100 Years of Progress in Atmospheric Observing Systems

Jeffrey L. Stith aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jeffrey L. Stith in
Current site
Google Scholar
PubMed
Close
,
Darrel Baumgardner bDroplet Measurement Technologies, Longmont, Colorado

Search for other papers by Darrel Baumgardner in
Current site
Google Scholar
PubMed
Close
,
Julie Haggerty aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Julie Haggerty in
Current site
Google Scholar
PubMed
Close
,
R. Michael Hardesty cUniversity of Colorado Boulder, Boulder, Colorado
dNOAA/ESRL, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
,
Wen-Chau Lee aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wen-Chau Lee in
Current site
Google Scholar
PubMed
Close
,
Donald Lenschow aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Donald Lenschow in
Current site
Google Scholar
PubMed
Close
,
Peter Pilewskie dNOAA/ESRL, Boulder, Colorado

Search for other papers by Peter Pilewskie in
Current site
Google Scholar
PubMed
Close
,
Paul L. Smith eSouth Dakota School of Mines and Technology, Rapid City, South Dakota

Search for other papers by Paul L. Smith in
Current site
Google Scholar
PubMed
Close
,
Matthias Steiner aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Matthias Steiner in
Current site
Google Scholar
PubMed
Close
, and
Holger Vömel aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Holger Vömel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although atmospheric observing systems were already an important part of meteorology before the American Meteorological Society was established in 1919, the past 100 years have seen a steady increase in their numbers and types. Examples of how observing systems were developed and how they have enabled major scientific discoveries are presented. These examples include observing systems associated with the boundary layer, the upper air, clouds and precipitation, and solar and terrestrial radiation. Widely used specialized observing systems such as radar, lidar, and research aircraft are discussed, and examples of applications to weather forecasting and climate are given. Examples drawn from specific types of chemical measurements, such as ozone and carbon dioxide, are included. Sources of information on observing systems, including other chapters of this monograph, are also discussed. The past 100 years has been characterized by synergism between societal needs for weather observations and the needs of fundamental meteorological research into atmospheric processes. In the latter half of the period, observing system improvements have been driven by the increasing demands for higher-resolution data for numerical models, the need for long-term measurements, and for more global coverage. This has resulted in a growing demand for data access and for integrating data from an increasingly wide variety of observing system types and networks. These trends will likely continue.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeffrey Stith, stith@ucar.edu

Abstract

Although atmospheric observing systems were already an important part of meteorology before the American Meteorological Society was established in 1919, the past 100 years have seen a steady increase in their numbers and types. Examples of how observing systems were developed and how they have enabled major scientific discoveries are presented. These examples include observing systems associated with the boundary layer, the upper air, clouds and precipitation, and solar and terrestrial radiation. Widely used specialized observing systems such as radar, lidar, and research aircraft are discussed, and examples of applications to weather forecasting and climate are given. Examples drawn from specific types of chemical measurements, such as ozone and carbon dioxide, are included. Sources of information on observing systems, including other chapters of this monograph, are also discussed. The past 100 years has been characterized by synergism between societal needs for weather observations and the needs of fundamental meteorological research into atmospheric processes. In the latter half of the period, observing system improvements have been driven by the increasing demands for higher-resolution data for numerical models, the need for long-term measurements, and for more global coverage. This has resulted in a growing demand for data access and for integrating data from an increasingly wide variety of observing system types and networks. These trends will likely continue.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jeffrey Stith, stith@ucar.edu
Save
  • Abshire, N. L., R. L. Schwiesow, and V. E. Derr, 1974: Doppler lidar observations of hydrometeors. J. Appl. Meteor., 13, 951953, https://doi.org/10.1175/1520-0450(1974)013<0951:DLOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Search Google Scholar
    • Export Citation
  • Adam, W., H. Dier, and U. Leiterer, 2005: 100 years aerology in Lindenberg and first long-time observations in the free atmosphere. Meteor. Z., 14, 597607, https://doi.org/10.1127/0941-2948/2005/0065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althausen, D., D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, 2000: Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol., 17, 14691482, https://doi.org/10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, 2009: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization. J. Atmos. Oceanic Technol., 26, 23662378, https://doi.org/10.1175/2009JTECHA1304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez, R. J., and Coauthors, 2011: Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling. J. Atmos. Oceanic Technol., 28, 12581272, https://doi.org/10.1175/JTECH-D-10-05044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancellet, G., and F. Ravetta, 2003: On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer. J. Environ. Monit., 5, 4756, https://doi.org/10.1039/b205727a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., M. Riebesell, and C. Weitkamp, 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett., 15, 746748, https://doi.org/10.1364/OL.15.000746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31, 71137131, https://doi.org/10.1364/AO.31.007113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., H. Baars, M. Tesche, D. Müller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo, 2009: Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett., 36, L11802, https://doi.org/10.1029/2009GL037923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238, https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Askne, J., and E. Westwater, 1986: A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sens., GE-24, 340352, https://doi.org/10.1109/TGRS.1986.289591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, https://doi.org/10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1964: Advances in radar meteorology. Advances in Geophysics, Vol. 10, Academic Press, 317–478, https://doi.org/10.1016/S0065-2687(08)60009-6.

    • Crossref
    • Export Citation
  • Atlas, D., Ed., 1990: Radar in Meteorology. Amer. Meteor. Soc., 806 pp.

    • Crossref
    • Export Citation
  • Baars, H., and Coauthors, 2012: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res., 117, D21201, https://doi.org/10.1029/2012JD018338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baklanov, A., and Coauthors, 2018: From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23, 330341, https://doi.org/10.1016/j.uclim.2017.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., and K. S. Gage, 1982: On the use of radars for operational wind profiling. Bull. Amer. Meteor. Soc., 63, 10091018, https://doi.org/10.1175/1520-0477(1982)063<1009:OTUORF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., J. B. Williams, G. W. Tyrrell, and C. L. Balsley, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 125, https://doi.org/10.1023/A:1000812511429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. D. Olivier, and D. H. Levinson, 1993: Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50, 39593982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. S. Darby, P. Kaufmann, D. H. Levinson, and C. Zhu, 1999: Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 10691083, https://doi.org/10.1175/1520-0450(1999)038<1069:WFPITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, https://doi.org/10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 323 pp.

  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The Cloud, Aerosol and Precipitation Spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60, 251264, https://doi.org/10.1016/S0169-8095(01)00119-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102, 1029, https://doi.org/10.1016/j.atmosres.2011.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2012: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds. Bull. Amer. Meteor. Soc., 93, 2934, https://doi.org/10.1175/BAMS-D-11-00123.1.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, https://doi.org/10.1175/JAMC-D-12-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bemis, A. C., 1951: Aircraft meteorological instruments. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1223–1231, https://doi.org/10.1007/978-1-940033-70-9_99.

    • Crossref
    • Export Citation
  • Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, https://doi.org/10.1175/2009MWR3097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Berkoff, T. A., E. J. Welton, J. R. Campbell, V. S. Scott, and J. D. Spinhirne, 2003: Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). Proc. 2003 IEEE Int. Geoscience and Remote Sensing Symp., Toulouse, France, IEEE, 4395–4397, https://doi.org/10.1109/IGARSS.2003.1295527.

    • Crossref
    • Export Citation
  • Beswick, K., and Coauthors, 2015: Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, 67B, 27 876, https://doi.org/10.3402/tellusb.v67.27876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigler, S. G., 1981: Radar: A short history. Weatherwise, 34, 158163, https://doi.org/10.1080/00431672.1981.9931967.

  • Bilbro, J. W., and W. W. Vaughan, 1978: Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system. Bull. Amer. Meteor. Soc., 59, 10951100, https://doi.org/10.1175/1520-0477(1978)059<1095:WFMITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publ., 12, 562.

  • Bjerknes, V., 1921: On the Dynamics of the Circular Vortex: With Applications to the Atmosphere and Atmospheric Vortex and Wave Motions. Geofysiske Publikationer, Vol. II, Comm. Cammermeyer, 89 pp.

  • Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne radar observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in Hurricane Debbie. Mon. Wea. Rev., 100, 208217, https://doi.org/10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., and Coauthors, 2016: Reference upper-air observations for climate: From concept to reality. Bull. Amer. Meteor. Soc., 97, 123135, https://doi.org/10.1175/BAMS-D-14-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boden, T. A., M. Krassovski, and B. Yang, 2013: The AmeriFlux data activity and data system: An evolving collection of data management techniques, tools, products, and services. Geosci. Instrum. Methods Data Syst., 2, 165176, https://doi.org/10.5194/gi-2-165-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., B. J. Carroll, R. M. Hardesty, W. A. Brewer, K. Hajny, O. E. Salmon, and P. B. Shepson, 2018: Doppler lidar observations of the mixing height in Indianapolis using an automated composite fuzzy logic approach. J. Atmos. Oceanic Technol., 35, 473490, https://doi.org/10.1175/JTECH-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornmann, L., 2012: Measuring the societal impact of research. EMBO Rep., 13, 673676, https://doi.org/10.1038/embor.2012.99.

  • Bosart, B. L., W.-C. Lee, and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19, 322339, https://doi.org/10.1175/1520-0426-19.3.322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bösenberg, J., 1991: A differential absorption lidar system for high resolution water vapor measurements in the troposphere. Max Planck Institut für Meteorologie Rep. 71, 213–239.

  • Bousquet, O., and B. F. Smull, 2003: Airflow and precipitation fields within deep alpine valleys observed by airborne Doppler radar. J. Appl. Meteor. Climatol., 42, 14971513, https://doi.org/10.1175/1520-0450(2003)042<1497:AAPFWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, M. R., A. J. Gibson, and M. C. W. Sandford, 1969: Atmospheric sodium measured by a tuned laser radar. Nature, 221, 456457, https://doi.org/10.1038/221456a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brock, F. V., and S. J. Richardson, 2001: Meteorological Measurement Systems. Oxford University Press, 290 pp.

