• Abercromby, R., 1887: Suggestions for an international nomenclature of clouds. Quart. J. Roy. Meteor. Soc., 13, 154166, https://doi.org/10.1002/qj.4970136212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., and R. H. Johnson, 2010: Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Wea. Rev., 138, 212227, https://doi.org/10.1175/2009MWR2892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578599, https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. D., 2010: The first weather satellite picture. Weather, 65, 87–87, https://doi.org/10.1002/wea.550.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus ensemble with the large-scale environment: Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and S. G. Geotis, 1979: Raindrop sizes and related parameters for GATE. J. Appl. Meteor., 18, 569575, https://doi.org/10.1175/1520-0450(1979)018<0569:RSARPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM precipitation radar. Proc. 1997 Int. Geoscience and Remote Sensing Symp., Remote Sensing—A Scientific Vision for Sustainable Development, Vol. 4, 1633–1635, Singapore, IEEE, https://doi.org/10.1109/IGARSS.1997.608993.

    • Crossref
    • Export Citation
  • Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110, 102117, https://doi.org/10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden–Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 69967023, https://doi.org/10.1002/jgrd.50375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze Jr., 2014: Precipitation hydrometeor type relative to the mesoscale airflow in oceanic deep convection of the Madden–Julian Oscillation. J. Geophys. Res. Atmos., 119, 13 99014 014, https://doi.org/10.1002/2014JD022241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze Jr., 2016: Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems. J. Geophys. Res. Atmos., 121, 82698296, https://doi.org/10.1002/2016JD025074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., M. D. Zuluaga, and R. A. Houze Jr., 2015: Latent heating characteristics of the MJO computed from TRMM observations. J. Geophys. Res. Atmos., 120, 13221334, https://doi.org/10.1002/2014JD022530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118, https://doi.org/10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analysis and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1995: Melting and freezing in a mesoscale convective system. Quart. J. Roy. Meteor. Soc., 121, 5577, https://doi.org/10.1002/qj.49712152104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1997: The evolution of the 10–11 June 1985 PRE-STORM squall line: Initiation, development of rear inflow, and dissipation. Mon. Wea. Rev., 125, 478504, https://doi.org/10.1175/1520-0493(1997)125<0478:TEOTJP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313338, https://doi.org/10.1175/1520-0469(1979)036<0313:MUDDBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and F. Ludlam, 1962: Airflow within convective storms. Quart. J. Roy. Meteor. Soc., 88, 117135, https://doi.org/10.1002/qj.49708837602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, https://doi.org/10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2003: On the existence of convective rolls in the convective region of squall lines. 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/pdfpapers/62556.pdf.

  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.

  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2011: Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci., 68, 11141123, https://doi.org/10.1175/2011JAS3580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., 1970: Westward propagating cloud patterns in the tropical Pacific as seen from time-composite satellite photographs. J. Atmos. Sci., 27, 133138, https://doi.org/10.1175/1520-0469(1970)027<0133:WPCPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195201, https://doi.org/10.1175/1520-0469(1970)027<0195:ASSOEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and Coauthors, 2016: Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bull. Amer. Meteor. Soc., 97, 405423, https://doi.org/10.1175/BAMS-D-13-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-P., and R. A. Houze Jr., 1979: The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon. Wea. Rev., 107, 13701381, https://doi.org/10.1175/1520-0493(1979)107<1370:TDOCAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933960, https://doi.org/10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clavner, M., W. R. Cotton, S. C. van den Heever, S. M. Saleeby, and J. R. Pierce, 2018a: The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency. Atmos. Res., 199, 193208, https://doi.org/10.1016/j.atmosres.2017.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clavner, M., L. D. Grasso, W. R. Cotton, and S. C. van den Heever, 2018b: The response of a simulated mesoscale convective system to increased aerosol pollution: Part II: Derecho characteristics and intensity in response to increased pollution. Atmos. Res., 199, 209223, https://doi.org/10.1016/j.atmosres.2017.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., 1986: The Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 14781486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., and R. I. Sax, 1977: A Z–R relationship for the GATE B-scale array. Mon. Wea. Rev., 105, 13301336, https://doi.org/10.1175/1520-0493(1977)105<1330:ARFTGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and modelsimulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment. Bull. Amer. Meteor. Soc., 85, 10751093, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, https://doi.org/10.1175/JAS-D-12-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorst, N. M., 2007: The National Hurricane Research Project: 50 years of research, rough rides, and name changes. Bull. Amer. Meteor. Soc., 88, 15661588, https://doi.org/10.1175/BAMS-88-10-1566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., M. Nicolini, and C. A. Saulo, 1998: Observational evidences of a low level jet east of the Andes during January–March 1998. Meteorologica, 23, 6372.

