• Abshire, N. L., R. L. Schwiesow, and V. E. Derr, 1974: Doppler lidar observations of hydrometeors. J. Appl. Meteor., 13, 951953, https://doi.org/10.1175/1520-0450(1974)013<0951:DLOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Search Google Scholar
    • Export Citation
  • Adam, W., H. Dier, and U. Leiterer, 2005: 100 years aerology in Lindenberg and first long-time observations in the free atmosphere. Meteor. Z., 14, 597607, https://doi.org/10.1127/0941-2948/2005/0065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althausen, D., D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, 2000: Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol., 17, 14691482, https://doi.org/10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, 2009: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization. J. Atmos. Oceanic Technol., 26, 23662378, https://doi.org/10.1175/2009JTECHA1304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez, R. J., and Coauthors, 2011: Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling. J. Atmos. Oceanic Technol., 28, 12581272, https://doi.org/10.1175/JTECH-D-10-05044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancellet, G., and F. Ravetta, 2003: On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer. J. Environ. Monit., 5, 4756, https://doi.org/10.1039/b205727a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., M. Riebesell, and C. Weitkamp, 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett., 15, 746748, https://doi.org/10.1364/OL.15.000746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31, 71137131, https://doi.org/10.1364/AO.31.007113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., H. Baars, M. Tesche, D. Müller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo, 2009: Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett., 36, L11802, https://doi.org/10.1029/2009GL037923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238, https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Askne, J., and E. Westwater, 1986: A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sens., GE-24, 340352, https://doi.org/10.1109/TGRS.1986.289591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, https://doi.org/10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1964: Advances in radar meteorology. Advances in Geophysics, Vol. 10, Academic Press, 317–478, https://doi.org/10.1016/S0065-2687(08)60009-6.

    • Crossref
    • Export Citation
  • Atlas, D., Ed., 1990: Radar in Meteorology. Amer. Meteor. Soc., 806 pp.

    • Crossref
    • Export Citation
  • Baars, H., and Coauthors, 2012: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res., 117, D21201, https://doi.org/10.1029/2012JD018338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baklanov, A., and Coauthors, 2018: From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23, 330341, https://doi.org/10.1016/j.uclim.2017.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., and K. S. Gage, 1982: On the use of radars for operational wind profiling. Bull. Amer. Meteor. Soc., 63, 10091018, https://doi.org/10.1175/1520-0477(1982)063<1009:OTUORF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., J. B. Williams, G. W. Tyrrell, and C. L. Balsley, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 125, https://doi.org/10.1023/A:1000812511429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. D. Olivier, and D. H. Levinson, 1993: Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50, 39593982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. S. Darby, P. Kaufmann, D. H. Levinson, and C. Zhu, 1999: Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 10691083, https://doi.org/10.1175/1520-0450(1999)038<1069:WFPITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, https://doi.org/10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 323 pp.

  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The Cloud, Aerosol and Precipitation Spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, https://doi.org/10.1016/S0169-8095(01)00119-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102, 1029, https://doi.org/10.1016/j.atmosres.2011.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2012: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds. Bull. Amer. Meteor. Soc., 93, 2934, https://doi.org/10.1175/BAMS-D-11-00123.1.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, https://doi.org/10.1175/JAMC-D-12-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bemis, A. C., 1951: Aircraft meteorological instruments. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1223–1231, https://doi.org/10.1007/978-1-940033-70-9_99.

    • Crossref
    • Export Citation
  • Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, https://doi.org/10.1175/2009MWR3097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Berkoff, T. A., E. J. Welton, J. R. Campbell, V. S. Scott, and J. D. Spinhirne, 2003: Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). Proc. 2003 IEEE Int. Geoscience and Remote Sensing Symp., Toulouse, France, IEEE, 4395–4397, https://doi.org/10.1109/IGARSS.2003.1295527.

    • Crossref
    • Export Citation
  • Beswick, K., and Coauthors, 2015: Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, 67B, 27 876, https://doi.org/10.3402/tellusb.v67.27876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigler, S. G., 1981: Radar: A short history. Weatherwise, 34, 158163, https://doi.org/10.1080/00431672.1981.9931967.

  • Bilbro, J. W., and W. W. Vaughan, 1978: Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system. Bull. Amer. Meteor. Soc., 59, 10951100, https://doi.org/10.1175/1520-0477(1978)059<1095:WFMITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publ., 12, 562.

