100 Years of the Ocean General Circulation

Carl Wunsch Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts

Search for other papers by Carl Wunsch in
Current site
Google Scholar
PubMed
Close
and
Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The central change in understanding of the ocean circulation during the past 100 years has been its emergence as an intensely time-dependent, effectively turbulent and wave-dominated, flow. Early technologies for making the difficult observations were adequate only to depict large-scale, quasi-steady flows. With the electronic revolution of the past 50+ years, the emergence of geophysical fluid dynamics, the strongly inhomogeneous time-dependent nature of oceanic circulation physics finally emerged. Mesoscale (balanced), submesoscale oceanic eddies at 100-km horizontal scales and shorter, and internal waves are now known to be central to much of the behavior of the system. Ocean circulation is now recognized to involve both eddies and larger-scale flows with dominant elements and their interactions varying among the classical gyres, the boundary current regions, the Southern Ocean, and the tropics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl Wunsch, carl.wunsch@gmail.com

Abstract

The central change in understanding of the ocean circulation during the past 100 years has been its emergence as an intensely time-dependent, effectively turbulent and wave-dominated, flow. Early technologies for making the difficult observations were adequate only to depict large-scale, quasi-steady flows. With the electronic revolution of the past 50+ years, the emergence of geophysical fluid dynamics, the strongly inhomogeneous time-dependent nature of oceanic circulation physics finally emerged. Mesoscale (balanced), submesoscale oceanic eddies at 100-km horizontal scales and shorter, and internal waves are now known to be central to much of the behavior of the system. Ocean circulation is now recognized to involve both eddies and larger-scale flows with dominant elements and their interactions varying among the classical gyres, the boundary current regions, the Southern Ocean, and the tropics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl Wunsch, carl.wunsch@gmail.com
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, D. J., 1981: Ocean instruments and experimental design. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 396–433.

  • Barcilon, V., and J. Pedlosky, 1967: A unified linear theory of homogeneous and stratified rotating fluids. J. Fluid Mech., 29, 609621, https://doi.org/10.1017/S0022112067001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Battisti, D., D. J. Vimont, and B. Kirtman, 2019: 100 years of progress in understanding the dynamics of atmosphere–ocean variability. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0025.1.

    • Crossref
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, V., J. Bjerknes, H. Solberg, and T. Bergeron, 1933: Physikalische Hydrodynamik, mit Anwendung auf die dynamische Meteorologie (Physical Hydrodynamics, with Application to Dynamic Meteorology). Springer, 797 pp.

    • Crossref
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., 1999: Paleoclimatology. 2nd ed. Academic, 610 pp.

    • Crossref
    • Export Citation
  • Bretherton, F. P., 1969a: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213243, https://doi.org/10.1002/qj.49709540402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969b: Waves and turbulence in stably stratified fluids. Radio Sci., 4, 12791287, https://doi.org/10.1029/RS004i012p01279.

  • Broecker, W. S., 1987: The biggest chill. Nat. Hist., 96, 7482.

  • Brogan, W., 1990: Modern Control Theory. 3rd ed. Pearson, 653 pp.

  • Bryan, K., 1963: A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atmos. Sci., 20, 594606, https://doi.org/10.1175/1520-0469(1963)020<0594:ANIOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., S. Manabe, and R. C. Pacanowski, 1975: A global ocean-atmosphere model. Part II: The oceanic circulation. J. Phys. Oceanogr., 5, 3046, https://doi.org/10.1175/1520-0485(1975)005<0030:AGOACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchanan, J. Y., 1888: The exploration of the Gulf of Guinea. Scott. Geogr. Mag., 4, 177200.

  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, W. B., 1875: Ocean circulation. Nature, 12, 454455, https://doi.org/10.1038/012454a0.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., 1999: Tides: A Scientific History. Cambridge University Press, 292 pp.

