100 Years of Progress in Applied Meteorology. Part II: Applications that Address Growing Populations

Sue Ellen Haupt National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sue Ellen Haupt in
Current site
Google Scholar
PubMed
Close
,
Steven Hanna Hanna Consultants, Kennebunkport, Maine

Search for other papers by Steven Hanna in
Current site
Google Scholar
PubMed
Close
,
Mark Askelson University of North Dakota, Grand Forks, North Dakota

Search for other papers by Mark Askelson in
Current site
Google Scholar
PubMed
Close
,
Marshall Shepherd University of Georgia, Athens, Georgia

Search for other papers by Marshall Shepherd in
Current site
Google Scholar
PubMed
Close
,
Mariana A. Fragomeni University of Georgia, Athens, Georgia

Search for other papers by Mariana A. Fragomeni in
Current site
Google Scholar
PubMed
Close
,
Neil Debbage The University of Texas at San Antonio, San Antonio, Texas
University of Georgia, Athens, Georgia

Search for other papers by Neil Debbage in
Current site
Google Scholar
PubMed
Close
, and
Bradford Johnson University of Georgia, Athens, Georgia

Search for other papers by Bradford Johnson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The human population on Earth has increased by a factor of 4.6 in the last 100 years and has become more centered in urban environments. This expansion and migration pattern has resulted in stresses on the environment. Meteorological applications have helped to understand and mitigate those stresses. This chapter describes several applications that enable the population to interact with the environment in more sustainable ways. The first topic treated is urbanization itself and the types of stresses exerted by population growth and its attendant growth in urban landscapes—buildings and pavement—and how they modify airflow and create a local climate. We describe environmental impacts of these changes and implications for the future. The growing population uses increasing amounts of energy. Traditional sources of energy have taxed the environment, but the increase in renewable energy has used the atmosphere and hydrosphere as its fuel. Utilizing these variable renewable resources requires meteorological information to operate electric systems efficiently and economically while providing reliable power and minimizing environmental impacts. The growing human population also pollutes the environment. Thus, understanding and modeling the transport and dispersion of atmospheric contaminants are important steps toward regulating the pollution and mitigating impacts. This chapter describes how weather information can help to make surface transportation more safe and efficient. It is explained how these applications naturally require transdisciplinary collaboration to address these challenges caused by the expanding population.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Sue Ellen Haupt, haupt@ucar.edu

Abstract

The human population on Earth has increased by a factor of 4.6 in the last 100 years and has become more centered in urban environments. This expansion and migration pattern has resulted in stresses on the environment. Meteorological applications have helped to understand and mitigate those stresses. This chapter describes several applications that enable the population to interact with the environment in more sustainable ways. The first topic treated is urbanization itself and the types of stresses exerted by population growth and its attendant growth in urban landscapes—buildings and pavement—and how they modify airflow and create a local climate. We describe environmental impacts of these changes and implications for the future. The growing population uses increasing amounts of energy. Traditional sources of energy have taxed the environment, but the increase in renewable energy has used the atmosphere and hydrosphere as its fuel. Utilizing these variable renewable resources requires meteorological information to operate electric systems efficiently and economically while providing reliable power and minimizing environmental impacts. The growing human population also pollutes the environment. Thus, understanding and modeling the transport and dispersion of atmospheric contaminants are important steps toward regulating the pollution and mitigating impacts. This chapter describes how weather information can help to make surface transportation more safe and efficient. It is explained how these applications naturally require transdisciplinary collaboration to address these challenges caused by the expanding population.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Sue Ellen Haupt, haupt@ucar.edu
Save
  • Ahlstrom, M., and Coauthors, 2013: Knowledge is power: Efficiently integrating wind energy and wind forecasts. IEEE Power Energy Mag., 11, 4552, https://doi.org/10.1109/MPE.2013.2277999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akimoto, H., 2003: Global air quality and pollution. Science, 302, 17161719, https://doi.org/10.1126/science.1092666.

  • Alessandrini, S., L. Delle Monache, S. Sperati, and G. Cervone, 2015: An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy, 157, 95110, https://doi.org/10.1016/j.apenergy.2015.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., and J. E. Flaherty, 2007: Urban dispersion program overview and MID05 field study summary. Pacific Northwest National Laboratory Doc. PNNL-16696, 63 pp., https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-16696.pdf..

    • Crossref
    • Export Citation
  • Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of Urban 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521536, https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., M. Leach, L. Stockham, J. Shinn, R. Hosker, J. Bowers, and J. Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., J7.1, https://ams.confex.com/ams/84Annual/techprogram/paper_74349.htm .