  • Bjerknes, V., 1921: On the Dynamics of the Circular Vortex: With Applications to the Atmosphere and Atmospheric Vortex and Wave Motions. Geofysiske Publikationer, Vol. II, Comm. Cammermeyer, 89 pp.

  • Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne radar observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in Hurricane Debbie. Mon. Wea. Rev., 100, 208217, https://doi.org/10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., and Coauthors, 2016: Reference upper-air observations for climate: From concept to reality. Bull. Amer. Meteor. Soc., 97, 123135, https://doi.org/10.1175/BAMS-D-14-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boden, T. A., M. Krassovski, and B. Yang, 2013: The AmeriFlux data activity and data system: An evolving collection of data management techniques, tools, products, and services. Geosci. Instrum. Methods Data Syst., 2, 165176, https://doi.org/10.5194/gi-2-165-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., B. J. Carroll, R. M. Hardesty, W. A. Brewer, K. Hajny, O. E. Salmon, and P. B. Shepson, 2018: Doppler lidar observations of the mixing height in Indianapolis using an automated composite fuzzy logic approach. J. Atmos. Oceanic Technol., 35, 473490, https://doi.org/10.1175/JTECH-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornmann, L., 2012: Measuring the societal impact of research. EMBO Rep., 13, 673676, https://doi.org/10.1038/embor.2012.99.

  • Bosart, B. L., W.-C. Lee, and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19, 322339, https://doi.org/10.1175/1520-0426-19.3.322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bösenberg, J., 1991: A differential absorption lidar system for high resolution water vapor measurements in the troposphere. Max Planck Institut für Meteorologie Rep. 71, 213–239.

  • Bousquet, O., and B. F. Smull, 2003: Airflow and precipitation fields within deep alpine valleys observed by airborne Doppler radar. J. Appl. Meteor. Climatol., 42, 14971513, https://doi.org/10.1175/1520-0450(2003)042<1497:AAPFWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, M. R., A. J. Gibson, and M. C. W. Sandford, 1969: Atmospheric sodium measured by a tuned laser radar. Nature, 221, 456457, https://doi.org/10.1038/221456a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brock, F. V., and S. J. Richardson, 2001: Meteorological Measurement Systems. Oxford University Press, 290 pp.

    • Crossref
    • Export Citation
  • Bromberg, J. L., 1988: The Birth of the Laser. Phys. Today, 41, 2633, https://doi.org/10.1063/1.881155.

  • Brooks, H., and Coauthors, 2019: 100 years of severe convective storm science and operations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0026.1.

    • Crossref
    • Export Citation
  • Browell, E. V., and Coauthors, 2001: Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment. J. Geophys. Res., 106, 32 48132 501, https://doi.org/10.1029/2001JD900001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 2003: Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. J. Geophys. Res., 108, 8369, https://doi.org/10.1029/2001JD001390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., 1989: Use of holography for airborne cloud physics measurements. J. Atmos. Oceanic Technol., 6, 293306, https://doi.org/10.1175/1520-0426(1989)006<0293:UOHFAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., G. W. Bryant, J. R. Starr, and D. N. Axford, 1973: Air motion within Kelvin-Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Quart. J. Roy. Meteor. Soc., 99, 608618, https://doi.org/10.1002/qj.49709942203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, D., 2001: Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 40, 391, https://doi.org/10.1364/AO.40.000391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, D., P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description. Appl. Opt., 40, 34503461, https://doi.org/10.1364/AO.40.003450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1955: Turbulence and shearing stresses measured over the North Atlantic Ocean by an airplane-acceleration technique. J. Atmos. Sci., 12, 445455, https://doi.org/10.1175/1520-0469(1955)012<0445:TASSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., S. D. Aberson, J. L. Franklin, S. J. Lord, and R. E. Tuleya, 1996: The impact of omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burton, S. P., and Coauthors, 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech., 5, 7398, https://doi.org/10.5194/amt-5-73-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushnell, R. H., V. M. Glover, and R. D. Chu, 1973: Engineering report on a dropsonde for measuring vertical wind velocity in thunderstorms. NCAR Tech. Note NCAR/TN-83+EDD, 60 pp., https://doi.org/10.5065/D6K0727T.