  • Cartwright, D. E., 2001: On the origins of knowledge of the sea tides from antiquity to the Thirteenth Century. Earth Sci. Hist., 20, 105126, https://doi.org/10.17704/eshi.20.2.m23118527q395675.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The Gulf Stream as an inertial boundary layer. Proc. Natl. Acad. Sci. USA, 41, 731740, https://doi.org/10.1073/pnas.41.10.731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and S. L. Spiegel, 1971: Structure of wind-driven equatorial currents in homogeneous oceans. J. Phys. Oceanogr., 1, 149160, https://doi.org/10.1175/1520-0485(1971)001<0149:SOWDEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crease, J., 1962: Velocity measurements in the deep water of the western North Atlantic: Summary. J. Geophys. Res., 67, 31733176, https://doi.org/10.1029/JZ067i008p03173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croll, J., 1875: The Challenger’s crucial test of the wind and gravitational theories of oceanic circulation. Lond. Edinb. Dublin Philos. Mag. J. Sci., 50, 242250, https://doi.org/10.1080/14786447508641282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. M., 2009: Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, 448 pp.

  • Cullen, V., 2005: Down to the Sea for Science: 75 Years of Ocean Research, Education, and Exploration at the Woods Hole Oceanographic Institution. Woods Hole Oceanographic Institution, 184 pp.

  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • Darrigol, O., 2005: Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, 376 pp.

  • Deacon, G., 1937: The hydrology of the Southern Ocean. Discovery Rep., 15, 124.

  • Deacon, M., 1971: Scientists and the Sea, 1650–1900: A Study of Marine Science. Academic Press, 445 pp.

  • Defant, A., 1961: Physical Oceanography, Volume 1. Pergamon Press, xvi + 729 pp.

  • Dibner, B., 1964: The Atlantic Cable. 2nd ed. Burndy Library, folded leaf of plates, 96 pp.

  • Döös, K., J. Nycander, and A. C. Coward, 2008: Lagrangian decomposition of the Deacon Cell. J. Geophys. Res. Oceans, 113, C07028, https://doi.org/10.1029/2007JC004351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eckart, C., 1948: An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res., 7, 265275.

  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik, Vol. 2, No. 11, 52 pp.

  • Ekman, V. W., 1906: On dead-water: Being a description of the so-called phenomenon often hindering the headway and navigation of ships in Norwegian fjords, and elsewhere, and an experimental investigation of its causes, etc. The Norwegian North Polar Expedition 1893–1896: Scientific Results, F. Nansen, Ed., Vol. 5, No. 15, Longmans, Green and Co., 152 pp.

  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Faller, A. J., 2006: Boundary layers, Prandtl’s and others. Phys. Today, 59 (10), https://doi.org/10.1063/1.2387063.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. Allison, and H. Johnson, 2017: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fjeldstad, J. E., 1933: Interne Wellen. Geofysiske Publkikasjoner Series, Vol. 10, No. 6, Cammermeyer in Komm., 35 pp.

  • Fu, L.-L., T. Lee, W. T. Liu, and R. Kwok, 2019: 50 years of satellite remote sensing of the ocean. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0010.

    • Search Google Scholar
    • Export Citation
  • Fuglister, F. C., 1960: Atlantic Ocean Atlas of Temperature and Salinity Profiles and Data from the International Geophysical Year of 1957-1958. Woods Hole Oceanographic Institution Atlas Series, Vol. 1, Woods Hole Oceanographic Institution, 209 pp., https://doi.org/10.1575/1912/4331.

    • Crossref
    • Export Citation
  • Fukumori, I., P. Heimbach, R. M. Ponte, and C. Wunsch, 2018: A dynamically consistent multivariable ocean climatology. Bull. Amer. Meteor. Soc., 99, 21072128, https://doi.org/10.1175/BAMS-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465488, https://doi.org/10.1017/S0022112068000868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsbrough, G. R., 1933: Ocean currents produced by evaporation and precipitation. Proc. Roy. Soc. London, 141A, 512517, https://doi.org/10.1098/rspa.1933.0135.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, https://doi.org/10.1029/JC091iC04p05037.