    • Crossref
    • Export Citation
  • Bromberg, J. L., 1988: The Birth of the Laser. Phys. Today, 41, 2633, https://doi.org/10.1063/1.881155.

  • Brooks, H., and Coauthors, 2019: 100 years of severe convective storm science and operations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0026.1.

    • Crossref
    • Export Citation
  • Browell, E. V., and Coauthors, 2001: Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment. J. Geophys. Res., 106, 32 48132 501, https://doi.org/10.1029/2001JD900001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 2003: Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. J. Geophys. Res., 108, 8369, https://doi.org/10.1029/2001JD001390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., 1989: Use of holography for airborne cloud physics measurements. J. Atmos. Oceanic Technol., 6, 293306, https://doi.org/10.1175/1520-0426(1989)006<0293:UOHFAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., G. W. Bryant, J. R. Starr, and D. N. Axford, 1973: Air motion within Kelvin-Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Quart. J. Roy. Meteor. Soc., 99, 608618, https://doi.org/10.1002/qj.49709942203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, D., 2001: Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 40, 391, https://doi.org/10.1364/AO.40.000391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, D., P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description. Appl. Opt., 40, 34503461, https://doi.org/10.1364/AO.40.003450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1955: Turbulence and shearing stresses measured over the North Atlantic Ocean by an airplane-acceleration technique. J. Atmos. Sci., 12, 445455, https://doi.org/10.1175/1520-0469(1955)012<0445:TASSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., S. D. Aberson, J. L. Franklin, S. J. Lord, and R. E. Tuleya, 1996: The impact of omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burton, S. P., and Coauthors, 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech., 5, 7398, https://doi.org/10.5194/amt-5-73-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushnell, R. H., V. M. Glover, and R. D. Chu, 1973: Engineering report on a dropsonde for measuring vertical wind velocity in thunderstorms. NCAR Tech. Note NCAR/TN-83+EDD, 60 pp., https://doi.org/10.5065/D6K0727T.

    • Crossref
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Butler, J. J., B. C. Johnson, J. P. Rice, E. L. Shirley, and R. A. Barnes, 2008: Sources of differences in on-orbital Total Solar Irradiance measurements and description of a proposed laboratory intercomparison. J. Res. Natl. Inst. Stand. Technol., 113, 187203, https://doi.org/10.6028/jres.113.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1960: Carl-Gustaf Arvid Rossby. Biogr. Mem. Natl. Acad. Sci. U.S.A., 34, 248270.

  • Byers, H. R., and R. R. Braham, 1948: Thunderstorm structure and circulation. J. Meteor., 5, 7186, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm: Final Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223240, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1958: On the amount of carbon dioxide in the atmosphere. Tellus, 10, 243248, https://doi.org/10.3402/tellusa.v10i2.9231.

  • Cannon, T. W., 1960: High-speed photography of airborne atmospheric particles. J. Appl. Meteor., 9, 105108, https://doi.org/10.1175/1520-0450(1970)009<0104:HSPOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnuth, W., U. Kempfer, and T. Trickl, 2002: Highlights of the tropospheric lidar studies at IFU within the TOR project. Tellus, 54B, 163185, https://doi.org/10.3402/tellusb.v54i2.16656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: observations versus models. Science, 27, 496499, https://doi.org/10.1126/science.267.5197.496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., and Y. F. Lee, 2012: Application of short-range lidar in wind shear alerting. J. Atmos. Oceanic Technol., 29, 207220, https://doi.org/10.1175/JTECH-D-11-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, L., and S. J. Bell, 2018: High-resolution monitoring of weather impacts on infrastructure networks using the internet of things. Bull. Amer. Meteor. Soc., 99, 11471154, https://doi.org/10.1175/BAMS-D-17-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930: A theory of upper-atmospheric ozone. Mem. Roy. Meteor. Soc., 3, 103125.

  • Chen, C., X. Chu, J. Zhao, B. R. Roberts, Z. Yu, W. Fong, X. Lu, and J. A. Smith, 2016: Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E). J. Geophys. Res. Space Phys., 121, 14831502, https://doi.org/10.1002/2015JA022127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choukulkar, A., and Coauthors, 2017: Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmos. Meas. Tech., 10, 247264, https://doi.org/10.5194/amt-10-247-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clague, L., 1965: An improved device for obtaining cloud droplet samples. J. Appl. Meteor., 4, 549551, https://doi.org/10.1175/1520-0450(1965)004<0549:AIDFOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C., N. Lareau, D. Kingsmill, C. Bowers, C. Camacho, R. Bagley, and B. Davis, 2018: RaDFIRE—The Rapid Deployments to Wildfires Experiment: Observations from the fire zone. Bull. Amer. Meteor. Soc., 99, https://doi.org/10.1175/BAMS-D-17-0230.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coen, J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 1638, https://doi.org/10.1175/JAMC-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A., J. A. Cooney, and K. N. Geller, 1976: Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering. Appl. Opt., 15, 28962901, https://doi.org/10.1364/AO.15.002896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collis, R. T. H., and M. G. H. Ligda, 1964: Laser radar echoes from clear atmosphere. Nature, 203, 508, https://doi.org/10.1038/203508a0.

  • Cooney, J. A., 1970: Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter. J. Appl. Meteor., 9, 182184, https://doi.org/10.1175/1520-0450(1970)009<0182:RMOAWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, D. I., W. E. Eichinger, R. E. Ecke, J. C. Y. Kao, J. M. Reisner, and L. L. Tellier, 1997: Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar. Geophys. Res. Lett., 24, 4548, https://doi.org/10.1029/96GL03255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and Coauthors, 2016: Characterization of uncertainty in measurements of wind from the NSF/NCAR Gulfstream V research aircraft. NCAR Tech. Note NCAR/TN-528+STR, 161 pp.

  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961982, https://doi.org/10.1175/BAMS-86-7-961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., and Coauthors, 2019: 100 years of progress in ocean observing systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0014.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., A. G. Hallar, L. M. Avallone, and W. Engblom, 2007: Measurement of total water with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463475, https://doi.org/10.1175/JTECH1975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Haan, S., and A. Stoffelen, 2012: Assimilation of high-resolution Mode-S wind and temperature observations in a regional NWP model for nowcasting applications. Wea. Forecasting, 27, 918937, https://doi.org/10.1175/WAF-D-11-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Derr, V. E., N. L. Abshire, R. E. Cupp, and G. T. McNice, 1976: Depolarization of lidar returns from virga and source cloud. J. Appl. Meteor., 15, 12001203, https://doi.org/10.1175/1520-0450(1976)015<1200:DOLRFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Detwiler, A. G., P. L. Smith, G. N. Johnson, and D. V. Kliche, 2004: Three decades of in situ observations inside thunderstorms. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 11B.4, https://ams.confex.com/ams/pdfpapers/81445.pdf.

  • Di Girolamo, P. D., D. Summa, and R. Ferretti, 2009: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol., 26, 17421762, https://doi.org/10.1175/2009JTECHA1253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1968: Forty years’ research on atmospheric ozone at Oxford: A history. Appl. Opt., 7, 387405, https://doi.org/10.1364/AO.7.000387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., A. W. Brewer, and B. M. Cwilong, 1946: 1946: Meteorology of the lower stratosphere. Proc. Roy. Soc. London, 185A, 144175, https://doi.org/10.1098/rspa.1946.0010.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, https://doi.org/10.1109/JSTARS.2015.2403303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuBois, J. L., R. P. Multhauf, and C. A. Ziegler, 2002: The invention and development of the radiosonde, with a catalog of upper-atmospheric telemetering probes in the National Museum of American History, Smithsonian Institution. Smithsonian Institution Press, 78 pp.

    • Crossref
    • Export Citation
  • Durden, S. L., E. Im, F. K. Li, W. Ricketts, A. Tanner, and W. Wilson, 1994: ARMAR: An airborne rain-mapping radar. J. Atmos. Oceanic Technol., 11, 727737, https://doi.org/10.1175/1520-0426(1994)011<0727:AAARMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebdon, R. A., and R. G. Veryard, 1961: Fluctuations in equatorial stratospheric winds. Nature, 189, 791793, https://doi.org/10.1038/189791a0.

  • Ehret, G., C. Kiemle, W. Renger, and G. Simmet, 1993: Airborne remote sensing of tropospheric water vapor with a near–infrared differential absorption lidar system. Appl. Opt., 32, 4534, https://doi.org/10.1364/AO.32.004534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, G., A. Fix, V. Weiss, G. Poberaj, and T. Baumert, 1998: Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere. Appl. Phys., 67B, 427431, https://doi.org/10.1007/s003400050526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, G., C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, 2008: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys., 90B, 593608, https://doi.org/10.1007/s00340-007-2892-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2019: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Erickson, M. J., J. J. Charney, and B. A. Colle, 2016: Development of a fire weather index using meteorological observations within the northeast United States. J. Appl. Meteor. Climatol., 55, 389402, https://doi.org/10.1175/JAMC-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, C., and H. Buisson, 1913: L’absorption de l’ultra-violet par l’ozone et la limite du spectre solaire. J. Phys., 3, 196206.

    • Search Google Scholar
    • Export Citation
  • Fahey, T., E. N. Wilson, R. O’Loughlin, M. Thomas, and S. Klipfel, 2016: A history of weather reporting from aircraft and turbulence forecasting for commercial aviation. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer International Publishing, 31–58.

    • Crossref
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctic reveal seasonal CIO/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fergusson, S. P., 1909: The exploration of upper air by means of balloons sondes. Sci. Amer., 100, 169170, https://doi.org/10.1038/scientificamerican02271909-169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations—Some comments. Appl. Opt., 23, 652653, https://doi.org/10.1364/AO.23.000652.