    • Crossref
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Butler, J. J., B. C. Johnson, J. P. Rice, E. L. Shirley, and R. A. Barnes, 2008: Sources of differences in on-orbital Total Solar Irradiance measurements and description of a proposed laboratory intercomparison. J. Res. Natl. Inst. Stand. Technol., 113, 187203, https://doi.org/10.6028/jres.113.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1960: Carl-Gustaf Arvid Rossby. Biogr. Mem. Natl. Acad. Sci. U.S.A., 34, 248270.

  • Byers, H. R., and R. R. Braham, 1948: Thunderstorm structure and circulation. J. Meteor., 5, 7186, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm: Final Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223240, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1958: On the amount of carbon dioxide in the atmosphere. Tellus, 10, 243248, https://doi.org/10.3402/tellusa.v10i2.9231.

  • Cannon, T. W., 1960: High-speed photography of airborne atmospheric particles. J. Appl. Meteor., 9, 105108, https://doi.org/10.1175/1520-0450(1970)009<0104:HSPOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnuth, W., U. Kempfer, and T. Trickl, 2002: Highlights of the tropospheric lidar studies at IFU within the TOR project. Tellus, 54B, 163185, https://doi.org/10.3402/tellusb.v54i2.16656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: observations versus models. Science, 27, 496499, https://doi.org/10.1126/science.267.5197.496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., and Y. F. Lee, 2012: Application of short-range lidar in wind shear alerting. J. Atmos. Oceanic Technol., 29, 207220, https://doi.org/10.1175/JTECH-D-11-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, L., and S. J. Bell, 2018: High-resolution monitoring of weather impacts on infrastructure networks using the internet of things. Bull. Amer. Meteor. Soc., 99, 11471154, https://doi.org/10.1175/BAMS-D-17-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930: A theory of upper-atmospheric ozone. Mem. Roy. Meteor. Soc., 3, 103125.

  • Chen, C., X. Chu, J. Zhao, B. R. Roberts, Z. Yu, W. Fong, X. Lu, and J. A. Smith, 2016: Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E). J. Geophys. Res. Space Phys., 121, 14831502, https://doi.org/10.1002/2015JA022127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choukulkar, A., and Coauthors, 2017: Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmos. Meas. Tech., 10, 247264, https://doi.org/10.5194/amt-10-247-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clague, L., 1965: An improved device for obtaining cloud droplet samples. J. Appl. Meteor., 4, 549551, https://doi.org/10.1175/1520-0450(1965)004<0549:AIDFOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C., N. Lareau, D. Kingsmill, C. Bowers, C. Camacho, R. Bagley, and B. Davis, 2018: RaDFIRE—The Rapid Deployments to Wildfires Experiment: Observations from the fire zone. Bull. Amer. Meteor. Soc., 99, https://doi.org/10.1175/BAMS-D-17-0230.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coen, J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 1638, https://doi.org/10.1175/JAMC-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A., J. A. Cooney, and K. N. Geller, 1976: Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering. Appl. Opt., 15, 28962901, https://doi.org/10.1364/AO.15.002896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collis, R. T. H., and M. G. H. Ligda, 1964: Laser radar echoes from clear atmosphere. Nature, 203, 508, https://doi.org/10.1038/203508a0.

  • Cooney, J. A., 1970: Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter. J. Appl. Meteor., 9, 182184, https://doi.org/10.1175/1520-0450(1970)009<0182:RMOAWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, D. I., W. E. Eichinger, R. E. Ecke, J. C. Y. Kao, J. M. Reisner, and L. L. Tellier, 1997: Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar. Geophys. Res. Lett., 24, 4548, https://doi.org/10.1029/96GL03255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and Coauthors, 2016: Characterization of uncertainty in measurements of wind from the NSF/NCAR Gulfstream V research aircraft. NCAR Tech. Note NCAR/TN-528+STR, 161 pp.

  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961982, https://doi.org/10.1175/BAMS-86-7-961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., and Coauthors, 2019: 100 years of progress in ocean observing systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0014.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., A. G. Hallar, L. M. Avallone, and W. Engblom, 2007: Measurement of total water with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463475, https://doi.org/10.1175/JTECH1975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Haan, S., and A. Stoffelen, 2012: Assimilation of high-resolution Mode-S wind and temperature observations in a regional NWP model for nowcasting applications. Wea. Forecasting, 27, 918937, https://doi.org/10.1175/WAF-D-11-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Derr, V. E., N. L. Abshire, R. E. Cupp, and G. T. McNice, 1976: Depolarization of lidar returns from virga and source cloud. J. Appl. Meteor., 15, 12001203, https://doi.org/10.1175/1520-0450(1976)015<1200:DOLRFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Detwiler, A. G., P. L. Smith, G. N. Johnson, and D. V. Kliche, 2004: Three decades of in situ observations inside thunderstorms. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 11B.4, https://ams.confex.com/ams/pdfpapers/81445.pdf.