  • Gordon, A. L., and E. J. Molinelli, 1982: Southern Ocean Atlas. Thermohaline and Chemical Distributions and the Atlas Data Set, Columbia University Press, 11 pp. and 233 plates.

  • Gregg, M. C., 1991: The study of mixing in the ocean: A brief history. Oceanography, 4, 3945, https://doi.org/10.5670/oceanog.1991.21.

  • Halpern, D., 1996: Visiting TOGA’s past. Bull. Amer. Meteor. Soc., 77, 233242, https://doi.org/10.1175/1520-0477(1996)077<0233:VTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, M. W., and H. E. Hasumi, Eds., 2008: Ocean Modeling in an Eddying Regime. Geophys. Monogr., Vol. 177, Amer. Geophys. Union, vii + 409 pp., https://doi.org/10.1029/GM177.

    • Crossref
    • Export Citation
  • Heinmiller, R. H., 1983: Instruments and methods. Eddies in Marine Science, A. R. Robinson, Ed., Springer-Verlag, 542–567.

    • Crossref
    • Export Citation
  • Helland-Hansen, B., and F. Nansen, 1909: The Norwegian Sea: Its Physical Oceanography Based Upon the Norwegian Researches 1900-1904. Report on Norwegian Fishery and Marine Investigations Series, Vol. 2, Det Mallingske bogtrykkeri, 390 pp.

  • Hogg, N. G., and R. X. Huang, Eds., 1995: Collected Works of Henry M. Stommel. Amer. Meteor. Soc., Vols. 1–3 (380 pp., 888 pp.; 683 pp.).

  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasigeostrophic model. J. Phys. Oceanogr., 8, 363392, https://doi.org/10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., D. E. Harrison, and A. J. Semtner Jr., 1983: Eddy-resolving numerical models of large-scale ocean circulation. Eddies in Marine Science: Topics in Atmospheric and Oceanographic Sciences, A. R. Robinson, Ed., Springer, 379–403, https://doi.org/10.1007/978-3-642-69003-7_17.

    • Crossref
    • Export Citation
  • Hough, S. S., 1897: On the application of harmonic analysis to the dynamical theory of the tides. Part I. On Laplace’s “Oscillations of the First Species”, and on the dynamics of ocean currents. Philos. Trans. Roy. Soc. London, 189A, 201257, https://doi.org/10.1098/rsta.1897.0009.

    • Search Google Scholar
    • Export Citation
  • Hough, S. S., 1898: On the application of harmonic analysis to the dynamical theory of the tides. Part II. On the general integration of Laplace’s dynamical equations. Philos. Trans. Roy. Soc. London, 191A, 139185, https://doi.org/10.1098/rsta.1898.0005.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2010: Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 806 pp.

    • Crossref
    • Export Citation
  • Huang, R. X., and R. W. Schmitt, 1993: The Goldsbrough–Stommel circulation of the world oceans. J. Phys. Oceanogr., 23, 12771284, https://doi.org/10.1175/1520-0485(1993)023<1277:TGCOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., and C. Wunsch, 2010: Paleophysical oceanography with an emphasis on transport rates. Annu. Rev. Mar. Sci., 2, 134, https://doi.org/10.1146/annurev-marine-120308-081056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffreys, H. W., 1925: On fluid motions produced by differences of temperature and humidity. Quart. J. Roy. Meteor. Soc., 51, 347356, https://doi.org/10.1002/qj.49705121604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, Eds., 2006: Physical Oceanography: Developments since 1950. Springer, xii + 250 pp., https://doi.org/10.1007/0-387-33152-2.

    • Crossref
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, xxii + 341 pp., https://doi.org/10.1017/CBO9780511802270.