  • Fernald, F. G., B. M. Herman, and J. A. Reagan, 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11, 482489, https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiocco, G., and G. Grams, 1964: Observations of the aerosol layer at 20 km. J. Atmos. Sci., 21, 323324, https://doi.org/10.1175/1520-0469(1964)021<0323:OOTALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolek, A., 2004: Pioneers in modern meteorology and climatology: Vilhel and Jacob Bjerknes. NOAA Library and Information Services, 20 pp., ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/Bibliographies/Bjerknes/Bjerknes_July_2004.pdf.

  • Fletcher, J. O., 1990: Early developments of weather radar during World War II. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 3–6.

    • Crossref
    • Export Citation
  • Floyd, L. E., D. K. Prinz, P. C. Crane, and L. C. Herring, 2002: Solar UV irradiance variation during cycles 22 and 23. Adv. Space Res., 29, 19571962, https://doi.org/10.1016/S0273-1177(02)00242-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., 1991: History of solar radiometry and the World Radiometric Reference. Metrologia, 28, 111115, https://doi.org/10.1088/0026-1394/28/3/001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., and J. Lean, 2002: Solar irradiance variability and climate. Astron. Nachr., 323, 203212, https://doi.org/10.1002/1521-3994(200208)323:3/4<203::AID-ASNA203>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L., T. L. Lee, T. W. Liu, and R. Kwok, 2019: 50 years of satellite remote sensing of the ocean. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0010.1.

    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., R. A. Shaw, E. W. Saw, and A. V. Sergeyev, 2004: Airborne digital holographic system for cloud particle measurements. Appl. Opt., 43, 59875995, https://doi.org/10.1364/AO.43.005987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1966: Accurate calibration of Doppler winds for their use in the computation of mesoscale wind fields. Mon. Wea. Rev., 94, 1935, https://doi.org/10.1175/1520-0493(1966)094<0019:ACODWF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Paper 91, University of Chicago, 42 pp.

  • Fujita, T., 1985: The Downburst: Microburst and Macroburst. University of Chicago, 122 pp.

  • Fujita, T., 1986: DFW Microburst. University of Chicago, 155 pp.

  • Gardner, C. S., and D. G. Voelz, 1987: Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves. J. Geophys. Res., 92, 4673, https://doi.org/10.1029/JA092iA05p04673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, C. S., and A. Z. Liu, 2014: Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars. J. Geophys. Res. Atmos., 119, 10 58310 603, https://doi.org/10.1002/2013JD021074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gary, B. L., 1989: Observational results using the Microwave Temperature Profiler during the Airborne Antarctic Ozone Experiment. J. Geophys. Res., 94, 11 22311 231, https://doi.org/10.1029/JD094iD09p11223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., D. Raymond, M. Barth, A. Detwiler, P. Klein, W.-C. Lee, P. Markowski, and G. Mullendore, 2017: Requirements for in situ and Remote Sensing Capabilities in Convective and Turbulent Environments (C-RITE) Community Workshop. UCAR/NCAR Earth Observing Laboratory Final Rep., 47 pp., https://doi.org/10.5065/D6DB80KR.

    • Crossref
    • Export Citation
  • Gentry, R. C., T. T. Fujita, and R. C. Sheets, 1970: Aircraft, spacecraft, satellite and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9, 837850, https://doi.org/10.1175/1520-0450(1970)009<0837:ASSARO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgis, J. F., F. Roux, and P. H. Hildebrand, 2000: Observation of precipitating systems over complex orography with meteorological Doppler radars: A feasibility study. Meteor. Atmos. Phys., 72, 185202, https://doi.org/10.1007/s007030050015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1991: Direct measurement of suspended particulate volume concentration and far–infrared extinction coefficient with a laser–diffraction instrument. Appl. Opt., 30, 48244831, https://doi.org/10.1364/AO.30.004824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, A. J., L. Thomas, and S. K. Bhattachacharyya, 1979: Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere. Nature, 281, 131132, https://doi.org/10.1038/281131a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp., http://glossary.ametsoc.org/.

  • Gobbi, G. P., G. Di Donfrancesco, and A. Adriani, 1998: Physical properties of stratospheric clouds during the Antarctic winter of 1995. J. Geophys. Res., 103, 10 85910 873, https://doi.org/10.1029/98JD00280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P., F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, 2003: Lidar and in situ observations of continental and Saharan aerosol: Closure analysis of particles optical and physical properties. Atmos. Chem. Phys., 3, 21612172, https://doi.org/10.5194/acp-3-2161-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godin-Beekmann, S., J. Porteneuve, and A. Garnier, 2003: Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92°N, 5.71°E). J. Environ. Monit., 5, 5767, https://doi.org/10.1039/b205880d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 4979, https://doi.org/10.1364/AO.37.004979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golitzine, N., 1950: Method for measuring the size of water droplets in clouds, fogs and sprays. National Research Council Tech. Rep. ME-177, 13 pp.

  • Govind, P. K., 1975: Dropwindsonde instrumentation for weather reconnaissance aircraft. J. Appl. Meteor., 14, 15121520, https://doi.org/10.1175/1520-0450(1975)014<1512:DIFWRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goyer, G. G., W. E. Howell, V. J. Schaefer, R. A. Schleusener, and P. Squires, 1966: Project Hailswath. Bull. Amer. Meteor. Soc., 47, 805809, https://doi.org/10.1175/1520-0477-47.10.805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416433, https://doi.org/10.1175/JAM2360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, W. R., 1922: An aerological survey of the United States. Part I. Results of observations by means of kites. Mon. Wea. Rev., 50, 229241, https://doi.org/10.1175/1520-0493(1922)50<229:AASOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, 2013: Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys., 13, 24872505, https://doi.org/10.5194/acp-13-2487-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl, 2015: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements. Atmos. Chem. Phys., 15, 11 06711 080, https://doi.org/10.5194/acp-15-11067-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 6, https://doi.org/10.1117/12.55766.

  • Grund, C. J., and E. W. Eloranta, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by high spectral resolution lidar. Mon. Wea. Rev., 118, 23442355, https://doi.org/10.1175/1520-0493(1990)118<2344:TOFICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393, https://doi.org/10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, https://doi.org/10.1175/JTECH-D-13-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guiraud, F. O., J. Howard, and D. C. Hogg, 1979: A dual-channel microwave radiometer for measurement of precipitable water vapor and liquid. IEEE Trans. Geosci. Electron., 17, 129136, https://doi.org/10.1109/TGE.1979.294639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., A. Z. Liu, and C. S. Gardner, 2017: First Na lidar measurements of turbulence heat flux, thermal diffusivity, and energy dissipation rate in the mesopause region. Geophys. Res. Lett., 44, 57825790, https://doi.org/10.1002/2017GL073807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haggerty, J., and J. Black, 2014: Avoiding clouds associated with core engine icing. J. Air Traffic Control, 56, 1823.

  • Hair, J. W., L. M. Caldwell, D. A. Krueger, and C.-Y. She, 2001: High-spectral-resolution lidar with iodine-vapor filters: Measurement of atmospheric-state and aerosol profiles. Appl. Opt., 40, 5280, https://doi.org/10.1364/AO.40.005280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, https://doi.org/10.1364/AO.47.006734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harder, J., J. M. Fontenla, P. Pilewskie, E. C. Richard, and T. N. Woods, 2009: Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, https://doi.org/10.1029/2008GL036797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K. R., and I. Katz, 1969: Probing the clear atmosphere with high power, high resolution radars. Proc. IEEE, 57, 468480, https://doi.org/10.1109/PROC.1969.7001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugen, D. A., 1959: Project Prairie Grass, a Field Program in Diffusion. D. A. Haugen, Ed., Geophysical Research Papers, No. 59, Vol. 3, U.S. Air Force, 673 pp.

  • Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M. Fragomeni, N. Debbage, and B. Johnson, 2019b: 100 years of progress in applied meteorology. Part II: Applications that address growing populations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0007.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., B. Kosovic, S. McIntosh, F. Chen, K. Miller, M. Shepherd, M. Williams, and S. Drobot, 2019c: 100 years of progress in applied meteorology. Part III: Additional applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0012.1.

    • Crossref
    • Export Citation
  • Henderson, S. W., P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31, 415, https://doi.org/10.1109/36.210439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795809, https://doi.org/10.1175/1520-0426(1996)013<0795:TERSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1988: Some introductory notes to an issue of Boundary-Layer Meteorology dedicated to Arthur James Dyer. Bound.-Layer Meteor., 42, 18, https://doi.org/10.1007/BF00119870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, J., G. Baumgarten, J. Fiedler, and F.-J. Lübken, 2017: Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos. Chem. Phys., 17, 13 34513 359, https://doi.org/10.5194/acp-17-13345-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., 1998: Shear-parallel most convection over the tropical ocean: A case study from 18 February 1993 TOGA COARE. Mon. Wea. Rev., 126, 19521976, https://doi.org/10.1175/1520-0493(1998)126<1952:SPMCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and C. K. Mueller, 1985: Evaluation of meteorological airborne Doppler radar. Part I: Dual-Doppler analysis of air motions. J. Atmos. Oceanic Technol., 2, 362380, https://doi.org/10.1175/1520-0426(1985)002<0362:EOMADR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82, 18731890, https://doi.org/10.1109/5.338076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar design and observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, https://doi.org/10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindman, E., 1987: A “cloud gun” primer. J. Atmos. Oceanic Technol., 4, 736741, https://doi.org/10.1175/1520-0426(1987)004<0736:AGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirst, E., P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, 2001: Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud. Atmos. Environ., 35, 3347, https://doi.org/10.1016/S1352-2310(00)00377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W. F., 1986: The invention of radar meteorology. Bull. Amer. Meteor. Soc., 67, 3337, https://doi.org/10.1175/1520-0477(1986)067<0033:TIORM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, J., and Coauthors, 2017: Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization/Raman lidar at the central Asian site of Dushanbe, Tajikistan: Case studies. Atmos. Chem. Phys., 17, 14 55914 577, https://doi.org/10.5194/acp-17-14559-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, D. J., J. M. Rosen, T. J. Pepin, and J. I. Kroening, 1972: Global measurements of stratospheric aerosol, ozone and water vapor by balloon-borne sensors. Proc. Second Conf. on the Climatic Impact Assessment Program, Cambridge, MA, U.S. Dept. of Transportation DOT-TSC-OST-734, 23–33.