  • Di Girolamo, P. D., D. Summa, and R. Ferretti, 2009: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol., 26, 17421762, https://doi.org/10.1175/2009JTECHA1253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1968: Forty years’ research on atmospheric ozone at Oxford: A history. Appl. Opt., 7, 387405, https://doi.org/10.1364/AO.7.000387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., A. W. Brewer, and B. M. Cwilong, 1946: 1946: Meteorology of the lower stratosphere. Proc. Roy. Soc. London, 185A, 144175, https://doi.org/10.1098/rspa.1946.0010.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, https://doi.org/10.1109/JSTARS.2015.2403303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuBois, J. L., R. P. Multhauf, and C. A. Ziegler, 2002: The invention and development of the radiosonde, with a catalog of upper-atmospheric telemetering probes in the National Museum of American History, Smithsonian Institution. Smithsonian Institution Press, 78 pp.

    • Crossref
    • Export Citation
  • Durden, S. L., E. Im, F. K. Li, W. Ricketts, A. Tanner, and W. Wilson, 1994: ARMAR: An airborne rain-mapping radar. J. Atmos. Oceanic Technol., 11, 727737, https://doi.org/10.1175/1520-0426(1994)011<0727:AAARMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebdon, R. A., and R. G. Veryard, 1961: Fluctuations in equatorial stratospheric winds. Nature, 189, 791793, https://doi.org/10.1038/189791a0.

  • Ehret, G., C. Kiemle, W. Renger, and G. Simmet, 1993: Airborne remote sensing of tropospheric water vapor with a near–infrared differential absorption lidar system. Appl. Opt., 32, 4534, https://doi.org/10.1364/AO.32.004534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, G., A. Fix, V. Weiss, G. Poberaj, and T. Baumert, 1998: Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere. Appl. Phys., 67B, 427431, https://doi.org/10.1007/s003400050526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, G., C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, 2008: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys., 90B, 593608, https://doi.org/10.1007/s00340-007-2892-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2019: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Erickson, M. J., J. J. Charney, and B. A. Colle, 2016: Development of a fire weather index using meteorological observations within the northeast United States. J. Appl. Meteor. Climatol., 55, 389402, https://doi.org/10.1175/JAMC-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, C., and H. Buisson, 1913: L’absorption de l’ultra-violet par l’ozone et la limite du spectre solaire. J. Phys., 3, 196206.

    • Search Google Scholar
    • Export Citation
  • Fahey, T., E. N. Wilson, R. O’Loughlin, M. Thomas, and S. Klipfel, 2016: A history of weather reporting from aircraft and turbulence forecasting for commercial aviation. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer International Publishing, 31–58.

    • Crossref
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctic reveal seasonal CIO/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fergusson, S. P., 1909: The exploration of upper air by means of balloons sondes. Sci. Amer., 100, 169170, https://doi.org/10.1038/scientificamerican02271909-169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations—Some comments. Appl. Opt., 23, 652653, https://doi.org/10.1364/AO.23.000652.

  • Fernald, F. G., B. M. Herman, and J. A. Reagan, 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11, 482489, https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiocco, G., and G. Grams, 1964: Observations of the aerosol layer at 20 km. J. Atmos. Sci., 21, 323324, https://doi.org/10.1175/1520-0469(1964)021<0323:OOTALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolek, A., 2004: Pioneers in modern meteorology and climatology: Vilhel and Jacob Bjerknes. NOAA Library and Information Services, 20 pp., ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/Bibliographies/Bjerknes/Bjerknes_July_2004.pdf.

  • Fletcher, J. O., 1990: Early developments of weather radar during World War II. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 3–6.