    • Crossref
    • Export Citation
  • Klein, P., H. Bach-Lien, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasak, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, F., and M. B. McElroy, 1984: Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res., 89, 46294637, https://doi.org/10.1029/JD089iD03p04629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Local turbulent structure in incompressible fluids at very high Reynolds number. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Koltermann, K. P., V. V. Gouretski, and K. Jancke, Eds., 2011: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 3: Atlantic Ocean. International WOCE Project Office, https://doi.org/10.21976/C6RP4Z.

    • Crossref
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. A. Donelan, K. Hasselmann, S. Hasselman, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp., https://doi.org/10.1017/CBO9780511628955.

    • Crossref
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Kuhlbrodt, T., 2008: On Sandström’s inferences from his tank experiments: A hundred years later. Tellus, 60A, 819836, https://doi.org/10.1111/j.1600-0870.2008.00357.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. 6th ed. Dover, 738 pp.

  • Lambert, R. B., Jr., 2000: Major physical oceanography programs at NSF: IDOE through global change. 50 Years of Ocean Discovery: National Science Foundation 1950-2000, National Research Council Ocean Studies Board, Ed., National Academies Press, 149–151, https://doi.org/10.17226/9702.

    • Crossref
    • Export Citation
  • Laplace, P. S., 1775: Recherches sur plusieurs points du système du monde (Research on several points of the world system). Mem. Acad. Roy. Sci., 71183, https://gallica.bnf.fr/ark:/12148/bpt6k77597p/f72.image.

    • Search Google Scholar
    • Export Citation
  • Laughton, A. S., W. J. Gould, M. J. Tucker, and H. S. J. Roe, Eds., 2010: Of Seas and Ships and Scientists. Lutterworth Press, 350 pp.

  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an Open-Ocean Tracer-Release Experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, A. M. Treguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Modifications of gyre circulation by sub-mesoscale physics. Ocean Modell., 34, 115, https://doi.org/10.1016/j.ocemod.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1964: Planetary waves on a rotating sphere. Proc. Roy. Soc. London, 279A, 446473, https://doi.org/10.1098/rspa.1964.0116.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the southern ocean. Prog. Oceanogr., 70, 331345, https://doi.org/10.1016/j.pocean.2006.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., 2014: An Introduction to Ocean Remote Sensing. 2nd ed. Cambridge University Press, 496 pp.

    • Crossref
    • Export Citation
  • Maury, M. F., 1855: The Physical Geography of the Sea and Its Meteorology. Harper and Bros., 432 pp.

    • Crossref
    • Export Citation
  • McWilliams, J. C., 1998: Oceanic general circulation models. Ocean Modeling and Parameterization: Proceedings of the NATO Advanced Study Institute, E. P. Chassignet and J. Verron, Eds., Springer, 1–44.

    • Crossref
    • Export Citation
  • McWilliams, J. C., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 266 pp.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1974: On Laplace’s tidal equations. J. Fluid Mech., 66, 241260, https://doi.org/10.1017/S0022112074000176.

  • Mills, E. L., 2009: The Fluid Envelope of Our Planet: How the Study of Ocean Currents Became a Science. University of Toronto Press, 400 pp.

    • Crossref
    • Export Citation
  • MODE Group, 1978: The Mid-Ocean Dynamics Experiment. Deep-Sea Res., 25, 859910, https://doi.org/10.1016/0146-6291(78)90632-X.

  • Morgan, G. W., 1956: On the wind-driven ocean circulation. Tellus, 8, 301320, https://doi.org/10.3402/tellusa.v8i3.9021.

  • Muglia, J., and A. Schmittner, 2015: Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett., 42, 98629868, https://doi.org/10.1002/2015GL064583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730.