  • Hook, S. J., J. J. Myers, K. J. Thome, M. Fitzgerald, and A. B. Kahle, 2001: The MODIS/ASTER airborne simulator (MASTER)—A new instrument for earth science studies. Remote Sens. Environ., 76, 93102, https://doi.org/10.1016/S0034-4257(00)00195-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoover, B. T., D. A. Santek, A.-S. Daloz, Y. Zhong, R. Dworak, R. A. Petersen, and A. Collard, 2017: Forecast impact of assimilating aircraft WVSS-II water vapor mixing ratio observations in the Global Data Assimilation System (GADS). Wea. Forecasting, 32, 16031611, https://doi.org/10.1175/WAF-D-16-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity change and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., 1979: The Smithsonian Astrophysical Observatory solar constant program. Rev. Geophys. Space Phys., 17, 427458, https://doi.org/10.1029/RG017i003p00427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84, 181204, https://doi.org/10.1109/5.482228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., A. Jelalian, and J. Thomson, 1970: Laser-Doppler system for detection of aircraft trailing vortices. Proc. IEEE, 58, 322326, https://doi.org/10.1109/PROC.1970.7636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall, R. A. Richter, and R. J. Keeler, 1984: Feasibility studies for a global wind measuring satellite system (Windsat): Analysis of simulated performance. Appl. Opt., 23, 2523, https://doi.org/10.1364/AO.23.002523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurst, D. F., S. J. Oltmans, H. Vömel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res., 116, D02306, https://doi.org/10.1029/2010JD015065.

    • Search Google Scholar
    • Export Citation
  • ICAO, 2016: Meteorological Services for International Air Navigation. Convention on International Civil Aviation, Annex 3, ICAO International Standards and Recommended Practices, 19th ed. ICAO, 208 pp.

  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., E. V. Browell, R. A. Ferrare, S. A. Kooi, M. B. Clayton, V. G. Brackett, and P. B. Russell, 2000: LASE measurements of aerosol and water vapor profiles during TARFOX. J. Geophys. Res., 105, 99039916, https://doi.org/10.1029/1999JD901198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Coauthors, 2010: LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances. J. Atmos. Sci., 67, 10261047, https://doi.org/10.1175/2009JAS3136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jager, H., and H. Carnuth, 1987: The decay of the El Chichon stratospheric perturbation, observed by lidar at northern midlatitudes. Geophys. Res. Lett., 14, 696699, https://doi.org/10.1029/GL014i007p00696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, M. A., Ed., 1993: Atmospheric Remote Sensing by Microwave Radiometry. Wiley, 589 pp.

  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert Jr., D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bull. Amer. Meteor. Soc., 74, 21462157, https://doi.org/10.1175/1520-0477(1993)074<2146:MCSBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Appl. Meteor., 22, 744757, https://doi.org/10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. Matejka, and J. D. Dugranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Physics, 59, 83104, https://doi.org/10.1007/BF01032002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 19611985, https://doi.org/10.1175/1520-0469(1997)054<1961:SAEOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, D. McLaughlin, E. Isanic, and N. Bharadwaj, 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178, https://doi.org/10.1175/2009JTECHA1296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., 2013: Advances in meteorology and the evolution of sonic anemometry. Applied Technologies, Inc., 7 pp., http://www.apptech.com/wp-content/uploads/2016/08/Evolution-of-Sonic-Anemometry.pdf.

  • Kaimal, J. C., and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Climate Appl. Meteor., 22, 863880, https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, https://doi.org/10.1029/2011JD016050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keckhut, P., M. L. Chanin, and A. Hauchecorne, 1990: Stratosphere temperature measurement using Raman lidar. Appl. Opt., 29, 5182, https://doi.org/10.1364/AO.29.005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200203, https://doi.org/10.3402/tellusa.v12i2.9366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessinger, C., and Coauthors, 2017: Displaying convective weather products on an electronic flight bag. J. Air Traffic Control, 59, 5261.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmosphere Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109145, https://doi.org/10.1016/0169-8095(94)00090-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, C. M., C. B. Clements, and B. E. Potter, 2012: Application of a mini unmanned aircraft system for in situ monitoring of fire plume thermodynamic properties. J. Atmos. Oceanic Technol., 29, 309315, https://doi.org/10.1175/JTECH-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., and Coauthors, 2008: First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: Accuracy evaluation and intercomparisons with other instruments. Atmos. Chem. Phys., 8, 52455261, https://doi.org/10.5194/acp-8-5245-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., 1987: Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 17341751, https://doi.org/10.1175/1520-0469(1987)044<1734:DOTSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 1996: Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties. J. Atmos. Oceanic Technol., 13, 777794, https://doi.org/10.1175/1520-0426(1996)013<0777:ASSFRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wired liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211220, https://doi.org/10.1364/AO.20.000211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1985: Lidar inversion with variable backscatter extinction ratios. Appl. Opt., 24, 16381643, https://doi.org/10.1364/AO.24.001638.

  • Knight, C. A., 1982: The Cooperative Convective Precipitation Experiment (CCOPE), 18 May–7 August 1981. Bull. Amer. Meteor. Soc., 63, 386398, https://doi.org/10.1175/1520-0477(1982)063<0386:TCCPEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and P. Squires, 1982a: Hailstorms of the Central High Plains. I: The National Hail Research Experiment. Colorado Associated University Press, 282 pp.

  • Knight, C. A., and P. Squires, 1982b: Hailstorms of the Central High Plains. II: Case Studies of the National Hail Research Experiment. Colorado Associated University Press, 245 pp.

  • Knollenberg, R. G., 1970: The Optical Array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer probe, the forward scattering spectrometer probe, and the active scattering aerosol spectrometer. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 554–561.

  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Crossref
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. A. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, https://doi.org/10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203210.

  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., G. Lawrence, and G. Rottman, 2005: The Total Irradiance Monitor (TIM): Science results. Sol. Phys., 230, 129139, https://doi.org/10.1007/s11207-005-7433-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., K. Heuerman, D. Harber, and G. Drake, 2007: The TSI Radiometer Facility: Absolute calibrations for total solar irradiance instruments. Proc. SPIE, 6677, 667709, https://doi.org/10.1117/12.734553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korb, C. L., B. M. Gentry, and C. Y. Weng, 1992: Edge technique: Theory and application to the lidar measurement of atmospheric wind. Appl. Opt., 31, 4202, https://doi.org/10.1364/AO.31.004202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koskinen, J. T., and Coauthors, 2011: The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Amer. Meteor. Soc., 92, 325342, https://doi.org/10.1175/2010BAMS2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kramer, H. J., 2002: Observations of the Earth and Its Environment: Survey of Missions and Sensors. Springer-Verlag, 1509 pp.

    • Crossref
    • Export Citation
  • Kren, A. C., P. Pilewskie, and O. Coddington, 2017: Where does Earth’s atmosphere get its energy? J. Space Wea. Space Climate, 7, A10, https://doi.org/10.1051/swsc/2017007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1974: General description and central program of GATE. Bull. Amer. Meteor. Soc., 55, 712719.

  • Kulesa, G. J., D. J. Pace, W. L. Fellner, J. E. Sheets, V. S. Travers, and P. J. Kirchoffer, 2003: The FAA Aviation Weather Research Program’s contribution to air transportation safety and efficiency. 19th Conf. on Interactive Information Processing Systems, Long Beach, CA, Amer. Meteor. Soc., 9.1, https://ams.confex.com/ams/pdfpapers/54862.pdf.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyle, H. L., D. V. Hoyt, J. R. Hickey, R. H. Maschoff, and G. J. Vallette, 1993: Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels. NASA Reference Publ. 1316, 74 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940009490.pdf.

  • Kyle, T. G., 1975: The measurement of water content by an evaporator. J. Appl. Meteor., 14, 327332, https://doi.org/10.1175/1520-0450(1975)014<0327:TMOWCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B., S. Brown, B. Lim, S. Hristove-Veleva, P. Li, B. Knosp, F. J. Turk, N. Niamsuwan, 2016: Real-time monitoring of hurricanes with the HAMSR microwave sounder. 2016 Fall General Assembly, San Francisco, CA, Amer. Geophys. Union, Abstract IN31A-08.

  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 11071125, https://doi.org/10.1175/BAMS-85-8-1107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lappe, U. O., and B. Davidson, 1963: On the range of validity of Taylor’s hypothesis and the Kolmogoroff spectral law. J. Atmos. Sci., 20, 569576, https://doi.org/10.1175/1520-0469(1963)020<0569:OTROVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and R. H. Cormack, 1995: Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research. Atmos. Res., 35, 315348, https://doi.org/10.1016/0169-8095(94)00026-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblanc, T., and I. S. McDermid, 2000: Stratospheric ozone climatology from lidar measurements at Table Mountain (34.4°N, 117.7°W) and Mauna Loa (19.5°N, 155.6°W). J. Geophys. Res., 105, 14 61314 623, https://doi.org/10.1029/2000JD900030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, R. B., M. A. Gibson, R. S. Wilson, and S. Thimas, 1995: Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res., 100, 16671675, https://doi.org/10.1029/94JA02897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., F. D. Marks, and R. E. Carbone, 1994a: Velocity track display—A technique to extract primary vortex circulation of a tropical cyclone in real-time using single airborne Doppler radar data. J. Atmos. Oceanic Technol., 11, 337356, https://doi.org/10.1175/1520-0426(1994)011<0337:VTDTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., P. Dodge, F. D. Marks, and P. H. Hildebrand, 1994b: Mapping of the airborne Doppler radar data. J. Atmos. Oceanic Technol., 11, 572578, https://doi.org/10.1175/1520-0426(1994)011<0572:MOADRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.