    • Crossref
    • Export Citation
  • Floyd, L. E., D. K. Prinz, P. C. Crane, and L. C. Herring, 2002: Solar UV irradiance variation during cycles 22 and 23. Adv. Space Res., 29, 19571962, https://doi.org/10.1016/S0273-1177(02)00242-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., 1991: History of solar radiometry and the World Radiometric Reference. Metrologia, 28, 111115, https://doi.org/10.1088/0026-1394/28/3/001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., and J. Lean, 2002: Solar irradiance variability and climate. Astron. Nachr., 323, 203212, https://doi.org/10.1002/1521-3994(200208)323:3/4<203::AID-ASNA203>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L., T. L. Lee, T. W. Liu, and R. Kwok, 2019: 50 years of satellite remote sensing of the ocean. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0010.1.

    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., R. A. Shaw, E. W. Saw, and A. V. Sergeyev, 2004: Airborne digital holographic system for cloud particle measurements. Appl. Opt., 43, 59875995, https://doi.org/10.1364/AO.43.005987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1966: Accurate calibration of Doppler winds for their use in the computation of mesoscale wind fields. Mon. Wea. Rev., 94, 1935, https://doi.org/10.1175/1520-0493(1966)094<0019:ACODWF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Paper 91, University of Chicago, 42 pp.

  • Fujita, T., 1985: The Downburst: Microburst and Macroburst. University of Chicago, 122 pp.

  • Fujita, T., 1986: DFW Microburst. University of Chicago, 155 pp.

  • Gardner, C. S., and D. G. Voelz, 1987: Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves. J. Geophys. Res., 92, 4673, https://doi.org/10.1029/JA092iA05p04673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, C. S., and A. Z. Liu, 2014: Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars. J. Geophys. Res. Atmos., 119, 10 58310 603, https://doi.org/10.1002/2013JD021074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gary, B. L., 1989: Observational results using the Microwave Temperature Profiler during the Airborne Antarctic Ozone Experiment. J. Geophys. Res., 94, 11 22311 231, https://doi.org/10.1029/JD094iD09p11223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., D. Raymond, M. Barth, A. Detwiler, P. Klein, W.-C. Lee, P. Markowski, and G. Mullendore, 2017: Requirements for in situ and Remote Sensing Capabilities in Convective and Turbulent Environments (C-RITE) Community Workshop. UCAR/NCAR Earth Observing Laboratory Final Rep., 47 pp., https://doi.org/10.5065/D6DB80KR.

    • Crossref
    • Export Citation
  • Gentry, R. C., T. T. Fujita, and R. C. Sheets, 1970: Aircraft, spacecraft, satellite and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9, 837850, https://doi.org/10.1175/1520-0450(1970)009<0837:ASSARO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgis, J. F., F. Roux, and P. H. Hildebrand, 2000: Observation of precipitating systems over complex orography with meteorological Doppler radars: A feasibility study. Meteor. Atmos. Phys., 72, 185202, https://doi.org/10.1007/s007030050015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1991: Direct measurement of suspended particulate volume concentration and far–infrared extinction coefficient with a laser–diffraction instrument. Appl. Opt., 30, 48244831, https://doi.org/10.1364/AO.30.004824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, A. J., L. Thomas, and S. K. Bhattachacharyya, 1979: Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere. Nature, 281, 131132, https://doi.org/10.1038/281131a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp., http://glossary.ametsoc.org/.

  • Gobbi, G. P., G. Di Donfrancesco, and A. Adriani, 1998: Physical properties of stratospheric clouds during the Antarctic winter of 1995. J. Geophys. Res., 103, 10 85910 873, https://doi.org/10.1029/98JD00280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P., F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, 2003: Lidar and in situ observations of continental and Saharan aerosol: Closure analysis of particles optical and physical properties. Atmos. Chem. Phys., 3, 21612172, https://doi.org/10.5194/acp-3-2161-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godin-Beekmann, S., J. Porteneuve, and A. Garnier, 2003: Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92°N, 5.71°E). J. Environ. Monit., 5, 5767, https://doi.org/10.1039/b205880d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 4979, https://doi.org/10.1364/AO.37.004979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golitzine, N., 1950: Method for measuring the size of water droplets in clouds, fogs and sprays. National Research Council Tech. Rep. ME-177, 13 pp.