  • Munk, W. H., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

  • Munk, W. H., and G. F. Carrier, 1950: The wind-driven circulation in ocean basins of various shapes. Tellus, 2, 158167, https://doi.org/10.3402/tellusa.v2i3.8550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nansen, F., Ed., 1902: The Norwegian North Polar Expedition, 1893–1896: Scientific results. The Oceanography of the North Polar Basin, Vol. III, Longmans, Green, and Co., 1–47.

  • Needler, G. T., 1967: A model for the thermohaline circulation in an ocean of finite depth. J. Mar. Res., 25, 329342.

  • Needler, G. T., 1985: The absolute velocity as a function of conserved measurable quantities. Prog. Oceanogr., 14, 421429, https://doi.org/10.1016/0079-6611(85)90020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. K. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp., https://doi.org/10.1007/978-3-642-23450-7.

    • Crossref
    • Export Citation
  • Pedlosky, J., 1964: The stability of currents in the atmosphere and the ocean: Part I. J. Atmos. Sci., 21, 201219, https://doi.org/10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 456 pp., https://doi.org/10.1007/978-3-662-03204-6.

    • Crossref
    • Export Citation
  • Peterson, R. G., L. Stramma, and G. Kortum 1996: Early concepts and charts of ocean circulation. Prog. Oceanogr., 37, 1115, https://doi.org/10.1016/S0079-6611(96)80002-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1973: Equatorial undercurrent: Measurements and theories. Rev. Geophys., 11, 513570, https://doi.org/10.1029/RG011i003p00513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Phillips, N. A., 1966: Large-scale eddy motion in the western Atlantic. J. Geophys. Res., 71, 38833891, https://doi.org/10.1029/JZ071i016p03883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picard, K., B. Brooke, and M. F. Coffin, 2017: Geological insights from Malaysia Airlines flight MH370 search. Eos, 98, https://doi.org/10.1029/2017EO069015.

    • Search Google Scholar
    • Export Citation
  • Pillsbury, J. E., 1891: The Gulf Stream—A description of the methods employed in the investigation, and the results of the research. Report of the superintendent of the U.S. Coast and Geodetic Survey showing the progress of the work during the fiscal year ending with June, 1890, U.S. Government Printing Office, 459–620, ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/cgs/002_pdf/CSC-0089.PDF.

  • Platzman, G. W., 1968: Rossby wave. Quart. J. Roy. Meteor. Soc., 94, 225248, https://doi.org/10.1002/qj.49709440102.

  • Rayleigh, L. G. W. S., 1883: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14, 170177.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., Jr., 1961: On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1,000-decibar surface. Tellus, 13, 489502, https://doi.org/10.3402/tellusa.v13i4.9520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1970: Boundary layers in ocean circulation models. Annu. Rev. Fluid Mech., 2, 293312, https://doi.org/10.1146/annurev.fl.02.010170.001453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., and H. Stommel, 1959: The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295308, https://doi.org/10.3402/tellusa.v11i3.9317.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., W. J. Gould, and J. Gilson, 2012: 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat. Climate Change, 2, 425428, https://doi.org/10.1038/nclimate1461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1945: On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteor., 2, 187204, https://doi.org/10.1175/1520-0469(1945)002<0187:OTPOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., and Collaborators, 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, http://peabody.yale.edu/sites/default/files/documents/scientific-publications/jmr02-01-06-CG_ROSSBYetal.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and G. K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55, 223275, https://doi.org/10.1357/0022240973224382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandström, J. W., 1908: Dynamische Versuche mit Meerwasser (Dynamical experiments with seawater). Ann. Hydrogr. Martimen Meteor., 36, 623.

    • Search Google Scholar
    • Export Citation
  • Sandström, J. W., and B. Helland-Hansen, 1905: On the mathematical investigation of ocean currents. Report on fishery and hydrographical investigations in the North Sea and adjacent waters (1902–03), British Sessional Papers, Vol. 14, 135–163.

  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, 369 pp., https://doi.org/10.1017/CBO9780511817496.