    • Crossref
    • Export Citation
  • Lenschow, D. H., 1972: Measurement of air velocity and temperature using the NCAR Buffalo Aircraft Measurement System. NCAR Tech. Note NCAR-TN/EDD-74, 39 pp.

  • Lenschow, D. H., Ed., 1984: Probing the Atmospheric Boundary Layer. Amer. Meteor. Soc., 269 pp.

  • Lettau, H. H., and B. Davidson, Eds., 1957a: Instrumentation and Data Evaluation. Vol. 1, Exploring the Atmosphere’s First Mile, Pergamon Press, 578 pp.

  • Lettau, H. H., and B. Davidson, Eds., 1957b: Site Description and Data Tabulation. Vol. 2, Exploring the Atmosphere’s First Mile, Pergamon Press, 578 pp.

  • Lewis, J. M., 2003: Ooishi’s observation: Viewed in the context of jet stream discovery. Bull. Amer. Meteor. Soc., 84, 357369, https://doi.org/10.1175/BAMS-84-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1962: Note on wind variability with Doppler radar. J. Atmos. Sci., 19, 343346, https://doi.org/10.1175/1520-0469(1962)019<0343:NOWVWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1971: Probing of atmospheric motion by airborne pulse-Doppler radar techniques. J. Appl. Meteor., 10, 234246, https://doi.org/10.1175/1520-0450(1971)010<0234:POAMBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., 1987: A 94-Ghz Doppler radar for cloud observations. J. Atmos. Oceanic Technol., 4, 3648, https://doi.org/10.1175/1520-0426(1987)004<0036:AGDRFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ligda, M. G. H., 1951: Radar storm observations. Compendium of Meteorology. Amer. Meteor. Soc., 1265–1282.

    • Crossref
    • Export Citation
  • Lilie, L., E. Emery, J. Strapp, and J. Emery, 2005: A multiwire hot-wire device for measurement of icing severity, total water content, liquid water content, and droplet diameter. 43rd AIAA Aerospace Sciences Meeting, Reno, NV, AIAA, 2005-0859, https://doi.org/10.2514/6.2005-859.

    • Crossref
    • Export Citation
  • Lin, M., A. M. Fiore, L. W. Horowitz, A. O. Langford, S. J. Oltmans, D. Tarasick, and H. E. Rieder, 2015: Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nat. Commun., 6, 7105, https://doi.org/10.1038/ncomms8105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2008: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 50455060, https://doi.org/10.5194/acp-8-5045-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. A. Zhang, F. D. Marks, and J. Gamache, 2010: Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements. Mon. Wea. Rev., 138, 36563670, https://doi.org/10.1175/2010MWR3183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, T., R. Yuan, and Z. Wang, 2014: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmos. Meas. Tech., 7, 173182, https://doi.org/10.5194/amt-7-173-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lux, O., C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, 2018: Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus. Atmos. Meas. Tech., 11, 32973322, https://doi.org/10.5194/amt-11-3297-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., 1964: Standardization of gustiness values from aircraft. J. Appl. Meteor., 3, 439449, https://doi.org/10.1175/1520-0450(1964)003<0439:SOGVFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machol, J. L., and Coauthors, 2004: Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. Appl. Opt., 43, 31103121, https://doi.org/10.1364/AO.43.003110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., and J. M. O’Sullivan, 2013: Realizing the potential of vehicle-based observations. Bull. Amer. Meteor. Soc., 94, 10071018, https://doi.org/10.1175/BAMS-D-12-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marenco, F., and R. J. Hogan, 2011: Determining the contribution of volcanic ash and boundary layer aerosol in backscatter lidar returns: A three-component atmosphere approach. J. Geophys. Res., 116, D00U06, https://doi.org/10.1029/2010JD015415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marenco, F., and Coauthors, 2016: On the vertical distribution of smoke in the Amazonian atmosphere during the dry season. Atmos. Chem. Phys., 16, 21552174, https://doi.org/10.5194/acp-16-2155-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 2003: State of the science: Radar view of tropical cyclones. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 33–74, https://doi.org/10.1175/0065-9401(2003)030<0033:SOTSRV>2.0.CO;2.

    • Crossref
    • Export Citation
  • Marks, F. D., and R. A. Houze, 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582, https://doi.org/10.1175/1520-0477(1984)065<0569:ADROIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, https://doi.org/10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marksteiner, U., O. Reitebuch, S. Rahm, and I. Nikolaus, C. Lemmerz, and B. Witschas, 2011: Airborne direct-detection and coherent wind lidar measurements along the east coast of Greenland in 2009 supporting ESA’s Aeolus mission. Proc. SPIE, 8182, 81820J, https://doi.org/10.1117/12.897528.

    • Crossref
    • Export Citation
  • Mastenbrook, H. J., 1965: The vertical distribution of water vapor over Kwajalein Atoll, Marshall Islands. Naval Research Laboratory Tech. Rep. NRL 6367, 15 pp.

  • Mastenbrook, H. J., 1966: Water vapor observations at low, middle and high latitudes during 1964 and 1965. Naval Research Laboratory Tech. Rep. NRL 6447, 202 pp.

  • Mastenbrook, H. J., and J. E. Dinger, 1961: Distribution of water vapor in the stratosphere. J. Geophys. Res., 66, 14371444, https://doi.org/10.1029/JZ066i005p01437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maynard, R. H., 1945: Radar and weather. J. Meteor., 2, 214226, https://doi.org/10.1175/1520-0469(1945)002<0214:RAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, J., J. W. Wilson, and T. T. Fujita, 1982: The Joint Airport Weather Studies Project. Bull. Amer. Meteor. Soc., 63, 1522, https://doi.org/10.1175/1520-0477(1982)063<0015:TJAWSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., H. B. Bluestein, and R. J. Doviak, 1986: Airborne Doppler lidar techniques for observing severe thunderstorms. Appl. Opt., 25, 698, https://doi.org/10.1364/AO.25.000698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, G. C., and A. Hendry, 1975: Principles for the radar determination of the polarization properties of precipitation. Radio Sci., 10, 421434, https://doi.org/10.1029/RS010i004p00421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., and M. T. Osborn, 1986: Airborne lidar observation of El Chichon stratospheric aerosols, May 1983. NASA Reference Publ. 1172, 92 pp.

  • McCormick, M. P., L. W. Thomason, and C. R. Trepte, 1995: Atmospheric effects of the Mt. Pinatubo eruption. Nature, 373, 399404, https://doi.org/10.1038/373399a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, F. E., 1959: Stratospheric winds over the tropical Pacific Ocean. Program of the Conference on Stratospheric Meteorology—179th National Meeting of the American Meteorological Society, 31 August–3 September, 1959, at Minneapolis, Minnesota. Bull. Amer. Meteor. Soc., 40, 370, https://doi.org/10.1175/1520-0477-40.7.366.

    • Search Google Scholar
    • Export Citation
  • McKay, J. A., 1998: Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique. Appl. Opt., 37, 6487, https://doi.org/10.1364/AO.37.006487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash. Bull. Amer. Meteor. Soc., 88, 15891607, https://doi.org/10.1175/BAMS-88-10-1589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., and D. Whiteman, 1985: Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar. Bull. Amer. Meteor. Soc., 66, 12881292, https://doi.org/10.1175/1520-0477(1985)066<1288:OOLAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, M., B. J. McKeon, and H. Holmes, 2007: The near-neutral atmospheric surface layer: Turbulence and non-stationarity. Philos. Trans. Roy. Soc., 365A, 859876, https://doi.org/10.1098/rsta.2006.1946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millstein, D., R. Wyser, M. Bolinger, and G. Barbose, 2017: The climate and air-quality benefits of wind and solar power in the United States. Nat. Energy, 2, 17134, https://doi.org/10.1038/nenergy.2017.134.

    • Crossref
    • Export Citation
  • Miloshevitch, L. M., and A. J. Heymsfield, 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol., 14, 754766, https://doi.org/10.1175/1520-0426(1997)014<0753:ABBCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., and Coauthors, 2016: On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLOS Curr. Outbreaks, 1, https://doi.org/10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76.

    • Crossref
    • Export Citation
  • Moninger, W. R., S. G. Benjamin, B. D. Jamison, T. W. Schlatter, T. L. Smith, and E. J. Szoke, 2010: Evaluation of regional aircraft observations using TAMDAR. Wea. Forecasting, 25, 627645, https://doi.org/10.1175/2009WAF2222321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monna W., and F. Bosveld, 2013: In higher spheres: 40 years of observations at the Cabauw Site. KMNI Publ. 232, 56 pp., http://publicaties.minienm.nl/download-bijlage/23948/in-higher-spheres.pdf.