  • Govind, P. K., 1975: Dropwindsonde instrumentation for weather reconnaissance aircraft. J. Appl. Meteor., 14, 15121520, https://doi.org/10.1175/1520-0450(1975)014<1512:DIFWRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goyer, G. G., W. E. Howell, V. J. Schaefer, R. A. Schleusener, and P. Squires, 1966: Project Hailswath. Bull. Amer. Meteor. Soc., 47, 805809, https://doi.org/10.1175/1520-0477-47.10.805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416433, https://doi.org/10.1175/JAM2360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, W. R., 1922: An aerological survey of the United States. Part I. Results of observations by means of kites. Mon. Wea. Rev., 50, 229241, https://doi.org/10.1175/1520-0493(1922)50<229:AASOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, 2013: Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys., 13, 24872505, https://doi.org/10.5194/acp-13-2487-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl, 2015: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements. Atmos. Chem. Phys., 15, 11 06711 080, https://doi.org/10.5194/acp-15-11067-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 6, https://doi.org/10.1117/12.55766.

  • Grund, C. J., and E. W. Eloranta, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by high spectral resolution lidar. Mon. Wea. Rev., 118, 23442355, https://doi.org/10.1175/1520-0493(1990)118<2344:TOFICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393, https://doi.org/10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, https://doi.org/10.1175/JTECH-D-13-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guiraud, F. O., J. Howard, and D. C. Hogg, 1979: A dual-channel microwave radiometer for measurement of precipitable water vapor and liquid. IEEE Trans. Geosci. Electron., 17, 129136, https://doi.org/10.1109/TGE.1979.294639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., A. Z. Liu, and C. S. Gardner, 2017: First Na lidar measurements of turbulence heat flux, thermal diffusivity, and energy dissipation rate in the mesopause region. Geophys. Res. Lett., 44, 57825790, https://doi.org/10.1002/2017GL073807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haggerty, J., and J. Black, 2014: Avoiding clouds associated with core engine icing. J. Air Traffic Control, 56, 1823.

  • Hair, J. W., L. M. Caldwell, D. A. Krueger, and C.-Y. She, 2001: High-spectral-resolution lidar with iodine-vapor filters: Measurement of atmospheric-state and aerosol profiles. Appl. Opt., 40, 5280, https://doi.org/10.1364/AO.40.005280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, https://doi.org/10.1364/AO.47.006734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harder, J., J. M. Fontenla, P. Pilewskie, E. C. Richard, and T. N. Woods, 2009: Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, https://doi.org/10.1029/2008GL036797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K. R., and I. Katz, 1969: Probing the clear atmosphere with high power, high resolution radars. Proc. IEEE, 57, 468480, https://doi.org/10.1109/PROC.1969.7001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugen, D. A., 1959: Project Prairie Grass, a Field Program in Diffusion. D. A. Haugen, Ed., Geophysical Research Papers, No. 59, Vol. 3, U.S. Air Force, 673 pp.

  • Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M. Fragomeni, N. Debbage, and B. Johnson, 2019b: 100 years of progress in applied meteorology. Part II: Applications that address growing populations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0007.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., B. Kosovic, S. McIntosh, F. Chen, K. Miller, M. Shepherd, M. Williams, and S. Drobot, 2019c: 100 years of progress in applied meteorology. Part III: Additional applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0012.1.

    • Crossref
    • Export Citation
  • Henderson, S. W., P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31, 415, https://doi.org/10.1109/36.210439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795809, https://doi.org/10.1175/1520-0426(1996)013<0795:TERSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1988: Some introductory notes to an issue of Boundary-Layer Meteorology dedicated to Arthur James Dyer. Bound.-Layer Meteor., 42, 18, https://doi.org/10.1007/BF00119870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, J., G. Baumgarten, J. Fiedler, and F.-J. Lübken, 2017: Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos. Chem. Phys., 17, 13 34513 359, https://doi.org/10.5194/acp-17-13345-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., 1998: Shear-parallel most convection over the tropical ocean: A case study from 18 February 1993 TOGA COARE. Mon. Wea. Rev., 126, 19521976, https://doi.org/10.1175/1520-0493(1998)126<1952:SPMCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and C. K. Mueller, 1985: Evaluation of meteorological airborne Doppler radar. Part I: Dual-Doppler analysis of air motions. J. Atmos. Oceanic Technol., 2, 362380, https://doi.org/10.1175/1520-0426(1985)002<0362:EOMADR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82, 18731890, https://doi.org/10.1109/5.338076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar design and observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, https://doi.org/10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindman, E., 1987: A “cloud gun” primer. J. Atmos. Oceanic Technol., 4, 736741, https://doi.org/10.1175/1520-0426(1987)004<0736:AGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirst, E., P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, 2001: Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud. Atmos. Environ., 35, 3347, https://doi.org/10.1016/S1352-2310(00)00377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W. F., 1986: The invention of radar meteorology. Bull. Amer. Meteor. Soc., 67, 3337, https://doi.org/10.1175/1520-0477(1986)067<0033:TIORM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, J., and Coauthors, 2017: Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization/Raman lidar at the central Asian site of Dushanbe, Tajikistan: Case studies. Atmos. Chem. Phys., 17, 14 55914 577, https://doi.org/10.5194/acp-17-14559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, D. J., J. M. Rosen, T. J. Pepin, and J. I. Kroening, 1972: Global measurements of stratospheric aerosol, ozone and water vapor by balloon-borne sensors. Proc. Second Conf. on the Climatic Impact Assessment Program, Cambridge, MA, U.S. Dept. of Transportation DOT-TSC-OST-734, 23–33.