  • Almeshaiei, E., and H. Soltan, 2011: A methodology for electric power load forecasting. Alexandria Eng. J., 50, 137144, https://doi.org/10.1016/j.aej.2011.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrle, S. J., D. Kroeger, D. Giesman, and N. Burdine, 2002: Highway maintenance concept vehicle: Phase IV final report. CTRE Management Project 99-42, 83 pp., https://intrans.iastate.edu/app/uploads/2018/03/concept4.pdf.

  • Appel, K. W., and Coauthors, 2017: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev., 10, 17031732, https://doi.org/10.5194/gmd-10-1703-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argüeso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 21832199, https://doi.org/10.1007/s00382-013-1789-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 1999: Air Pollution Meteorology and Dispersion. Oxford University Press, 310 pp.

  • Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the Southeast United States. Climatic Change, 113, 481498, https://doi.org/10.1007/s10584-011-0324-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Askelson, M. A., C. Theisen, J. Tilley, and E. Townsend, 2013: The Pavement Precipitation Accumulation Estimation System—Further development. Aurora Project Doc. 2009-05, 151 pp., https://intrans.iastate.edu/app/uploads/2019/05/AP2009-05Report.pdf.

  • Astitha, M., H. Y. Luo, S. T. Rao, C. Hogrefe, R. Mathur, and N. Kumar, 2017: Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States. Atmos. Environ., 164, 102116, https://doi.org/10.1016/j.atmosenv.2017.05.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AWEA, 2018: U.S. Wind Industry Fourth Quarter 2017 Market Report. Accessed 29 January 2018, https://www.awea.org/2017-market-reports.

  • Baik, J.-J., Y.-H. Kim, J.-J. Kim, and J.-Y. Han, 2007: Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol., 89, 7381, https://doi.org/10.1007/s00704-006-0254-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barad, M. L., Ed., 1958a: Project Prairie Grass: A field program in diffusion. Vol. I, Air Force Cambridge Research Center Geophysical Research Paper 59, AFCRF-TR-58-235, 300 pp.

    • Crossref
    • Export Citation
  • Barad, M. L., Ed., 1958b: Project Prairie Grass: A field program in diffusion. Vol. II, Air Force Cambridge Research Center Geophysical Research Paper 59, AFCRF-TR-58-235. 222 pp.

    • Crossref
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Bessa, R. J., and Coauthors, 2017: Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry. Energies, 10, 1402, https://doi.org/10.3390/en10091402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhaduri, B., M. Minner, S. Tatalovich, and J. Harbor, 2001: Long-term hydrologic impact of urbanization: A tale of two models. J. Water Resour. Plann. Manage., 127, 1319, https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(13).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieringer, P. E., G. S. Young, L. M. Rodriguez, A. J. Annunzio, F. Vandenberghe, and S. E. Haupt, 2017: Paradigms and commonalities in atmospheric source term estimation methods. Atmos. Environ., 156, 102112, https://doi.org/10.1016/j.atmosenv.2017.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, https://doi.org/10.1016/S1352-2310(99)00374-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boselly, S. E., III, 2001: Benefit/Cost study of RWIS and anti-icing technologies. National Cooperative Highway Research Program Rep. 20-7(117), 31 pp., http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP20-07(117)_FR.pdf.

  • Boselly, S. E., III, G. S. Doore, J. E. Thornes, C. Ulberg, and D. D. Ernst, 1993: Road Weather Information Systems: Volume 1: Research report. Strategic Highway Research Program SHRP-H-350, 219 pp., http://onlinepubs.trb.org/onlinepubs/shrp/shrp-h-350.pdf.

  • Bounoua, and Coauthors, 2015: Impact of urbanization on US surface climate. Environ. Res. Lett., 10, 101001, https://doi.org/10.1088/1748-9326/10/8/084010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouzerdoum, M., A. Mellit, and A. Pavan, 2013: A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol. Energy, 98, 226235, https://doi.org/10.1016/j.solener.2013.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1981: Urban precipitation processes. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 75–116.

