 1996: A mixed-phase cloud scheme based on a single prognostic equation. Tellus, 48A, 483500, doi:10.1034/j.1600-0870.1996.t01-3-00001.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, doi:10.1007/s00382-006-0127-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701715, doi:10.1175/1520-0450(2003)042<0701:CPDUGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • van der Hage, J. C. H., 1995: A parameterization of the Wegener-Bergeron-Findeisen effect. Atmos. Res., 39, 201214, doi:10.1016/0169-8095(95)00013-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221, doi:10.1175/BAMS-88-2-205.

  • Vivekanandan, J., B. E. Martner, M. K. Politovich, and G. Zhang, 1999: Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations. IEEE Trans. Geosci. Remote Sens., 37, 23252334, doi:10.1109/36.789629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2016: In situ characterization of mixed-phase clouds using the Small Ice Detector and the Particle Phase Discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 1975: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Wang, Z., 2007: A refined two-channel microwave radiometer liquid water path retrieval for cold regions by using multiple-sensor measurements. IEEE Geosci. Remote Sens. Lett., 4, 591595, doi:10.1109/LGRS.2007.900752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41, 218229, doi:10.1175/1520-0450(2002)041<0218:CCMPRU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., K. Sassen, D. N. Whiteman, and B. B. Demoz, 2004: Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43, 449460, doi:10.1175/1520-0450(2004)043<0449:SAWIVU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2013: CloudSat Project: Level 2 combined radar and lidar cloud scenario classification product process description and interface control document. California Institute of Technology JPL, 61 pp.

  • Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth, 331 pp.

  • Weickmann, H., 1945: Formen und Bildung atmosphärischer Eiskristalle. Beitr. Phys. Freien Atmos., 28, 1252.

  • Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90, 60136025, doi:10.1029/JD090iD04p06013.

  • Williams, E. R., and D. J. Boccippio, 1993: Dependence of cloud microphysics and electrification on mesoscale vertical air motions in stratiform precipitation. Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 825–831.

  • Williams, E. R., and Y. Yair, 2006: The microphysical and electrical properties of sprite-producing thunderstorms. Sprites, Elves and Intense Lightning Discharges, M. Füllekrug, E. A. Mareev, and M. J. Rycroft, Eds., NATO Science Series II: Mathematics, Physics and Chemistry, Springer, 225 pp.

  • Williams, E. R., R. Zhang, and J. Rydock, 1991: Mixed-phase microphysics and cloud electrification. J. Atmos. Sci., 48, 21952203, doi:10.1175/1520-0469(1991)048<2195:MPMACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. C. Mushtak, D. Rosenfeld, S. J. Goodman, and D. J. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, doi:10.1016/j.atmosres.2004.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2010: Ground-based detection of sprites and their parent lightning flashes over Africa during the 2006 AMMA campaign. Quart. J. Roy. Meteor. Soc., 136, 257271, doi:10.1002/qj.489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J. K., and J. Vivekanandan, 2007: Sources of error in dual-wavelength radar remote sensing of cloud liquid water content. J. Atmos. Oceanic Technol., 24, 13171336, doi:10.1175/JTECH2042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57, 18881905, doi:10.1175/1520-0469(2000)057<1888:RBTWCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Workman, E. J., and S. E. Reynolds, 1949: Electrical activity as related to thunderstorm growth. Bull. Amer. Meteor. Soc., 30, 142144.

    • Search Google Scholar
    • Export Citation
  • Yang, F., M. Ovchinnikov, and R. A. Shaw, 2013: Minimalist model of ice microphysics in mixed-phase stratiform clouds. Geophys. Res. Lett., 40, 37563760, doi:10.1002/grl.50700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., M. Ovchinnikov, and R. A. Shaw, 2014: Microphysical consequences of the spatial distribution of ice nucleation in mixed-phase stratiform clouds. Geophys. Res. Lett., 41, 52805287, doi:10.1002/2014GL060657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, G., J. Verlinde, E. E. Clothiaux, and Y.-S. Chen, 2014: Mixed-phase cloud phase partitioning using millimeter wavelength cloud radar Doppler velocity spectra. J. Geophys. Res. Atmos., 119, 75567576, doi:10.1002/2013JD021182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zak, E. G., 1949: Microstructure of frontal clouds. Sov. Meteor. Hydrol., 6, 2433.

  • Zawadzki, I., F. Fabry, and W. Szyrmer, 2001: Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59–60, 343359, doi:10.1016/S0169-8095(01)00124-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., Z. Wang, and D. Liu, 2010: A global view of mid-level liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115, D00H13, doi:10.1029/2010JD014030.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., Z. Wang, A. J. Heymsfield, J. Fan, D. Liu, and M. Zhao, 2012: Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds. Geophys. Res. Lett., 39, L18805, doi:10.1029/2012GL052831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2012: Towards understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Z. Wang, 2010: Comparison of Arctic clouds between European Center for Medium-Range Weather Forecasts simulations and Atmospheric Radiation Measurement Climate Research Facility long-term observations at the North Slope of Alaska Barrow site. J. Geophys. Res., 115, D23202, doi:10.1029/2010JD014285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12155 3313 328
PDF Downloads 6983 1533 171