    • Search Google Scholar
    • Export Citation
  • Drager, A. J., and S. C. van den Heever, 2017: Characterizing convective cold pools. J. Adv. Model. Earth Syst., 9, 10911115, https://doi.org/10.1002/2016MS000788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative–convective instability. J. Adv. Model. Earth Syst., 6, 7590, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., and M. J. McPhaden, 1996: Enhancement of tropical ocean evaporation and sensible heat flux by atmospheric mesoscale systems. J. Climate, 9, 23072325, https://doi.org/10.1175/1520-0442(1996)009<2307:EOTOEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impact on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L.-Y. Leung, S. Hagos, R. A. Houze Jr., C. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central U.S. rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, https://doi.org/10.1029/2002JD002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortune, M., 1980: Properties of African squall lines inferred from time-lapse satellite imagery. Mon. Wea. Rev., 108, 153168, https://doi.org/10.1175/1520-0493(1980)108<0153:POASLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879, https://doi.org/10.1175/1520-0469(1988)045<3846:NSOAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357, https://doi.org/10.1175/0065-9401-28.50.323.

    • Crossref
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807, https://doi.org/10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405436, https://doi.org/10.3402/tellusa.v7i4.8920.

  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by Version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, https://doi.org/10.2151/jmsj.2013-302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Futyan, J., and A. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, https://doi.org/10.1175/JCLI4297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaynor, J. E., and P. A. Mandics, 1978: Analysis of the tropical marine boundary layer during GATE using acoustic sounder data. Mon. Wea. Rev., 106, 223232, https://doi.org/10.1175/1520-0493(1978)106<0223:AOTTMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Garelli, S.-B. Park, J. Nie, G. Torri, and Z. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43, 874883, https://doi.org/10.1002/2015GL067262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., R. A. Houze Jr., R. H. Johnson, R. Lukas, J.-L. Redelsperger, A. Sumi, and R. Weller, 1998: Coupled Ocean–Atmosphere Response Experiment (COARE): An interim report. J. Geophys. Res., 103, 14 39514 450, https://doi.org/10.1029/97JC03120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, R. A., and J. W. Archbold, 1945: Meteorology of Nigeria and adjacent territory. Quart. J. Roy. Meteor. Soc., 71, 231262, https://doi.org/10.1002/qj.49707130905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Tropical anvil clouds and climate sensitivity. Proc. Natl. Acad. Sci. USA, 113, 88978899, https://doi.org/10.1073/pnas.1610455113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, https://doi.org/10.1029/2007JD009429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrandsson, H. H., 1887: Remarks concerning the nomenclature of clouds for ordinary use. Quart. J. Roy. Meteor. Soc., 13, 148154, https://doi.org/10.1002/qj.4970136211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinrichs, G., 1888a: Tornadoes and derechos. Amer. Meteor. J., 5, 306317.

  • Hinrichs, G., 1888b: Tornadoes and derechos (continued). Amer. Meteor. J., 5, 341349.

  • Holland, J. Z., 1970: Preliminary report on the BOMEX Sea-Air Interaction Program. Bull. Amer. Meteor. Soc., 51, 809820, https://doi.org/10.1175/1520-0477(1970)051<0809:PROTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30, 11121123, https://doi.org/10.1175/1520-0469(1973)030<1112:ACSOVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410, https://doi.org/10.2151/jmsj1965.60.1_396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, 432 pp.

  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576, https://doi.org/10.1029/RG019i004p00541.

  • Houze, R. A., Jr., and D. D. Churchill, 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44, 18451867, https://doi.org/10.1175/1520-0469(1987)044<1845:MOACMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., C.-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37, 754773, https://doi.org/10.1175/1520-0469(1980)037<0754:DOCMAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614, https://doi.org/10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays in midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089, https://doi.org/10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, https://doi.org/10.1175/2009MWR2727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, S. Medina, S. R. Brodzik, and U. Romatschke, 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, https://doi.org/10.1175/2010BAMS3173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission (TRMM) satellite. Rev. Geophys., 53, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L., 1865: Essay on the modifications of clouds. 3rd ed. John Churchill & Sons, 37 pp.