  • Hook, S. J., J. J. Myers, K. J. Thome, M. Fitzgerald, and A. B. Kahle, 2001: The MODIS/ASTER airborne simulator (MASTER)—A new instrument for earth science studies. Remote Sens. Environ., 76, 93102, https://doi.org/10.1016/S0034-4257(00)00195-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoover, B. T., D. A. Santek, A.-S. Daloz, Y. Zhong, R. Dworak, R. A. Petersen, and A. Collard, 2017: Forecast impact of assimilating aircraft WVSS-II water vapor mixing ratio observations in the Global Data Assimilation System (GADS). Wea. Forecasting, 32, 16031611, https://doi.org/10.1175/WAF-D-16-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity change and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., 1979: The Smithsonian Astrophysical Observatory solar constant program. Rev. Geophys. Space Phys., 17, 427458, https://doi.org/10.1029/RG017i003p00427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84, 181204, https://doi.org/10.1109/5.482228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., A. Jelalian, and J. Thomson, 1970: Laser-Doppler system for detection of aircraft trailing vortices. Proc. IEEE, 58, 322326, https://doi.org/10.1109/PROC.1970.7636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall, R. A. Richter, and R. J. Keeler, 1984: Feasibility studies for a global wind measuring satellite system (Windsat): Analysis of simulated performance. Appl. Opt., 23, 2523, https://doi.org/10.1364/AO.23.002523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurst, D. F., S. J. Oltmans, H. Vömel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res., 116, D02306, https://doi.org/10.1029/2010JD015065.

    • Search Google Scholar
    • Export Citation
  • ICAO, 2016: Meteorological Services for International Air Navigation. Convention on International Civil Aviation, Annex 3, ICAO International Standards and Recommended Practices, 19th ed. ICAO, 208 pp.

  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., E. V. Browell, R. A. Ferrare, S. A. Kooi, M. B. Clayton, V. G. Brackett, and P. B. Russell, 2000: LASE measurements of aerosol and water vapor profiles during TARFOX. J. Geophys. Res., 105, 99039916, https://doi.org/10.1029/1999JD901198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Coauthors, 2010: LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances. J. Atmos. Sci., 67, 10261047, https://doi.org/10.1175/2009JAS3136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jager, H., and H. Carnuth, 1987: The decay of the El Chichon stratospheric perturbation, observed by lidar at northern midlatitudes. Geophys. Res. Lett., 14, 696699, https://doi.org/10.1029/GL014i007p00696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, M. A., Ed., 1993: Atmospheric Remote Sensing by Microwave Radiometry. Wiley, 589 pp.

  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert Jr., D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bull. Amer. Meteor. Soc., 74, 21462157, https://doi.org/10.1175/1520-0477(1993)074<2146:MCSBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Appl. Meteor., 22, 744757, https://doi.org/10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. Matejka, and J. D. Dugranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Physics, 59, 83104, https://doi.org/10.1007/BF01032002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 19611985, https://doi.org/10.1175/1520-0469(1997)054<1961:SAEOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, D. McLaughlin, E. Isanic, and N. Bharadwaj, 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178, https://doi.org/10.1175/2009JTECHA1296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., 2013: Advances in meteorology and the evolution of sonic anemometry. Applied Technologies, Inc., 7 pp., http://www.apptech.com/wp-content/uploads/2016/08/Evolution-of-Sonic-Anemometry.pdf.