    • Crossref
    • Export Citation
  • Sarmiento, J. L., and J. R. Toggweiler, 1984: A new model for the role of the oceans in determining atmospheric PCO2. Nature, 308, 621624, https://doi.org/10.1038/308621a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., and Coauthors 2015: The LatMix Summer Campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shor, E. N., 1978: Scripps Institution of Oceanography: Probing the Oceans 1936 to 1976. Tofua Press, 502 pp.

  • Siedler, G., J. Church, and W. J. Gould, Eds., 2001: Ocean Circulation and Climate: Observing and Modeling the Global Ocean, Academic Press, 715 pp.

  • Siedler, G., S. Griffies, W. J. Gould, and J. Church, Eds., 2013: Ocean Circulation and Climate: A 21st Century Perspective. 2nd ed. International Geophysics Series, Vol. 103, Academic Press, 904 pp.

  • Siegenthaler, U., and T. Wenk, 1984: Rapid atmospheric CO2 variations and ocean circulation. Nature, 308, 624626, https://doi.org/10.1038/308624a0.

  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108, 3007, https://doi.org/10.1029/2001JC001115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starr, V. P., 1948: An essay on the general circulation of the Earth’s atmosphere. J. Meteor., 5, 3943, https://doi.org/10.1175/1520-0469(1948)005<0039:AEOTGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starr, V. P., 1968: Physics of Negative Viscosity Phenomena. McGraw Hill, 256 pp.

  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans.Cambridge Philos. Soc., 8, 441455.

  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1957: A survey of ocean current theory. Deep-Sea Res., 4, 149184.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13,224230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1965: The Gulf Stream: A Physical and Dynamical Description. 2nd ed. Univeristy of California Press, 248 pp.

    • Crossref
    • Export Citation
  • Stommel, H., 1984 : Lost Islands: The Story of Islands that Have Vanished from Nautical Charts. University of British Columbia Press, xxi + 146 pp.

  • Stommel, H., and A. B. Arons, 1960a: On the abyssal circulation of the World Ocean— I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960b: On the abyssal circulation of the World Ocean— II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217233.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and F. Schott, 1977: The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res., 24, 325329, https://doi.org/10.1016/0146-6291(77)93000-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., E. D. Stroup, J. L. Reid, and B. A. Warren, 1973: Transpacific hydrographic sections at Lats. 43°S and 28°S: The SCORPIO Expedition—I. Preface. Deep-Sea Res., 20, 17.

    • Search Google Scholar
    • Export Citation
  • Stroup, E. D., and R. B. Montgomery, 1963: Comments on the history of the Equatorial Undercurrent. J. Geophys. Res., 68, 341342, https://doi.org/10.1029/JZ068i001p00341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1933: On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current. Discov. Rep., 7, 139170.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1942: Oceanography for Meteorologists. Prentice-Hall, 246 pp., https://archive.org/details/oceanographyform00sver.

  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans, Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.

  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, 151A, 42144, https://doi.org/10.1098/rspa.1935.0158.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, https://doi.org/10.1016/0967-0637(95)00012-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2016: Geophysical fluid dynamics: Whence, whither and why? Proc. Roy. Soc. London, 472A, 20160140, https://doi.org/10.1098/rspa.2016.0140.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 946 pp.

    • Crossref
    • Export Citation
  • van Aken, H. M., 2007: The Oceanic Thermohaline Circulation: An Introduction. Springer, 326 pp., https://doi.org/10.1007/978-0-387-48039-8.

    • Crossref
    • Export Citation
  • Veronis, G., 1963: An analysis of wind-driven ocean circulation with a limited number of Fourier components. J. Atmos. Sci., 20, 577593, https://doi.org/10.1175/1520-0469(1963)020<0577:AAOWDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1966: Medieval Arab references to the seasonally reversing currents of the north Indian Ocean. Deep-Sea Res., 13, 167171.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1981: Deep circulation of the World Ocean. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 6–41.