  • Hudlow, M. D., 1979: Mean rainfall patterns for the three phases of GATE. J. Appl. Meteor., 18, 16561669, https://doi.org/10.1175/1520-0450(1979)018<1656:MRPFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphreys, W. J., 1914: The thunderstorm and its phenomena. Mon. Wea. Rev., 42, 348380, https://doi.org/10.1175/1520-0493(1914)42<348:TTAIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 24282449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308319, https://doi.org/10.1175/1520-0493(1983)111<0308:ACAOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131148, https://doi.org/10.1175/MWR-2843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., H. V. Murphey, and R. M. Wakimoto, 2004: Rear-inflow evolution in a non-severe bow-echo observed by airborne Doppler radar during BAMEX. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.6, https://ams.confex.com/ams/pdfpapers/81428.pdf.

  • Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, https://doi.org/10.4310/CMS.2010.v8.n1.a10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze Jr., 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 11651207, https://doi.org/10.1002/qj.1999.49712555605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., and D. E. Parker, 1976: GATE: Report of the field phase. Bull. Amer. Meteor. Soc., 57, 1127, https://doi.org/10.1175/1520-0477-57.1.11.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, https://doi.org/10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979a: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, https://doi.org/10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979b: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, https://doi.org/10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 24442457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, https://doi.org/10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ligda, M. G. H., 1956: The radar observations of mature prefrontal squall lines in the midwestern United States. Sixth OSTIV Congress, Publ. IV, Fédération Aéronautique Internationale, St-Yan, France, http://journals.sfu.ca/ts/index.php/op/article/download/1364/1297.

  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453466, https://doi.org/10.1029/2012JD018409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600621, https://doi.org/10.1175/1520-0493(1995)123<0600:SPAPLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandics, P. A., and F. F. Hall Jr., 1976: Preliminary results from the GATE acoustic echo sounder. Bull. Amer. Meteor. Soc, 57, 11421147, https://doi.org/10.1175/1520-0477-57.9.1142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J.-L. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J., W. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the LLJ east of the Andes as derived from the NCEP reanalyses. J. Climate, 17, 22612280, https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, S. M. Kreidenweis, and P. J. DeMott, 2017: The microphysical roles of lower-tropospheric versus midtropospheric aerosol particles in mature-stage MCS precipitation. J. Atmos. Sci., 74, 36573678, https://doi.org/10.1175/JAS-D-16-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and R. A. Houze Jr., 1983: Three-dimensional wind field in the developing inner core of Hurricane Debby. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 298–304.

  • Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U. Corsmeier, and F. M. Perry, 2010: Multisensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Quart. J. Roy. Meteor. Soc., 136, 17881812, https://doi.org/10.1002/qj.669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 108, 322336, https://doi.org/10.1175/2010MWR3422.1.

    • Search Google Scholar
    • Export Citation
  • Martin, D. W., and O. Karst, 1969: A census of cloud systems over the tropical Pacific. Studies in Atmospheric Energetics Based on Aerospace Probings Annual Rep. 1968, Space Science and Engineering Center, University of Wisconsin, 37–50.

  • Martin, D. W., and V. E. Suomi, 1972: A satellite study of cloud clusters over the tropical north Atlantic ocean. Bull. Amer. Meteor. Soc., 53, 135156, https://doi.org/10.1175/1520-0477-53.2.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., R. A. Houze Jr., and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 19972030, https://doi.org/10.1256/003590002320603502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. S. Chen, and R. A. Houze Jr., 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132, 709736, https://doi.org/10.1256/qj.04.141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 11791189, https://doi.org/10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1978: The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteor. Soc., 104, 543568, https://doi.org/10.1002/qj.49710444102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organised steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950, https://doi.org/10.1002/qj.49710745103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypical dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, https://doi.org/10.1002/qj.49711850703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538, https://doi.org/10.1175/1520-0469(2004)061<1521:AROTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, https://doi.org/10.1002/qj.49710243208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and E. Klinker, 1997: Mesoscale cloud systems in the tropical Western Pacific as a process in general circulation models. Quart. J. Roy. Meteor. Soc., 123, 805827, https://doi.org/10.1002/qj.49712354002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. E. Shapiro, G. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteor. Soc., 93, 11711187, https://doi.org/10.1175/BAMS-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., C. Liu, and P. Bogenschutz, 2017: Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models. J. Atmos. Sci., 74, 13631380, https://doi.org/10.1175/JAS-D-16-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839, https://doi.org/10.2151/jmsj1965.66.6_823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1950: Structure and mechanisms of the prefrontal squall line. J. Meteor., 7, 210222, https://doi.org/10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R., and D. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, https://doi.org/10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, S. W., and M. M. McGarry, 1977: The relationship of satellite infrared convective activity to easterly waves over West Africa and the adjacent ocean during Phase II of GATE. Mon. Wea. Rev., 105, 413420, https://doi.org/10.1175/1520-0493(1977)105<0413:TROSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10581085, https://doi.org/10.1175/MWR-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, https://doi.org/10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. C. Cifelli, S. A. Rutledge, B. S. Ferrier, and B. F. Smull, 1999: Shipborne dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80, 8197, https://doi.org/10.1175/1520-0477(1999)080<0081:SDDODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 26622681, https://doi.org/10.1175/JAS-D-11-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. J. Hill, V. E. Toma, M. D. Zuluaga, P. J. Webster, and R. A. Houze Jr., 2015: Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Quart. J. Roy. Meteor. Soc., 141, 12591276, https://doi.org/10.1002/qj.2433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1984: A wave-CISK model of squall lines. J. Atmos. Sci., 41, 19461958, https://doi.org/10.1175/1520-0469(1984)041<1946:AWCMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., J. Simpson, W. T. Liu, J. Halverson, C. Velden, K. F. Brueske, and H. Pierce, 2003: Present day satellite technology for hurricane research: A closer look at formation and intensification. Hurricane! Coping with Disaster, R. Simpson, Ed., Amer. Geophys. Union, 249–289.