  • Kaimal, J. C., and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Climate Appl. Meteor., 22, 863880, https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, https://doi.org/10.1029/2011JD016050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keckhut, P., M. L. Chanin, and A. Hauchecorne, 1990: Stratosphere temperature measurement using Raman lidar. Appl. Opt., 29, 5182, https://doi.org/10.1364/AO.29.005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200203, https://doi.org/10.3402/tellusa.v12i2.9366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessinger, C., and Coauthors, 2017: Displaying convective weather products on an electronic flight bag. J. Air Traffic Control, 59, 5261.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmosphere Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109145, https://doi.org/10.1016/0169-8095(94)00090-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, C. M., C. B. Clements, and B. E. Potter, 2012: Application of a mini unmanned aircraft system for in situ monitoring of fire plume thermodynamic properties. J. Atmos. Oceanic Technol., 29, 309315, https://doi.org/10.1175/JTECH-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., and Coauthors, 2008: First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: Accuracy evaluation and intercomparisons with other instruments. Atmos. Chem. Phys., 8, 52455261, https://doi.org/10.5194/acp-8-5245-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., 1987: Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 17341751, https://doi.org/10.1175/1520-0469(1987)044<1734:DOTSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 1996: Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties. J. Atmos. Oceanic Technol., 13, 777794, https://doi.org/10.1175/1520-0426(1996)013<0777:ASSFRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wired liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211220, https://doi.org/10.1364/AO.20.000211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1985: Lidar inversion with variable backscatter extinction ratios. Appl. Opt., 24, 16381643, https://doi.org/10.1364/AO.24.001638.

  • Knight, C. A., 1982: The Cooperative Convective Precipitation Experiment (CCOPE), 18 May–7 August 1981. Bull. Amer. Meteor. Soc., 63, 386398, https://doi.org/10.1175/1520-0477(1982)063<0386:TCCPEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and P. Squires, 1982a: Hailstorms of the Central High Plains. I: The National Hail Research Experiment. Colorado Associated University Press, 282 pp.

  • Knight, C. A., and P. Squires, 1982b: Hailstorms of the Central High Plains. II: Case Studies of the National Hail Research Experiment. Colorado Associated University Press, 245 pp.

  • Knollenberg, R. G., 1970: The Optical Array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer probe, the forward scattering spectrometer probe, and the active scattering aerosol spectrometer. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 554–561.

  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Crossref
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. A. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, https://doi.org/10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203210.

  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., G. Lawrence, and G. Rottman, 2005: The Total Irradiance Monitor (TIM): Science results. Sol. Phys., 230, 129139, https://doi.org/10.1007/s11207-005-7433-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., K. Heuerman, D. Harber, and G. Drake, 2007: The TSI Radiometer Facility: Absolute calibrations for total solar irradiance instruments. Proc. SPIE, 6677, 667709, https://doi.org/10.1117/12.734553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korb, C. L., B. M. Gentry, and C. Y. Weng, 1992: Edge technique: Theory and application to the lidar measurement of atmospheric wind. Appl. Opt., 31, 4202, https://doi.org/10.1364/AO.31.004202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koskinen, J. T., and Coauthors, 2011: The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Amer. Meteor. Soc., 92, 325342, https://doi.org/10.1175/2010BAMS2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kramer, H. J., 2002: Observations of the Earth and Its Environment: Survey of Missions and Sensors. Springer-Verlag, 1509 pp.

    • Crossref
    • Export Citation
  • Kren, A. C., P. Pilewskie, and O. Coddington, 2017: Where does Earth’s atmosphere get its energy? J. Space Wea. Space Climate, 7, A10, https://doi.org/10.1051/swsc/2017007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1974: General description and central program of GATE. Bull. Amer. Meteor. Soc., 55, 712719.

  • Kulesa, G. J., D. J. Pace, W. L. Fellner, J. E. Sheets, V. S. Travers, and P. J. Kirchoffer, 2003: The FAA Aviation Weather Research Program’s contribution to air transportation safety and efficiency. 19th Conf. on Interactive Information Processing Systems, Long Beach, CA, Amer. Meteor. Soc., 9.1, https://ams.confex.com/ams/pdfpapers/54862.pdf.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainf