100 Years of the Ocean General Circulation

Carl Wunsch Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts

Search for other papers by Carl Wunsch in
Current site
Google Scholar
PubMed
Close
and
Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The central change in understanding of the ocean circulation during the past 100 years has been its emergence as an intensely time-dependent, effectively turbulent and wave-dominated, flow. Early technologies for making the difficult observations were adequate only to depict large-scale, quasi-steady flows. With the electronic revolution of the past 50+ years, the emergence of geophysical fluid dynamics, the strongly inhomogeneous time-dependent nature of oceanic circulation physics finally emerged. Mesoscale (balanced), submesoscale oceanic eddies at 100-km horizontal scales and shorter, and internal waves are now known to be central to much of the behavior of the system. Ocean circulation is now recognized to involve both eddies and larger-scale flows with dominant elements and their interactions varying among the classical gyres, the boundary current regions, the Southern Ocean, and the tropics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl Wunsch, carl.wunsch@gmail.com

Abstract

The central change in understanding of the ocean circulation during the past 100 years has been its emergence as an intensely time-dependent, effectively turbulent and wave-dominated, flow. Early technologies for making the difficult observations were adequate only to depict large-scale, quasi-steady flows. With the electronic revolution of the past 50+ years, the emergence of geophysical fluid dynamics, the strongly inhomogeneous time-dependent nature of oceanic circulation physics finally emerged. Mesoscale (balanced), submesoscale oceanic eddies at 100-km horizontal scales and shorter, and internal waves are now known to be central to much of the behavior of the system. Ocean circulation is now recognized to involve both eddies and larger-scale flows with dominant elements and their interactions varying among the classical gyres, the boundary current regions, the Southern Ocean, and the tropics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl Wunsch, carl.wunsch@gmail.com
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, D. J., 1981: Ocean instruments and experimental design. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 396–433.

  • Barcilon, V., and J. Pedlosky, 1967: A unified linear theory of homogeneous and stratified rotating fluids. J. Fluid Mech., 29, 609621, https://doi.org/10.1017/S0022112067001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Battisti, D., D. J. Vimont, and B. Kirtman, 2019: 100 years of progress in understanding the dynamics of atmosphere–ocean variability. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0025.1.

    • Crossref
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, V., J. Bjerknes, H. Solberg, and T. Bergeron, 1933: Physikalische Hydrodynamik, mit Anwendung auf die dynamische Meteorologie (Physical Hydrodynamics, with Application to Dynamic Meteorology). Springer, 797 pp.

    • Crossref
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., 1999: Paleoclimatology. 2nd ed. Academic, 610 pp.

    • Crossref
    • Export Citation
  • Bretherton, F. P., 1969a: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213243, https://doi.org/10.1002/qj.49709540402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969b: Waves and turbulence in stably stratified fluids. Radio Sci., 4, 12791287, https://doi.org/10.1029/RS004i012p01279.

  • Broecker, W. S., 1987: The biggest chill. Nat. Hist., 96, 7482.

  • Brogan, W., 1990: Modern Control Theory. 3rd ed. Pearson, 653 pp.

  • Bryan, K., 1963: A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atmos. Sci., 20, 594606, https://doi.org/10.1175/1520-0469(1963)020<0594:ANIOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., S. Manabe, and R. C. Pacanowski, 1975: A global ocean-atmosphere model. Part II: The oceanic circulation. J. Phys. Oceanogr., 5, 3046, https://doi.org/10.1175/1520-0485(1975)005<0030:AGOACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchanan, J. Y., 1888: The exploration of the Gulf of Guinea. Scott. Geogr. Mag., 4, 177200.

  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, W. B., 1875: Ocean circulation. Nature, 12, 454455, https://doi.org/10.1038/012454a0.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., 1999: Tides: A Scientific History. Cambridge University Press, 292 pp.

  • Cartwright, D. E., 2001: On the origins of knowledge of the sea tides from antiquity to the Thirteenth Century. Earth Sci. Hist., 20, 105126, https://doi.org/10.17704/eshi.20.2.m23118527q395675.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The Gulf Stream as an inertial boundary layer. Proc. Natl. Acad. Sci. USA, 41, 731740, https://doi.org/10.1073/pnas.41.10.731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and S. L. Spiegel, 1971: Structure of wind-driven equatorial currents in homogeneous oceans. J. Phys. Oceanogr., 1, 149160, https://doi.org/10.1175/1520-0485(1971)001<0149:SOWDEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crease, J., 1962: Velocity measurements in the deep water of the western North Atlantic: Summary. J. Geophys. Res., 67, 31733176, https://doi.org/10.1029/JZ067i008p03173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croll, J., 1875: The Challenger’s crucial test of the wind and gravitational theories of oceanic circulation. Lond. Edinb. Dublin Philos. Mag. J. Sci., 50, 242250, https://doi.org/10.1080/14786447508641282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. M., 2009: Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, 448 pp.

  • Cullen, V., 2005: Down to the Sea for Science: 75 Years of Ocean Research, Education, and Exploration at the Woods Hole Oceanographic Institution. Woods Hole Oceanographic Institution, 184 pp.

  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • Darrigol, O., 2005: Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, 376 pp.

  • Deacon, G., 1937: The hydrology of the Southern Ocean. Discovery Rep., 15, 124.

  • Deacon, M., 1971: Scientists and the Sea, 1650–1900: A Study of Marine Science. Academic Press, 445 pp.

  • Defant, A., 1961: Physical Oceanography, Volume 1. Pergamon Press, xvi + 729 pp.

  • Dibner, B., 1964: The Atlantic Cable. 2nd ed. Burndy Library, folded leaf of plates, 96 pp.

  • Döös, K., J. Nycander, and A. C. Coward, 2008: Lagrangian decomposition of the Deacon Cell. J. Geophys. Res. Oceans, 113, C07028, https://doi.org/10.1029/2007JC004351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eckart, C., 1948: An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res., 7, 265275.

  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik, Vol. 2, No. 11, 52 pp.

  • Ekman, V. W., 1906: On dead-water: Being a description of the so-called phenomenon often hindering the headway and navigation of ships in Norwegian fjords, and elsewhere, and an experimental investigation of its causes, etc. The Norwegian North Polar Expedition 1893–1896: Scientific Results, F. Nansen, Ed., Vol. 5, No. 15, Longmans, Green and Co., 152 pp.

  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Faller, A. J., 2006: Boundary layers, Prandtl’s and others. Phys. Today, 59 (10), https://doi.org/10.1063/1.2387063.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. Allison, and H. Johnson, 2017: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fjeldstad, J. E., 1933: Interne Wellen. Geofysiske Publkikasjoner Series, Vol. 10, No. 6, Cammermeyer in Komm., 35 pp.

  • Fu, L.-L., T. Lee, W. T. Liu, and R. Kwok, 2019: 50 years of satellite remote sensing of the ocean. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0010.

    • Search Google Scholar
    • Export Citation
  • Fuglister, F. C., 1960: Atlantic Ocean Atlas of Temperature and Salinity Profiles and Data from the International Geophysical Year of 1957-1958. Woods Hole Oceanographic Institution Atlas Series, Vol. 1, Woods Hole Oceanographic Institution, 209 pp., https://doi.org/10.1575/1912/4331.

    • Crossref
    • Export Citation
  • Fukumori, I., P. Heimbach, R. M. Ponte, and C. Wunsch, 2018: A dynamically consistent multivariable ocean climatology. Bull. Amer. Meteor. Soc., 99, 21072128, https://doi.org/10.1175/BAMS-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465488, https://doi.org/10.1017/S0022112068000868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsbrough, G. R., 1933: Ocean currents produced by evaporation and precipitation. Proc. Roy. Soc. London, 141A, 512517, https://doi.org/10.1098/rspa.1933.0135.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, https://doi.org/10.1029/JC091iC04p05037.

  • Gordon, A. L., and E. J. Molinelli, 1982: Southern Ocean Atlas. Thermohaline and Chemical Distributions and the Atlas Data Set, Columbia University Press, 11 pp. and 233 plates.