  • Morgan, G., M. Schormann, E. Botha, and G. Mather, 2000: A calorimetric jet engine technique for estimating the condensed water mixing ratio in cumulus clouds for cloud physical and weather modification research. J. Appl. Meteor., 39, 18371844, https://doi.org/10.1175/1520-0450(2000)039<1837:ACJETF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. L., L. Chapman, C. S. B. Grimmond, D. T. Young, and X. Cai, 2013: Sensors and the city: A review of urban meteorological networks. Int. J. Climatol., 33, 15851600, https://doi.org/10.1002/joc.3678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. L., L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. R. Leigh, 2015: Crowdsourcing for climate and atmospheric sciences: Current status and future potential. Int. J. Climatol., 35, 31853203, https://doi.org/10.1002/joc.4210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, D., and Coauthors, 2014: Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: Vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US. Atmos. Meas. Tech., 7, 34873496, https://doi.org/10.5194/amt-7-3487-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., and T. Matsuo, 1990: Development of the hydrometeor videosonde. J. Atmos. Oceanic Technol., 7, 613620, https://doi.org/10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murcray, D. G., T. G. Kyle, F. H. Murcray, and W. J. Williams, 1968: Nitric acid and nitric oxide in the lower stratosphere. Nature, 218, 7879, https://doi.org/10.1038/218078a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NAS, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 700 pp., https://doi.org/10.17226/24938.

    • Crossref
    • Export Citation
  • NASA, 2006: Earth observations and the role of UAVs: A capabilities assessment. Accessed 27 December 2017, 35 pp., https://www.nasa.gov/centers/dryden/pdf/175939main_Earth_Obs_UAV_Vol_1_v1.1_Final.pdf.

  • NCAR, 1966: Proceedings of the atmospheric research aircraft instrumentation workshop and symposium. NCAR Tech. Note NCAR-TN-29, 188 pp., https://doi.org/10.5065/D6125QK4.

    • Crossref
    • Export Citation
  • NCAR, 1967: The NCAR laser program. Facil. Atmos. Res., 5, 22–25.

  • NCHRP, 2014: Response to Extreme Weather Impacts on Transportation Systems: A Synthesis of Highway Practice. Transportation Research Board Synthesis Rep. 454, National Academies Press, 383 pp.

  • Nedeljkovic, D., A. Hauchecorne, and M.-L. Chanin, 1993: Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans. Geosci. Remote Sens., 31, 90101, https://doi.org/10.1109/36.210448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neel, C. B., 1973: Measurement of liquid water content with a heated wire. Proc. 19th Int. Aerospace Symp., Pittsburgh, PA, Instrument Society of America, 301–309.

  • Nehrir, A. R., K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, 2009: Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 26, 733745, https://doi.org/10.1175/2008JTECHA1201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., R. M. Hardesty, M. A. Shapiro, and R. E. Cupp, 1988: Doppler lidar observations of a downslope windstorm. Mon. Wea. Rev., 116, 22652275, https://doi.org/10.1175/1520-0493(1988)116<2265:DLOOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nevzorov, A. N., 1980: Aircraft cloud water content meter. Comm. Eighth Conf. Int. sur la Phys. des Nuages, Vol. 2, Clermont-Ferrand, France, International Commission on Clouds and Precipitation, 701–703.

  • Newsom, R. K., D. D. Turner, and J. E. Goldsmith, 2013: Long-term evaluation of temperature profiles measured by an operational Raman lidar. J. Atmos. Oceanic Technol., 30, 16161634, https://doi.org/10.1175/JTECH-D-12-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., J. Leighton, and R. Barker, 1990: A new fast response instrument for measuring total water content from aircraft. J. Atmos. Oceanic Technol., 7, 706718, https://doi.org/10.1175/1520-0426(1990)007<0706:ANFRIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRC, 1958: Research and education in meteorology. NRC Publ. 479, 23 pp.

  • NRC, 1976: The Use of Balloons for Physics and Astronomy. National Academies Press, 60 pp., https://doi.org/10.17226/19920.

    • Crossref
    • Export Citation
  • NRC, 1983: Low-Altitude Wind Shear and Its Hazard to Aviation. National Academies Press, 112 pp.

  • NRC, 1986: Earth System Science: Overview, a Program for Global Change. National Academies Press, 49 pp., https://doi.org/10.17226/19210.

    • Crossref
    • Export Citation
  • NRC, 1988: Toward an Understanding of Global Change: Initial Priorities for U.S. Contributions to the International Geosphere–Biosphere Program. National Academies Press, 214 pp., https://doi.org/10.17226/1393.

    • Crossref
    • Export Citation
  • NRC, 1990: Research Strategies for the U.S. Global Change Research Program. National Academies Press, 291 pp., https://doi.org/10.17226/1743.

    • Crossref
    • Export Citation
  • NRC, 1994: Weather for those who fly. National Weather Service Modernization Committee Rep., National Academies Press, 100 pp.

  • NRC, 1995: Aviation Weather Services: A Call for Federal Leadership and Action. National Aviation Weather Services Committee, National Academies Press, 120 pp., https://doi.org/10.17226/5037.

    • Crossref
    • Export Citation
  • NRC, 1996: The ozone depletion phenomenon. National Academies Press, 8 pp., https://doi.org/10.17226/9042.

    • Crossref
    • Export Citation
  • NRC, 1998: The Atmospheric Sciences: Entering the Twenty-First Century. National Academies Press, 385 pp., https://doi.org/10.17226/6021.

    • Crossref
    • Export Citation
  • NRC, 2003: Fair Weather: Effective Partnerships in Weather and Climate Services. National Academies Press, 220 pp., https://doi.org/10.17226/10610.

    • Crossref
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 251 pp., https://doi.org/10.17226/12540.

    • Crossref
    • Export Citation
  • NRC, 2012: Urban Meteorology: Forecasting, Monitoring, and Meeting Users’ Needs. National Academies Press, 191 pp., https://doi.org/10.17226/13328.

    • Crossref
    • Export Citation
  • NRC, 2017: A Century of Wildland Fire Research: Contributions to Long-Term Approaches for Wildland Fire Management: Proceedings of a Workshop. National Academies Press, 108 pp., https://doi.org/10.17226/24792.

    • Crossref
    • Export Citation
  • Ooishi, W., 1926: Raporto de la Aerologia Observatorio de Tateno (in Esperanto). Aerological Observatory Rep. 1, Japan Central Meteorological Observatory, 213 pp.

  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, https://doi.org/10.1175/BAMS-89-2-180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, G. V., 1957: Wind tunnel calibrations of three instruments designed for measurements of the liquid water content of clouds. University of Chicago Cloud Physics Laboratory Tech. Note 10, 15 pp.

  • Page, W. G., N. S. Wagenbrenner, B. W. Butler, J. M. Forthofer, and C. Gibson, 2018: An evaluation of NDFD weather forecasts for wildland fire behavior prediction. Wea. Forecasting, 33, 301315, https://doi.org/10.1175/WAF-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappalardo, G., and Coauthors, 2014: EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech., 7, 23892409, https://doi.org/10.5194/amt-7-2389-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnic, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. J., and Coauthors, 2011: The canopy Horizontal Array Turbulence Study. Bull. Amer. Meteor. Soc., 92, 593611, https://doi.org/10.1175/2010BAMS2614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, M., T. Mattner, G. Mills, J. Kepert, and L. McCaw, 2016: Coupled fire–atmosphere simulations of the Rocky River fire using WRF-SFIRE. J. Appl. Meteor. Climatol., 55, 11511168, https://doi.org/10.1175/JAMC-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., F. Hossain, L. R. Leung, N. McDowell, M. Rodell, F. J. Tapiador, F. J. Turk, and A. Wood, 2019: 100 years of progress in hydrology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, R. A., 2016: On the impact and benefits of AMDAR observations in operational forecasting. Part I: A review of the impact of automated aircraft wind and temperature reports. Bull. Amer. Meteor. Soc., 97, 585602, https://doi.org/10.1175/BAMS-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, R. A., L. Cronce, R. Mamrosh, R. Baker, and P. Pauley, 2016: On the impact and future benefits of AMDAR observations in operational forecasting. Part II: Water vapor observations. Bull. Amer. Meteor. Soc., 97, 21172133, https://doi.org/10.1175/BAMS-D-14-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1968: The Rossby wave. Quart. J. Roy. Meteor. Soc., 94, 225248, https://doi.org/10.1002/qj.49709440102.

  • Posselt, D. J., G. L. Stephens, and M. Miller, 2008: Cloudsat: Adding a new dimension to a classical view of extratropical cyclones. Bull. Amer. Meteor. Soc., 89, 599610, https://doi.org/10.1175/BAMS-89-5-599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, M. J., and W. D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc., 67, 274281, https://doi.org/10.1175/1520-0477(1986)067<0274:DLMOWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, M. J., and R. E. Cupp, 1990: Optimizing a pulsed Doppler lidar. Appl. Opt., 29, 41454158, https://doi.org/10.1364/AO.29.004145.

  • Post, M. J., R. A. Richter, R. M. Hardesty, T. R. Lawrence, and F. F. Hall, 1982: National Oceanic and Atmospheric Administration’s (NOAA) pulsed, coherent, infrared Doppler lidar—Characteristics and data. Proc. SPIE, 0300, https://doi.org/10.1117/12.932577.

    • Crossref
    • Export Citation
  • Priestley, C. H. B., 1959: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, 130 pp.

  • Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. Springer Science, 954 pp.

    • Crossref
    • Export Citation
  • Pulkkinen, S., V. Chandrasekar, and A.-M. Harri, 2018: Nowcasting of precipitation in the high-resolution Dallas–Fort Worth (DFW) urban radar remote sensing network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 27732787, https://doi.org/10.1109/JSTARS.2018.2840491.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc., 73, 951974, https://doi.org/10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., W. J. Campbell, L. A. Rasmussen, and D. G. Rogers, 1961: Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66, 813818, https://doi.org/10.1029/JZ066i003p00813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., L. Lenain, and W. K. Melville, 2016: The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes. J. Atmos. Oceanic Technol., 33, 20292052, https://doi.org/10.1175/JTECH-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Repasky, K. S., J. A. Shaw, J. L. Carlsten, M. D. Obland, L. S. Meng, and D. S. Hoffman, 2004: Diode laser transmitter for water vapor DIAL measurements. Proc. IEEE Int. Geoscience and Remote Sensing Symp. 2004, Anchorage, AK, IEEE, https://doi.org/10.1109/igarss.2004.1370725.