  • Warren, B. A., 2006: Historical introduction: Oceanography of the general circulation to the middle of the twentieth century. Physical Oceanography: Developments Since 1950, M. Jochum and R. Murtugudde, Eds., Springer, 1–14.

    • Crossref
    • Export Citation
  • Warren, B. A., and C. Wunsch, Eds., 1981: Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel. The MIT Press, 664 pp.

  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, F., 1961: The effect of meanders on the kinetic energy balance of the Gulf Stream. Tellus, 13, 392401, https://doi.org/10.3402/tellusa.v13i3.9515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welander, P., 1955: Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141156, https://doi.org/10.3402/tellusa.v7i2.8797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11, 309318, https://doi.org/10.3402/tellusa.v11i3.9316.

  • Welander, P., 1985: Introduction to translation of V. W. Ekman’s “Outline of a unified ocean current theory.” Tellus, 37A, 378379, https://doi.org/10.3402/tellusa.v37i4.11679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wessel, P., D. T. Sandwell, and S. S. Kim, 2010: The global seamount census. Oceanography, 23, 2433, https://doi.org/10.5670/oceanog.2010.60.

  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, https://doi.org/10.1175/2010JPO4393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, https://doi.org/10.1175/JPO-D-13-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1976: On the North Atlantic Circulation. Johns Hopkins University Press, 110 pp.

  • Worthington, L. V., and W. R. Wright, 1970: North Atlantic Ocean Atlas of Potential Temperature and Salinity in the Deep Water Including Temperature, Salinity and Oxygen Profiles from the Erika Dan Cruise of 1962. Woods Hole Oceanographic Institution, 77 pp.

  • Wunsch, C., 1977: Determining the general circulation of the oceans: A preliminary discussion. Science, 196, 871875, https://doi.org/10.1126/science.196.4292.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 458 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., 2015: Modern Observational Physical Oceanography: Understanding the Global Ocean. Princeton University Press, 512 pp .

  • Wunsch, C., 2016: Global ocean integrals and means, with trend implications. Annu. Rev. Mar. Sci., 8, 133, https://doi.org/10.1146/annurev-marine-122414-034040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Stammer, 1998: Satellite altimetry, the marine geoid and the oceanic general circulation. Annu. Rev. Earth Planet. Sci., 26, 219254, https://doi.org/10.1146/annurev.earth.26.1.219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1924: Florida- und Antillenstrom (Florida and the Antilles Current). Veröffentlichungen des Instituts für Meereskunde an der Universität Berlin: A, Geographisch-naturwissenschaftliche Reihe, Vol. 12, Mittler, 48 pp.

  • Wüst, G., and A. Defant, 1936: Atlas zur Schichtung und Zirkulation des Atlantischen Ozeans (Atlas of the Stratification and Circulation of the Atlantic Ocean). Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–1927 [Scientific Results of the German Atlantic Expedition on the Research and Survey Ship Meteor, 1925–1927], Vol. 6 (1993 reprint in English; W. J. Emery, Ed., published for the National Science Foundation Division of Ocean Sciences by Amerind), Verlag von Walter de Gruyter, 103 plates.

  • Wyrtki, K., 1961: The thermohaline circulation in relation to the general circulation in the oceans. Deep-Sea Res., 8, 3964.

  • Wyrtki, K., 1975a: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975b: Fluctuations of the dynamic topography in the Pacific Ocean. J. Phys. Oceanogr., 5, 450459, https://doi.org/10.1175/1520-0485(1975)005<0450:FOTDTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., E. Bennett, and D. J. Rochford, 1971: Oceanographic Atlas of the International Indian Ocean Expedition. National Science Foundation, xi + 531 pp.

  • Xu, Y. S., and L. L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., and P. B. Rhines, 1982: A theory of the wind-driven circulation. 2. Gyres with western boundary layers. J. Mar. Res., 40, 849872.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5397 2285 66
PDF Downloads 2403 449 25