  • Gregg, M. C., 1991: The study of mixing in the ocean: A brief history. Oceanography, 4, 3945, https://doi.org/10.5670/oceanog.1991.21.

  • Halpern, D., 1996: Visiting TOGA’s past. Bull. Amer. Meteor. Soc., 77, 233242, https://doi.org/10.1175/1520-0477(1996)077<0233:VTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, M. W., and H. E. Hasumi, Eds., 2008: Ocean Modeling in an Eddying Regime. Geophys. Monogr., Vol. 177, Amer. Geophys. Union, vii + 409 pp., https://doi.org/10.1029/GM177.

    • Crossref
    • Export Citation
  • Heinmiller, R. H., 1983: Instruments and methods. Eddies in Marine Science, A. R. Robinson, Ed., Springer-Verlag, 542–567.

    • Crossref
    • Export Citation
  • Helland-Hansen, B., and F. Nansen, 1909: The Norwegian Sea: Its Physical Oceanography Based Upon the Norwegian Researches 1900-1904. Report on Norwegian Fishery and Marine Investigations Series, Vol. 2, Det Mallingske bogtrykkeri, 390 pp.

  • Hogg, N. G., and R. X. Huang, Eds., 1995: Collected Works of Henry M. Stommel. Amer. Meteor. Soc., Vols. 1–3 (380 pp., 888 pp.; 683 pp.).

  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasigeostrophic model. J. Phys. Oceanogr., 8, 363392, https://doi.org/10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., D. E. Harrison, and A. J. Semtner Jr., 1983: Eddy-resolving numerical models of large-scale ocean circulation. Eddies in Marine Science: Topics in Atmospheric and Oceanographic Sciences, A. R. Robinson, Ed., Springer, 379–403, https://doi.org/10.1007/978-3-642-69003-7_17.

    • Crossref
    • Export Citation
  • Hough, S. S., 1897: On the application of harmonic analysis to the dynamical theory of the tides. Part I. On Laplace’s “Oscillations of the First Species”, and on the dynamics of ocean currents. Philos. Trans. Roy. Soc. London, 189A, 201257, https://doi.org/10.1098/rsta.1897.0009.

    • Search Google Scholar
    • Export Citation
  • Hough, S. S., 1898: On the application of harmonic analysis to the dynamical theory of the tides. Part II. On the general integration of Laplace’s dynamical equations. Philos. Trans. Roy. Soc. London, 191A, 139185, https://doi.org/10.1098/rsta.1898.0005.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2010: Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 806 pp.

    • Crossref
    • Export Citation
  • Huang, R. X., and R. W. Schmitt, 1993: The Goldsbrough–Stommel circulation of the world oceans. J. Phys. Oceanogr., 23, 12771284, https://doi.org/10.1175/1520-0485(1993)023<1277:TGCOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., and C. Wunsch, 2010: Paleophysical oceanography with an emphasis on transport rates. Annu. Rev. Mar. Sci., 2, 134, https://doi.org/10.1146/annurev-marine-120308-081056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffreys, H. W., 1925: On fluid motions produced by differences of temperature and humidity. Quart. J. Roy. Meteor. Soc., 51, 347356, https://doi.org/10.1002/qj.49705121604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, Eds., 2006: Physical Oceanography: Developments since 1950. Springer, xii + 250 pp., https://doi.org/10.1007/0-387-33152-2.

    • Crossref
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, xxii + 341 pp., https://doi.org/10.1017/CBO9780511802270.

    • Crossref
    • Export Citation
  • Klein, P., H. Bach-Lien, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasak, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, F., and M. B. McElroy, 1984: Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res., 89, 46294637, https://doi.org/10.1029/JD089iD03p04629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Local turbulent structure in incompressible fluids at very high Reynolds number. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Koltermann, K. P., V. V. Gouretski, and K. Jancke, Eds., 2011: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 3: Atlantic Ocean. International WOCE Project Office, https://doi.org/10.21976/C6RP4Z.

    • Crossref
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. A. Donelan, K. Hasselmann, S. Hasselman, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp., https://doi.org/10.1017/CBO9780511628955.

    • Crossref
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.