    • Crossref
    • Export Citation
  • Revelle, R., and H. E. Suess, 1957: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9, 1827, https://doi.org/10.3402/tellusa.v9i1.9075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1920: Some measurements of atmospheric turbulence. Philos. Trans. Roy. Soc., 221A, 128, https://doi.org/10.1098/rsta.1921.0001.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press, 236 pp.

  • Riehl, H., 1948: Jet stream in upper troposphere and cyclone formation. Trans. Amer. Geophys. Union, 29, 175186, https://doi.org/10.1029/TR029i002p00175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, https://doi.org/10.1029/1999GL010856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, T. R., 1847: On a new anemometer. Proc. Roy. Irish Acad., 4, 566572.

  • Rogers, R. R., and P. L. Smith, 1996: A short history of radar meteorology. Historical Essays on Meteorology 1919–1995, J. R. Fleming, Ed., Amer. Meteor. Soc., 57–98.

    • Crossref
    • Export Citation
  • Ross, J., 2014: The Forecast for D-Day and the Weatherman Behind Ike’s Greatest Gamble. Lyons Press, 235 pp.

  • Rossby, C. G., 1947: On the distribution of angular velocity in gaseous envelopes under the influence of large-scale horizontal mixing processes. Bull. Amer. Meteor. Soc., 28, 5368, https://doi.org/10.1175/1520-0477-28.2.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothermel, J., C. Kessinger, and D. L. Davis, 1985: Dual-Doppler lidar measurement of winds in the JAWS experiment. J. Atmos. Oceanic Technol., 2, 138147, https://doi.org/10.1175/1520-0426(1985)002<0138:DDLMOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, G. J., 1988: Observations of solar UV and EUV variability. Adv. Space Res., 8, 5366, https://doi.org/10.1016/0273-1177(88)90172-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, G. J., T. Woods, M. Snow, and G. DeToma, 2001: The solar cycle variation in ultraviolet irradiance. Adv. Space Res., 27, 19271932, https://doi.org/10.1016/S0273-1177(01)00272-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roux, F., and F. D. Marks, 1996: Extended Velocity Track Display (EVTD): An improved processing method for Doppler radar observations of tropical cyclones. J. Atmos. Oceanic Technol., 13, 875899, https://doi.org/10.1175/1520-0426(1996)013<0875:EVTDAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryde, J. W., 1946: The attenuation and radar echoes produced at centimeter wavelengths by various meteorological phenomena. Meteorological Factors in Radio Wave Propagation, Physical Society, 169–188.

  • Sand, W. R., and C. J. Biter, 1997: Weather-related aircraft accidents, new sensors and pilot’s weather understanding. 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, 97-0411, https://doi.org/10.2514/6.1997-411.

    • Crossref
    • Export Citation
  • Sasano, Y., and E. V. Browell, 1989: Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Appl. Opt., 28, 16701679, https://doi.org/10.1364/AO.28.001670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2002: Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett., 29, 1465, https://doi.org/10.1029/2001GL014051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., and Coauthors, 2005: The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20, 775788, https://doi.org/10.1175/WAF881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, C., M. Krämer, A. Afchine, N. Spelten, and N. Sitnikov, 2008: The ice water content of Arctic, midlatitude and tropical cirrus. J. Geophys. Res., 113, D24208, https://doi.org/10.1029/2008JD010342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, B. M., and R. P. Cebula, 1992: Solar variation 1979–1987 estimated from an empirical model for changes with time in the sensitivity of the solar backscatter ultraviolet instrument. J. Geophys. Res., 97, 10 11910 134, https://doi.org/10.1029/92JD00556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., and W. P. Menzel, 2015: A look at the evolution of meteorological satellites: Advancing capabilities and meeting user requirements. Wea. Climate Soc., 7, 309320, https://doi.org/10.1175/WCAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schotland, R. M., 1964: The determination of the vertical profile of atmospheric gases by means of a ground based optical radar. Proc. Third Symp. on Remote Sensing of the Environment, Ann Arbor, MI, University of Michigan, 215–224.

  • Schotland, R. M., K. Sassen, and R. Stone, 1971: Observations by lidar of linear depolarization ratios for hydrometeors. J. Appl. Meteor., 10, 10111017, https://doi.org/10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwiesow, R. L., and R. E. Cupp, 1976: Remote Doppler velocity measurements of atmospheric dust devil vortices. Appl. Opt., 15, 12, https://doi.org/10.1364/AO.15.000001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seilkopf, H., 1939: Maritime Meteorologie. Vol. 2, Handbuch der Fliegerwetterkunde, R. Habermehl, Ed., Radetzke, 150 pp.

  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senff, C. J., R. J. Alvarez, R. M. Hardesty, R. M. Banta, and A. O. Langford, 2010: Airborne lidar measurements of ozone flux downwind of Houston and Dallas. J. Geophys. Res., 115, D20307, https://doi.org/10.1029/2009JD013689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, S., and T. Iguchi, 2015: Intercomparison of attenuation correction methods for the GPM dual-frequency precipitation radar. J. Atmos. Oceanic Technol., 32, 915926, https://doi.org/10.1175/JTECH-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • She, C. Y., and J. R. Yu, 1994: Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region. Geophys. Res. Lett., 21, 17711774, https://doi.org/10.1029/94GL01417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • She, C. Y., R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, 1992: High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles. Opt. Lett., 17, 541543, https://doi.org/10.1364/OL.17.000541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherlock, V., A. Garnier, A. Hauchecorne, and P. Keckhut, 1999: Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor. Appl. Opt., 38, 5838, https://doi.org/10.1364/AO.38.005838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu, A., and Coauthors, 2004: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17, https://doi.org/10.1029/2002JD003253.

    • Search Google Scholar
    • Export Citation
  • Sicard, M., and Coauthors, 2012: Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations. Atmos. Chem. Phys., 12, 31153130, https://doi.org/10.5194/acp-12-3115-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., M. Wendisch, T. Conrath, U. Teichmann, and J. Heintzenberg, 2003: A new tethered balloon-borne payload for fine-scale observations in the cloudy boundary layer. Bound.-Layer Meteor., 106, 461482, https://doi.org/10.1023/A:1021242305810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2005: WSR-88D radar, tornado warnings and tornado casualties. Wea. Forecasting, 20, 301310, https://doi.org/10.1175/WAF857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M., 2010: Warnings: The True Story of How Science Tamed the Weather. Greenleaf Book Group Press, 304 pp.

  • Smith, R. L., and D. W. Holmes, 1961: Use of Doppler radar in meteorological observations. Mon. Wea. Rev., 89, 17, https://doi.org/10.1175/1520-0493(1961)089<0001:UODRIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. D. Turner, B. M. Lesht, and L. M. Miloshevich, 2004: An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program. J. Geophys. Res., 109, D04105, https://doi.org/10.1029/2003JD003828.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Späth, F., A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, 2016: 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar. Atmos. Technol., 9, 17011720, https://doi.org/10.5194/amt-9-1701-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinhirne, J., 1993: Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 4855, https://doi.org/10.1109/36.210443.

  • Spuler, S. M., K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 10731087, https://doi.org/10.5194/amt-8-1073-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spyers-Duran, P. A., and R. R. Braham, 1967: An airborne continuous cloud particle replicator. J. Appl. Meteor., 6, 11081113, https://doi.org/10.1175/1520-0450(1967)006<1108:AACCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., K. F. Kunzi, R. L. Pettyjohn, R. K. L. Poon, R. W. Wilcox, and J. W. Waters, 1976: Remote sensing of atmospheric water vapor and liquid water with the Nimbus 5 microwave spectrometer. J. Appl. Meteor., 15, 12041214, https://doi.org/10.1175/1520-0450(1976)015<1204:RSOAWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, https://doi.org/10.1175/2006JAS2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stickler, A., and Coauthors, 2010: The Comprehensive Historical Upper-Air Network. Bull. Amer. Meteor. Soc., 91, 741752, https://doi.org/10.1175/2009BAMS2852.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strand, G., 2015: The Brothers Vonnegut: Science and Fiction in the House of Magic. Farrar, Straus and Giroux, 305 pp.

  • Strauch, R. G., D. A. Merritt, K. P. Moran, K. B. Ernshaw, and D. van de Kamp, 1984: The Colorado wind-profiling network. J. Atmos. Oceanic Technol., 1, 3749, https://doi.org/10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, W. C., 1951: The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteor., 8, 135145, https://doi.org/10.1175/1520-0469(1951)008<0135:TMOVTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Synge, E. H., 1930: A method of investigating the higher atmosphere. Philos. Mag., 9, 10141020, https://doi.org/10.1080/14786443008565070.

  • Tan, J., and Coauthors, 2015: Urban integrated meteorological observations: Practice and experience in Shanghai, China. Bull. Amer. Meteor. Soc., 96, 85102, https://doi.org/10.1175/BAMS-D-13-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telford, J. W., and J. Warner, 1962: On the measurement from an aircraft of buoyancy and vertical air velocity in cloud. J. Atmos. Sci., 19, 415423, https://doi.org/10.1175/1520-0469(1962)019<0415:OTMFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., P. H. Hildebrand, and W.-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth’s surface. J. Atmos. Oceanic Technol., 12, 800820, https://doi.org/10.1175/1520-0426(1995)012<0800:APTCAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, B. J., 1974: Holographic particle sizing techniques. J. Phys., 7E, 781788, https://doi.org/10.1088/0022-3735/7/10/001.

  • Thompson, G., M. K. Politovich, and R. M. Rasmussen, 2017: A numerical weather model’s ability to predict characteristics of aircraft icing environments. Wea. Forecasting, 32, 207221, https://doi.org/10.1175/WAF-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, J. A., K. S. Virts, R. H. Holzworth, and T. P. Mitchell, 2017: Lightning enhancement over major oceanic shipping lanes. Geophys. Res. Lett., 44, 91029111, https://doi.org/10.1002/2017GL074982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollerud, E. I., and Coauthors, 2008: Mesoscale moisture transport by the low-level jet during the IHOP field experiment. Mon. Wea. Rev., 136, 37813795, https://doi.org/10.1175/2008MWR2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trolinger, J. D., 1975: Particle field holography. Opt. Eng., 14, 383392, https://doi.org/10.1117/12.7971803.

  • Tucker, S. C., S. Baidar, C. Weimer, and R. M. Hardesty, 2018: The Optical Autocovariance Wind Lidar. Part I: OAWL instrument development and demonstration. J. Atmos. Oceanic Technol., 35, 20792097, https://doi.org/10.1175/JTECH-D-18-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tull, W. R., 1996: The early history of airborne Doppler systems. Navigation, 43, 924, https://doi.org/10.1002/j.2161-4296.1996.tb01914.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., J. E. M. Goldsmith, and R. A. Ferrare, 2016: Development and applications of the ARM Raman lidar. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0026.1.

    • Crossref
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, https://doi.org/10.1016/0004-6981(74)90004-3.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • University of Chicago, Department of Meteorology, 1947: On the general circulation of the atmosphere in middle latitudes. Bull. Amer. Meteor. Soc., 28, 255280, https://doi.org/10.1175/1520-0477-28.6.255.

    • Search Google Scholar
    • Export Citation
  • Vali, G., R. D. Kelly, J. French, S. Haimov, D. Leon, R. E. McIntosh, and A. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55, 35403564, https://doi.org/10.1175/1520-0469(1998)055<3540:FSAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vignola, F., J. Michalsky, and T. Stoffel, 2017: Solar and Infrared Radiation Measurements. CRC Press, 418 pp.

    • Crossref
    • Export Citation
  • Vivekanandan, J., and Coauthors, 2015: A wing pod-based millimeter wavelength airborne cloud radar. Geosci. Instrum. Methods Data Syst., 4, 161176, https://doi.org/10.5194/gi-4-161-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., S. J. Oltmans, D. J. Hofmann, T. Deshler, and J. M. Rosen, 1995: The evolution of the dehydration in the Antarctic stratospheric vortex. J. Geophys. Res., 100, 13 91913 926, https://doi.org/10.1029/95JD01000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2002: Balloon-borne observations of water vapor and ozone in the tropical upper troposphere and lower stratosphere. J. Geophys. Res., 107, 4210, https://doi.org/10.1029/2001JD000707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2018: NCAR/EOL Community Workshop on Unmanned Aircraft Systems for Atmospheric Research. UCAR/NCAR Earth Observing Laboratory Final Rep., 80 pp., https://www.eol.ucar.edu/system/files/UAS.Workshop.20180206.pdf.

  • Wagner, G., A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, 2013: High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar. Appl. Opt., 52, 2454, https://doi.org/10.1364/AO.52.002454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and N. T. Atkins, 1996: Observations on the origin of rotation: The Newcastle tornado during VORTEX 94. Mon. Wea. Rev., 124, 384407, https://doi.org/10.1175/1520-0493(1996)124<0384:OOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev., 128, 24472470, https://doi.org/10.1175/1520-0493(2000)128<2447:AROOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. L. Bosart, 2001: Airborne radar observations of a warm front during FASTEX. Mon. Wea. Rev., 129, 254274, https://doi.org/10.1175/1520-0493(2001)129<0254:AROOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and C.-H. Liu, 1995: Observations of the early evolution of an explosive oceanic cyclone during ERICA IOP 5. Part II: Airborne Doppler analysis of the mesoscale circulation and frontal structure. Mon. Wea. Rev., 123, 13111327, https://doi.org/10.1175/1520-0493(1995)123<1311:OOTEEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C.-H. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372392, https://doi.org/10.1175/1520-0493(1998)126<0372:TGCKSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 27932812, https://doi.org/10.1175/MWR3215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., L. Klein, D. J. Musil, and P. L. Smith, 1987: Characteristics of radar-identified big drop zones in Swiss hailstorms. J. Climate Appl. Meteor., 26, 861877, https://doi.org/10.1175/1520-0450(1987)026<0861:CORIBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., 1973: General circulation of the tropical lower stratosphere. Rev. Geophys. Space Phys., 11, 191222, https://doi.org/10.1029/RG011i002p00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallington, T. J., J. H. Seinfeld, and J. R. Barker, 2019: 100 Years of progress in gas-phase atmospheric chemistry research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0008.1.

    • Crossref
    • Export Citation
  • Walsh, J. E., D. A. Bromwich, J. E. Overland, M. C. Serreze, and K. R. Wood, 2019: 100 years of progress in polar meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 10.1175/AMSMONOGRAPHS-D-18-0003.1.

  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the international H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253278, https://doi.org/10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., K. J. Weber, D. D. Turner, and S. M. Spuler, 2016: Validation of a water vapor micropulse differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 33, 23532372, https://doi.org/10.1175/JTECH-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, H., 1947: Formen und Bildung atmosphärischer Eiskristalle. Beitr. Phys. Atmos., 15, 1252.

  • Weickmann, H., 1949: Die Eisphase in der Atmosphäre. Berichte des Deutschen Wetterdienstes in der US-Zone, No. 6, 54 pp.

  • Weinstock, E. M., and Coauthors, 2006: Measurements of the total water content of cirrus clouds. Part I: Instrument details and calibration. J. Atmos. Oceanic Technol., 23, 13971409, https://doi.org/10.1175/JTECH1928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and J. L. Brenguier, 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley and Sons, 641 pp.

    • Crossref
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2006: Raman lidar measurements during the International H2O Project. Part II: Case studies. J. Atmos. Oceanic Technol., 23, 170183, https://doi.org/10.1175/JTECH1839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiton, R. C., P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck, 1998a: History of operational use of weather radar by U.S. weather services. Part I: The pre-NEXRAD era. Wea. Forecasting, 13, 219243, https://doi.org/10.1175/1520-0434(1998)013<0219:HOOUOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiton, R. C., P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck, 1998b: History of operational use of weather radar by U.S. weather services. Part II: Development of operational Doppler weather radars. Wea. Forecasting, 13, 244252, https://doi.org/10.1175/1520-0434(1998)013<0244:HOOUOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., E. E. Gossard, W. D. Neff, and W. L. Eberhard, 1996: Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. Bound.-Layer Meteor., 78, 321349, https://doi.org/10.1007/BF00120940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R B., and J. B. Klemp, 1981: A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38, 15811600, https://doi.org/10.1175/1520-0469(1981)038<1581:ATDNSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willson, R. C., 1994: Irradiance observations of SMM, Spacelab-1, UARS, and ATLAS experiments. The Sun as a Variable Star, J. M. Pap et al., Eds., Cambridge University Press, 54–62.

    • Crossref
    • Export Citation
  • Willson, R. C., 2001: The ACRIMSAT/ACRIM3 Experiment: Extending the precision, long-term total solar irradiance climate database. Earth Obs., 13, 1417.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898915, https://doi.org/10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiltberger, M., 2016: Aviation and space weather. J. Air Traffic Control, 58, 1720.

  • Winker, J., 1986: Scientific ballooning, past and present. Ninth Aerodynamic Decelerator and Balloon Technology Conf., Albuquerque, NM, AIAA, https://doi.org/10.2514/6.1986-2424.

    • Crossref
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO Mission. Bull. Amer. Meteor. Soc., 91, 12111230, https://doi.org/10.1175/2010BAMS3009.1.

  • Winker, D. M., J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys., 13, 33453361, https://doi.org/10.5194/acp-13-3345-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2014: Guide to meteorological instruments and methods of observation. Accessed 26 November 2018, 1128 pp., https://library.wmo.int/doc_num.php?explnum_id=4147.

  • WMO, 2017: Global Observing System. Accessed 26 November 2018, https://public.wmo.int/en/programmes/global-observing-system.

  • Wood, V., and R. A. Brown, 1983: Single Doppler velocity signatures: An atlas of patterns in clear air, widespread precipitation and convective storms. NOAA Tech. Memo. ERL-NSSL-95, 71 pp.

  • Wulfmeyer, V., 1999: investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar–RASS. J. Atmos. Sci., 56, 10551076, https://doi.org/10.1175/1520-0469(1999)056<1055:IOTPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and J. Bösenberg, 1996: Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar. Opt. Lett., 21, 1150, https://doi.org/10.1364/OL.21.001150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2018: A new research approach for observing and characterizing land-atmosphere feedback. Bull. Amer. Meteor. Soc., 99, 16391667, https://doi.org/10.1175/BAMS-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., W. A. Brewer, and G. Feingold, 2013: Evaluation of modeled stratocumulus-capped boundary layer turbulence with shipborne data. J. Atmos. Sci., 70, 38953919, https://doi.org/10.1175/JAS-D-13-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 11051119, https://doi.org/10.1175/2008JTECHA1221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C. K., D. P. Jorgensen, and F. Roux, 2007: Multiple precipitation mechanisms over mountains observed by airborne Doppler radar during MAP IOP5. Mon. Wea. Rev., 135, 955984, https://doi.org/10.1175/MWR3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards. A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziolkowska, J. R., and Coauthors, 2017: Benefits and beneficiaries of the Oklahoma Mesonet: A multisectoral ripple effect analysis. Wea. Climate Soc., 9, 499519, https://doi.org/10.1175/WCAS-D-16-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5937 2392 334
PDF Downloads 2972 501 40