    • Crossref
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445, https://doi.org/10.1175/1520-0469(2001)058<1427:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406426, https://doi.org/10.1175/1520-0469(1988)045<0406:TWASLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze Jr., 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, https://doi.org/10.1002/2014JD022948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., S. C. van den Heever, P. J. Marinescu, S. M. Kreidenweis, and P. J. DeMott, 2016: Aerosol effects on the anvil characteristics of mesoscale convective systems. J. Geophys. Res. Atmos., 121, 10 88010 901, https://doi.org/10.1002/2016JD025082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., M. Nicolini, and S. C. Chou, 2000: Model characterization of the South American low-level flow during the 1997–1998 spring–summer season. Climate Dyn., 16, 867881, https://doi.org/10.1007/s003820000085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and S. A. Rutledge, 1998: Surface fluxes and boundary layer recovery in TOGA COARE: Sensitivity to convective organization. J. Atmos. Sci., 55, 27632781, https://doi.org/10.1175/1520-0469(1998)055<2763:SFABLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., F. Ahmed, and D. J. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to mesoscale-organized and unorganized deep convection. Proc. Natl. Acad. Sci. USA, 115, 45774582, https://doi.org/10.1073/pnas.1719842115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 12051222, https://doi.org/10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, https://doi.org/10.1256/qj.05.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., A. J. Clark, M. Xue, and F. Kong, 2013: Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm-scale ensemble. Mon. Wea. Rev., 141, 27782801, https://doi.org/10.1175/MWR-D-12-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupiatsky, A. B., A. I. Korotov, and R. S. Pastushkov, 1976a: Radar investigations of the evolution of clouds in the east Atlantic, in TROPEX-74. Atmosphere (in Russian), Vol. 1, Gidrometeoizdat, 508–514.

  • Shupiatsky, A. B., G. N. Evseonok, and A. I. Korotov, 1976b: Complex investigations of clouds in the ITCZ with the help of satellite and ship radar equipment, in TROPEX-74. Atmosphere (in Russian), Vol. 1, Gidrometeoizdat, 515–520.

  • Simpson, J. S., and G. van Helvoirt, 1980: GATE cloud-subcloud interactions examined using a three-dimensional cumulus model. Contrib. Atmos. Phys., 53, 106134.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. S., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584, https://doi.org/10.1175/1520-0469(1994)051<2563:TDEOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, https://doi.org/10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Testud, 1984: COPT81: A field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 410, https://doi.org/10.1175/1520-0477(1984)065<0004:CAFEDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 35033527, https://doi.org/10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tepper, M., 1950: A proposed mechanism of squall lines: The pressure jump line. J. Meteor., 7, 2129, https://doi.org/10.1175/1520-0469(1950)007<0021:APMOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 5372, https://doi.org/10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in a non-constant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, https://doi.org/10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130, 877899, https://doi.org/10.1175/1520-0493(2002)130<0877:IOBMOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, https://doi.org/10.1073/pnas.0605494103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, https://doi.org/10.1175/2010JAS3603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parametrization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, https://doi.org/10.1175/JAS-D-12-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2017: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze Jr., 2015: Variation of lightning in mesoscale convective systems within the MJO. J. Atmos. Sci., 72, 19321944, https://doi.org/10.1175/JAS-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of the thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “Year” of Tropical Convection (May 2008—April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, https://doi.org/10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The genesis of severe long-lived bow echoes. J. Atmos. Sci., 49, 18261847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67, 12261232, https://doi.org/10.1175/1520-0477(1986)067<1226:SCOPMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, https://doi.org/10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, H., K. Yoneyama, M. Katsumata, and R. Shirooka, 2010: Observations of a super cloud cluster accompanied by synoptic-scale eastward-propagating precipitating systems over the Indian Ocean. J. Atmos. Sci., 67, 14561473, https://doi.org/10.1175/2009JAS3151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res. Atmos., 122, 13 28813 307, https://doi.org/10.1002/2017JD027033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden-Julian Oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., S. M. Perugini, and C. W. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110123, https://doi.org/10.1175/1520-0493(1995)123<0110:CWITEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-train satellite data. J. Climate, 23, 58645888, https://doi.org/10.1175/2010JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., R. A. Houze Jr., and A. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, https://doi.org/10.1175/2011JAS3687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 19641983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814, https://doi.org/10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58, https://doi.org/10.1175/0065-9401(2003)029<0049:CSVOHT>2.0.CO;2.

    • Crossref
    • Export Citation
  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, https://doi.org/10.1175/JAS-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4395 1562 126
PDF Downloads 3676 1090 120

100 Years of Research on Mesoscale Convective Systems

Robert A. Houze Jr.University of Washington, Seattle, and Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Robert A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

When cumulonimbus clouds aggregate, developing into a single entity with precipitation covering a horizontal scale of hundreds of kilometers, they are called mesoscale convective systems (MCSs). They account for much of Earth’s precipitation, generate severe weather events and flooding, produce prodigious cirriform anvil clouds, and affect the evolution of the larger-scale circulation. Understanding the inner workings of MCSs has resulted from developments in observational technology and modeling. Time–space conversion of ordinary surface and upper-air observations provided early insight into MCSs, but deeper understanding has followed field campaigns using increasingly sophisticated radars, better aircraft instrumentation, and an ever-widening range of satellite instruments, especially satellite-borne radars. High-resolution modeling and theoretical insights have shown that aggregated cumulonimbus clouds induce a mesoscale circulation consisting of air overturning on a scale larger than the scale of individual convective up- and downdrafts. These layers can be kilometers deep and decoupled from the boundary layer in elevated MCSs. Cooling in the lower troposphere and heating aloft characterize the stratiform regions of MCSs. As a result, long-lived MCSs with large stratiform regions have a top-heavy heating profile that generates potential vorticity in midlevels, thus influencing the larger-scale circulation within which the MCSs occur. Global satellite data show MCSs varying in structure, depending on the prevailing large-scale circulation and topography. These patterns are likely to change with global warming. In addition, environmental pollution affects MCS structure and dynamics subtly. Feedbacks of MCSs therefore need to be included or parameterized in climate models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This chapter was revised on 10 October 2018 to update the attribution for Fig. 17-21, which was incorrect when originally published.

Corresponding author: Robert A. Houze Jr., houze@uw.edu

Abstract

When cumulonimbus clouds aggregate, developing into a single entity with precipitation covering a horizontal scale of hundreds of kilometers, they are called mesoscale convective systems (MCSs). They account for much of Earth’s precipitation, generate severe weather events and flooding, produce prodigious cirriform anvil clouds, and affect the evolution of the larger-scale circulation. Understanding the inner workings of MCSs has resulted from developments in observational technology and modeling. Time–space conversion of ordinary surface and upper-air observations provided early insight into MCSs, but deeper understanding has followed field campaigns using increasingly sophisticated radars, better aircraft instrumentation, and an ever-widening range of satellite instruments, especially satellite-borne radars. High-resolution modeling and theoretical insights have shown that aggregated cumulonimbus clouds induce a mesoscale circulation consisting of air overturning on a scale larger than the scale of individual convective up- and downdrafts. These layers can be kilometers deep and decoupled from the boundary layer in elevated MCSs. Cooling in the lower troposphere and heating aloft characterize the stratiform regions of MCSs. As a result, long-lived MCSs with large stratiform regions have a top-heavy heating profile that generates potential vorticity in midlevels, thus influencing the larger-scale circulation within which the MCSs occur. Global satellite data show MCSs varying in structure, depending on the prevailing large-scale circulation and topography. These patterns are likely to change with global warming. In addition, environmental pollution affects MCS structure and dynamics subtly. Feedbacks of MCSs therefore need to be included or parameterized in climate models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This chapter was revised on 10 October 2018 to update the attribution for Fig. 17-21, which was incorrect when originally published.

Corresponding author: Robert A. Houze Jr., houze@uw.edu