    • Crossref
    • Export Citation
  • Calder, K. L., 1961: Atmospheric diffusion of particulate matter considered as a boundary value problem. J. Meteor., 18, 413420, https://doi.org/10.1175/1520-0469(1961)018<0413:ADOPMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carruthers, D. J., R. J. Holroyd, J. C. R. Hunt, W.-S. Weng, A. G. Robins, D. D. Apsley, D. J. Thompson, and F. B. Smith, 1994: UK-ADMS: A new approach to modelling dispersion in the earth’s atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn., 52, 139153, https://doi.org/10.1016/0167-6105(94)90044-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Center for Transportation Research and Education, 2007: Highway Maintenance Concept Vehicle, Phase IV. Iowa State University, accessed 12 February 2918, https://intrans.iastate.edu/research/completed/highway-maintenance-concept-vehicle-phase-iv/.

  • Centers for Disease Control and Prevention, 2010: Commercial fishing deaths—United States, 2000–2009. Morbidity Mortal. Wkly. Rep., 59, 842845.

    • Search Google Scholar
    • Export Citation
  • Chang, J. C., and S. R. Hanna, 2004: Air quality model performance. Meteor. Atmos. Phys., 87, 167196, https://doi.org/10.1007/s00703-003-0070-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Ed., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

    • Crossref
    • Export Citation
  • Changnon, S. A., 2005: Applied climatology: The golden age has begun. Bull. Amer. Meteor. Soc., 86, 915919, https://doi.org/10.1175/BAMS-86-7-915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2006: Railroads and Weather: From Fogs to Floods and Heat to Hurricanes, the Impacts of Weather and Climate on American Railroading. Amer. Meteor. Soc., 124 pp.

  • Cheng, W. Y. Y., Y. Liu, A. Bourgeois, Y. Wu, and S. E. Haupt, 2017: Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renew. Energy, 107, 340351, https://doi.org/10.1016/j.renene.2017.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, C. W., N. Urquhart, M. Lave, A. Dominquez, J. Kleissl, J. Shields, and B. Washom, 2011: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol. Energy, 85, 28812893, https://doi.org/10.1016/j.solener.2011.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, M. A., and A. Sadek, 2003: Fundamentals of Intelligent Transportation Systems Planning. Artech House, 210 pp.

  • Chu, Y., H. T. C. Pedro, M. Li, and C. F. M. Coimbra, 2015: Real-time forecasting of solar irradiance ramps with smart image processing. Sol. Energy, 114, 91104, https://doi.org/10.1016/j.solener.2015.01.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimorelli, A., S. Perry, A. Venkatram, J. Weil, R. Paine, R. Wilson, R. Lee, W. Peters, and R. Brode, 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteor., 44, 682693, https://doi.org/10.1175/JAM2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifton, A., B.-M. Hodge, C. Draxl, J. Badger, and A. Habte, 2017: Wind and solar resource data sets. Wiley Interdiscip. Rev.: Energy Environ., 7, e276, https://doi.org/10.1002/wene.276.

    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor. Climatol., 46, 477493, https://doi.org/10.1175/JAM2462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, M. T., S. Cohen, J. Macknick, C. Draxl, O. J. Gerra, M. Sengupta, S. E. Haupt, B.-M. Hodge, and C. Brancucci, 2018: A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renew. Sustain. Energy Rev., 98, 255267, https://doi.org/10.1016/j.rser.2018.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtright, A. E., and K. Apt, 2008: The character of power output from utility-scale photovoltaic systems. Prog. Photovolt. Res. Appl., 16, 241247, https://doi.org/10.1002/pip.786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2000: Forecast issues in the urban zone: Report of the10th prospectus development team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 81, 20472064, https://doi.org/10.1175/1520-0477(2000)081<2047:FIITUZ>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debbage, N., and J. M. Shepherd, 2015: The urban heat island effect and city contiguity. Comput. Environ. Urban Syst., 54, 181194, https://doi.org/10.1016/j.compenvurbsys.2015.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debbage, N., and J. M. Shepherd, 2018: The influence of urban development patterns on streamflow characteristics in the Charlanta megaregion. Water Resour. Res., 54, 37283747, https://doi.org/10.1029/2017WR021594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debbage, N., and J. M. Shepherd, 2019: Urban influences on the spatiotemporal characteristics of runoff and precipitation during the 2009 Atlanta flood. J. Hydrometeor., 20, 321, https://doi.org/10.1175/JHM-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobschinski, J., and Coauthors, 2017: Uncertainty forecasting in a nutshell: Prediction models designed to prevent significant errors. IEEE Power Energy Mag., 15, 4049, https://doi.org/10.1109/MPE.2017.2729100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DOE, 2018: Atmosphere to Electrons. Accessed 31 January 2018, https://a2e.energy.gov/.

  • Drobot, S., M. Chapman, E. Schuler, G. Wiener, W. Mahoney III, P. Pisano, and B. McKeever, 2010a: Improving road weather hazard products with vehicle probe data: Vehicle data translator quality-checking procedures. Transp. Res. Rec., 2169, 128140, https://doi.org/10.3141/2169-14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobot, S., M. Chapman, P. A. Pisano, and B. B. McKeever, 2010b: Using vehicles as mobile weather platforms. Data and Mobility, J. Düh et al., Eds., Advances in Intelligent and Soft Computing, Vol. 81, Springer, 203–213, https://doi.org/10.1007/978-3-642-15503-1_18.

    • Crossref
    • Export Citation
  • Dubus, L., 2014: Weather and climate and the power sector: Needs, recent developments, and challenges. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. Haupt, Eds. Springer, 379–398, https://doi.org/10.1007/978-1-4614-9221-4_18.

    • Crossref
    • Export Citation
  • Dubus, L., S. Muralidharan, and A. Troccoli, 2018a: What does the energy industry require from meteorology? Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 41–63, https://doi.org/10.1007/978-3-319-68418-5_4.

    • Crossref
    • Export Citation
  • Dubus, L., A. Troccoli, S. E. Haupt, M. S. Boulahya, and S. Dorling, 2018b: Lessons learned establishing a dialogue between the energy industry and the meteorological community and a way forward. Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 179–190, https://doi.org/10.1007/978-3-319-68418-5_13.

    • Crossref
    • Export Citation
  • Dutton, J. A., R. P. James, and J. D. Ross, 2018: Probabilistic forecasts for energy: Weeks to a century or more. Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 161–177, https://doi.org/10.1007/978-3-319-68418-5_12.

    • Crossref
    • Export Citation
  • EIA, 2018: Frequently asked questions. Accessed 22 January 2018, https://www.eia.gov/tools/faqs/faq.php?id=86&t=1.

  • Ela, E., V. Diakov, E. Ibanez, and M. Heaney, 2013: Impacts of variability and uncertainty in solar photovoltaic generation at multiple timescales. National Renewable Energy Laboratory Tech. Rep. NREL/TP-5500-58274, 41 pp., http://www.nrel.gov/docs/fy13osti/58274.pdf.

    • Crossref
    • Export Citation
  • Eliasson, I., 2000: The use of climate knowledge in urban planning. Landscape Urban Plann., 48, 3144, https://doi.org/10.1016/S0169-2046(00)00034-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EPA, 1995: User’s guide for the Industrial Source Complex (ISC3) dispersion model: Volume II—Description of model algorithms. Environmental Protection Agency Rep. EPA-454/b-95-003b, 120 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=000031VJ.txt.

  • EPA, 2004: AERMOD: Description of model formulation. Environmental Protection Agency Rep. EPA-454/R-03-004, 91 pp., http://www.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf.

  • EPA, 2007: ALOHA users’ manual. Environmental Protection Agency Rep., 190 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1003UZB.txt.

  • Federal Highway Administration, 2006: Empirical studies on traffic flow in inclement weather. FHWA Publ. FHWA-HOP-07-073, 108 pp., https://ops.fhwa.dot.gov/publications/weatherempirical/weatherempirical.pdf.

  • Feinberg, E. A., and D. Genethlion, 2005: Load forecasting. Applied Mathematics for Restructured Electric Power System: Optimization, Control, and Computational Intelligence, J. H. Chow, F. F. Wu, and J. Momoh, Eds., Springer, 269–283.

  • Finnish Meteorological Institute, 2012: Economic value of weather forecasts on transportation – Impacts of weather forecast quality developments to the economic effects of severe weather. FMI Doc. D5.2, 92 pp., http://www.mowe-it.eu/wordpress/wp-content/docs/ewent/D5_2_16_02_2012_revised_final.pdf.

  • Fleming, P. A., and Coauthors, 2014: Evaluating techniques for redirecting turbine wakes using SOWFA. Renew. Energy, 70, 211218, https://doi.org/10.1016/j.renene.2014.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, P. A., and Coauthors, 2015: Simulation comparison of wake mitigation control strategies for a two-turbine case. Wind Energy, 18, 21352143, https://doi.org/10.1002/we.1810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujibe, F., 2003: Long-term surface wind changes in the Tokyo metropolitan area in the afternoon of sunny days in the warm season. J. Meteor. Soc. Japan Ser. II, 81, 141149, https://doi.org/10.2151/jmsj.81.141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffin, S. R., and Coauthors, 2012: Bright is the new black—Multi-year performance of high-albedo roofs in an urban climate. Environ. Res. Lett., 7, 014029, https://doi.org/10.1088/1748-9326/7/1/014029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, A. McGovern, S. E. Haupt, and J. K. Williams, 2017: Evaluation of statistical learning configurations for gridded solar irradiance forecasting. Sol. Energy, 150, 383393, https://doi.org/10.1016/j.solener.2017.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuma, G., 2017: Review of urban surface parameterizations for numerical climate models. Urban Climate, 24, 830851, https://doi.org/10.1016/j.uclim.2017.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Climate Change, 3, 3741, https://doi.org/10.1038/nclimate1656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, https://doi.org/10.1073/pnas.1322280111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gevitz, K., R. Madera, C. Newbern, J. Lojo, and C. C. Johnson, 2017: Risk of fall-related injury due to adverse weather events, Philadelphia, Pennsylvania, 2006-2011. Public Health Rep., 132, 53S58S, https://doi.org/10.1177/0033354917706968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giebel, G., and G. Kariniotakis, 2007: Best practice in short-term forecasting: A users guide. European Wind Energy Conf. and Exhibition, Milan, Italy, European Wind Energy Association, 5 pp.

  • Gifford, F. A., 1961: Use of routine meteorological observations for estimating atmospheric dispersion. Nucl. Saf., 2 (4), 4757.

  • Gifford, F.A., 1975: Atmospheric dispersion models for environmental pollution applications. Lectures on Air Pollution and Environmental Impact Analysis, Amer. Meteor. Soc., 35–58.

    • Crossref
    • Export Citation
  • Gochis, D. J., W. Yu, and D. N. Yates, 2015: The NCAR WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp., http://www.ral.ucar.edu/projects/wrf_hydro/.

  • Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs, 2008: Global change and the ecology of cities. Science, 319, 756760, https://doi.org/10.1126/science.1150195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84, 322, https://doi.org/10.1007/s00704-005-0140-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, https://doi.org/10.1175/2010JAMC2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haas, R., and E. Bedsole, 2011: Results of the Clarus demonstrations: Evaluation of enhanced road weather forecasting enabled by Clarus. Federal Highway Administration Rep. FHWA-JPO-11-116, 76 pp., https://rosap.ntl.bts.gov/view/dot/3355.

  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, https://doi.org/10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hage, K., 1975: Urban-rural humidity differences. J. Appl. Meteor., 14, 12771283, https://doi.org/10.1175/1520-0450(1975)014<1277:URHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, P., 2019: Crashes snarl I-78 west; icy roads around Lehigh Valley as wintry mix moves into area. The Morning Call, 7 January, https://www.mcall.com/news/breaking/mc-pol-b-crash-snarls-i78-20190107-story.html.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and J. C. Chang, 2001: Use of the Kit Fox field data to analyze dense gas dispersion modeling issues. Atmos. Environ., 35, 22312242, https://doi.org/10.1016/S1352-2310(00)00481-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and J. C. Chang, 2012: Acceptance criteria for urban dispersion model evaluation. Meteor. Atmos. Phys., 116, 133146, https://doi.org/10.1007/s00703-011-0177-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and G. Young, 2017: The need for harmonization of methods for finding locations and magnitudes of air pollution sources using observations of concentrations and wind fields. Atmos. Environ., 148, 361363, https://doi.org/10.1016/j.atmosenv.2016.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., G. A. Briggs, and R. P. Hosker Jr., 1982: Handbook on atmospheric diffusion. Dept. of Energy Rep. DOE/TIC-11223, 102 pp., https://www.osti.gov/servlets/purl/5591108/.

    • Crossref
    • Export Citation
  • Hart, R., J. J. Mewes, B. W. Hershey, L. O. Osborne Jr., and D. L. Huft, 2008: An overview of implementation and deployment of the Pooled Fund Study Maintenance Decision Support System. Transportation Research Circular E-C126 Fourth National Conf. Surface Trans. Wea. and Seventh Int. Symp. Snow Removal and Ice Control Tech., Indianapolis, IN, Transportation Research Board, 229–239, http://www.trb.org/Publications/Blurbs/160000.aspx.

  • Hart, R., L. F. Osborne Jr., J. J. Mewes, M. A. Askelson, and J. L. Hershey, 2012: An evaluation of a simulation of sub-pavement conditions as they affect the implementation and removal of seasonal load restrictions.ortationearchcular 2012 Int. Conf. on Winter Maintenance and Surface Trans. Wea., Coralville, IA, Transportation Research Board, 478490, http://www.trb.org/Publications/Blurbs/167060.aspx.

  • Hassanzadeh, M., M. Etezadi-Amoli, and M. S. Fadali, 2010: Practical approach for sub-hourly and hourly prediction of PV power output. North American Power Symp. 2010, Arlington, TX, IEEE, 1–5, https://doi.org/10.1109/NAPS.2010.5618944.

    • Crossref
    • Export Citation
  • Haupt, S. E., and L. Delle Monache, 2014: Understanding ensemble prediction: How probabilistic wind power prediction can help in optimizing operations. WindTech International, Vol. 10, No. 6, WindTech International, Groningen, The Netherlands, 27–29, https://www.windtech-international.com/editorial-features/understanding-ensemble-prediction.

  • Haupt, S. E., and W. P. Mahoney, 2015: Taming wind power with better forecasts. IEEE Spectrum, November issue, 46–52, https://spectrum.ieee.org/green-tech/wind/taming-wind-power-with-better-forecasts.

    • Crossref
    • Export Citation
  • Haupt, S. E., and B. Kosovic, 2017: Variable generation power forecasting as a big data problem. IEEE Trans. Sustainable Energy, 8, 725732, https://doi.org/10.1109/TSTE.2016.2604679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., W. P. Mahoney, and K. Parks, 2014: Wind power forecasting. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. E. Haupt, Eds., Springer, 295–318.

    • Crossref
    • Export Citation
  • Haupt, S. E., and Coauthors, 2015: First year report of the A2e Mesoscale to Microscale Coupling Project. Pacific Northwest National Laboratory Rep. PNNL-25108, 124 pp., https://doi.org/10.13140/RG.2.2.21572.01927.

    • Crossref
    • Export Citation
  • Haupt, S. E., J. Copeland, W. Y. Y. Cheng, C. Amman, Y. Zhang, and P. Sullivan, 2016: A method to assess the wind and solar resource and to quantify interannual variability over the United States under current and projected future climate. J. Appl. Meteor. Climatol., 55, 345363, https://doi.org/10.1175/JAMC-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2017a: Impact of distributed PV on demand load forecasts. Sol. Energy, 157, 542551, https://doi.org/10.1016/j.solener.2017.08.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., P. Jimenez, J. A. Lee, and B. Kosovic, 2017b: Principles of meteorology and numerical weather prediction. Renewable Energy Forecasting: From Models to Applications, G. Kariniotakis, Ed., Elsevier, 3–28.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2017c: Second year report of the Atmosphere to Electrons Mesoscale to Microscale Coupling Project: Nonstationary modeling techniques and assessment. Pacific Northwest National Laboratory Rep. PNNL-26267, 156 pp., https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26267.pdf.

  • Haupt, S. E., A. Anderson, L. Berg, B. Brown, M. Churchfield, C. Draxl, C. Kalb, and E. Koo, 2017d: Third year report of the Atmosphere to Electrons Mesoscale to Microscale Coupling Project. Pacific Northwest National Laboratory Rep. PNNL-28259, 137 pp.

    • Crossref
    • Export Citation
  • Haupt, S. E., and Coauthors, 2018: Building the Sun4Cast System: Improvements in solar power forecasting. Bull. Amer. Meteor. Soc., 99, 121136, https://doi.org/10.1175/BAMS-D-16-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., B. Kosović, S. McIntosh, F. Chen, K. Miller, M. Shepherd, M. Williams, and S. Drobot, 2019b: 100 years of progress in applied meteorology. Part III: Additional applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0012.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., B. Kosovic, J. A. Lee, and P. Jimenez, 2019c: Mesoscale modeling of the atmosphere. Modeling and Simulation in Wind Plant Design and Analysis, P. Veers, Ed., IET Press, in press.

  • Haupt, S. E., and Coauthors, 2019d: On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-18-0033.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, W. W., 1957: Effects of weather on railroad operation, maintenance, and construction. Industrial Operations under Extremes of Weather, Meteor. Monogr., No. 9, Amer. Meteor. Soc., 10–36.

  • Henningsen, R. F., 2000: Study of greenhouse gas emissions from ships. International Maritime Organization Rep. Issue 2, 170 pp., http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.1805&rep=rep1&type=pdf.

  • Hill, C. J., 2013: Concept of operations for road weather connected vehicle applications. Rep. FHWA-JPO-13-047, 95 pp., https://rosap.ntl.bts.gov/view/dot/3372.

  • Hodson, R., 2016: The world is in the midst of the largest wave of urban growth in history. Nature, 531, S49, https://doi.org/10.1038/531S49a.

  • Hoff, T., 2016: Behind-the-meter (BTM) PV forecast integration with load forecasting. Utility Variable Generation Integration Group Forecasting Workshop, Denver, CO, Utility Variable-Generation Integration Group, 17 pp., https://www.esig.energy/download/behind-meter-btm-pv-forecast-integration-load-forecasting-dr-thomas-hoff/?wpdmdl=1773&refresh=5d5e1997c8e761566448023.

  • Hong, T., 2014: Energy forecasting: Past, present, and future. Foresight, 32, 4348.

  • Hong, W. C., 2009: Electric load forecasting by support vector model. Appl. Math. Model., 33, 24442454, https://doi.org/10.1016/j.apm.2008.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooke, W. H., 2014: Living on the Real World: How Thinking and Acting Like Meteorologists Will Help Save the Planet. Amer. Meteor. Soc., 251 pp.

  • Horton, R. E., 1921: Thunderstorm-breeding spots. Mon. Wea. Rev., 49, 193, https://doi.org/10.1175/1520-0493(1921)49<193a:TS>2.0.CO;2.

  • Howard, L., 1833: The Climate of London. Harvey and Darton, 221 pp., https://www.urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf.

  • Huang, H., J. Xu, Z. Peng, S. Yoo, D. Yu, D. Huang, and H. Qin, 2013: Cloud motion estimation for short term solar irradiance prediction. IEEE Int. Conf. on Smart Grid Communications, Vancouver, BC, Canada, IEEE, 696701, https://doi.org/10.1109/SmartGridComm.2013.6688040.

    • Crossref
    • Export Citation
  • Huang, M., Z. Gao, S. Miao, F. Chen, M. A. LeMone, J. Li, F. Hu, and L. Wang, 2017: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Bound.-Layer Meteor., 162, 503522, https://doi.org/10.1007/s10546-016-0205-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hueging, H., R. Haas, K. Born, D. Jacob, and J. G. Pinto, 2013: Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteor. Climatol., 52, 903917, https://doi.org/10.1175/JAMC-D-12-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, A. H., and P. Watkiss, 2011: Climate change impacts and adaptation in cities: A review of the literature. Climatic Change, 104¸1349, https://doi.org/10.1007/s10584-010-9975-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C., Y. D. Aktas, A. Mahalov, M. Moustaoui, F. Salamanca, and M. Georgescu, 2017: Climate change and growing megacities: Hazards and vulnerability. Proc. Inst. Civ. Eng.: Eng. Sustainability, 171, 314326, https://doi.org/10.1680/jensu.16.00068.

    • Search Google Scholar
    • Export Citation
  • Hutyra, L. R., R. Duren, K. R. Gurney, N. Grimm, E. A. Kort, E. Larson, and G. Shrestha, 2014: Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future, 2, 473495, https://doi.org/10.1002/2014EF000255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HydroQuebec, 2018: Sustainable development. Accessed 1 February 2018, http://www.hydroquebec.com/sustainable-development/energy-environment/adaptation-climate-change.html.

  • Idso, C. D., S. B. Idso, and R. C. Balling Jr., 2001: An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos. Environ., 35, 9951000, https://doi.org/10.1016/S1352-2310(00)00412-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IEA, 2017: World Energy Outlook 2017. Accessed 14 November 2017, https://www.iea.org/weo2017/.

  • IEA, 2018: Hydropower. Accessed 16 October 2018, https://www.iea.org/topics/renewables/hydropower/.

  • Imhoff, M. L., L. Bounoua, R. DeFries, W. T. Lawrence, D. Stutzer, C. J. Tucker, and T. Ricketts, 2004: The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ., 89, 434443, https://doi.org/10.1016/j.rse.2003.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • India Ministry of Power, 2018: Central Electricity Authority. Accessed 18 October 2018, http://www.cea.nic.in/monthlyinstalledcapacity.html.

  • ITS International, 2017: Applied Information’s app gets Marietta connected. Accessed 26 August 2018, http://www.itsinternational.com/categories/networking-communication-systems/features/applied-informations-app-gets-marietta-connected/.

  • Jacobson, M. Z., 2010: Enhancement of local air pollution by urban CO2 domes. Environ. Sci. Technol., 44, 24972502, https://doi.org/10.1021/es903018m.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., and Coauthors, 2016a: WRF-Solar: An augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc., 97, 12491264, https://doi.org/10.1175/BAMS-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., S. Alessandrini, S. E. Haupt, A. Deng, B. Kosovic, J. A. Lee, and L. Delle Monache, 2016b: Role of unresolved clouds on short-range global horizontal irradiance predictability. Mon. Wea. Rev., 144, 30993107, https://doi.org/10.1175/MWR-D-16-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., and J. M. Shepherd, 2008: Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: Urban land versus ocean. J. Geophys. Res., 113, D24S90, https://doi.org/10.1029/2008JD010276.

    • Search Google Scholar
    • Export Citation
  • Jin, M., J. M. Shepherd, and M. D. King, 2005: Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res., 110, D10S20, https://doi.org/10.1029/2004JD005081.

    • Search Google Scholar
    • Export Citation
  • Johnson, B., and J. M. Shepherd, 2018: An urban-based climatology of winter precipitation in the northeast United States. Urban Climate, 24, 205220, https://doi.org/10.1016/j.uclim.2018.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanda, M., 2006: Progress in the scale modeling of urban climate. Theor. Appl. Climatol., 84, 2333, https://doi.org/10.1007/s00704-005-0141-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KC, B., J. M. Shepherd, and C. J. Gaither, 2015: Climate change vulnerability assessment in Georgia. Appl. Geogr., 62, 6274, https://doi.org/10.1016/j.apgeog.2015.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khattak, A. J., X. Pan, B. Williams, N. Rouphail, and Y. Fan, 2008: Traveler information delivery mechanisms: Impact on consumer behavior. Transp. Res. Rec., 2069, 7784, https://doi.org/10.3141/2069-10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and J. V. Clark, 2007: Flow variability in a North American downtown street Canyon. J. Appl. Meteor. Climatol., 46, 851877, https://doi.org/10.1175/JAM2494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleissl, J., Ed., 2013: Solar Energy Forecasting and Resource Assessment. Academic Press, 462 pp.

  • Kratzer, P. A., 1937: Das Stadtklima (Urban Climate). F. Vieweg und Sohn, 143 pp.

  • Kratzer, P. A., 1956: Das Stadtklima (Urban Climate). 2nd ed. F. Vieweg und Sohn, 184 pp.

  • Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910, https://doi.org/10.1175/JAM2169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lampinen, M., 2018: Smart cities and the vehicle ownership shift. Automotive World, accessed 26 August 2018, https://www.automotiveworld.com/articles/smart-cities-vehicle-ownership-shift/.

  • Landsberg, H. E., 1956: The climate of towns. Man’s Role in Changing the Face of the Earth, Vol. 2, W. L. Thomas, Jr., Ed., University of Chicago Press, 584–606.

  • Landsberg, H. E., 1970: Man-made climatic changes: Man’s activities have altered the climate of urbanized areas and may affect global climate in the future. Science, 170, 12651274, https://doi.org/10.1126/science.170.3964.1265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M., P. Nyugen, J. Skolnick, J. Symoun, J. Hunt, and R. Alfelor, 2015: Transportation systems management and operations benefit-cost analysis compendium. Federal Highway Administration Rep. FHWA-HOP-14-032, 232 pp., https://ops.fhwa.dot.gov/publications/fhwahop14032/fhwahop14032.pdf.

  • Lazo, J. K., 2017: Economic assessment of hydro-met services and products: A value chain approach. 12th Symp. on Societal Applications: Policy, Research, and Practice, Seattle, WA, Amer. Meteor. Soc., 5B.4, https://ams.confex.com/ams/97Annual/webprogram/Paper312160.html.

  • Lazo, J. K., K. Parks, S. E. Haupt, and T. Jensen, 2017: Economic value of research to improve solar power forecasting. Eighth Conf. on Weather, Climate, Water and the New Energy Economy, Seattle, WA, Amer. Meteor. Soc., 7.6, https://ams.confex.com/ams/97Annual/webprogram/Paper313289.html.

  • Lee, H., N. Aydin, Y. Choi, S. Lekhavat, and Z. Irani, 2017: A decision support system for vessel speed decision in maritime logistics using weather archive big data. Comput. Oper. Res., 98, 330342, https://doi.org/10.1016/j.cor.2017.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, K. Y., Y. T. Cha, and J. H. Park, 1992: Short-term load forecasting using an artificial neural network. IEEE Trans. Power Syst., 7, 124132, https://doi.org/10.1109/59.141695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, P., and Coauthors, 2017: NAQFC developmental forecast guidance for fine particulate matter (PM2.5). Wea. Forecasting, 32, 343360, https://doi.org/10.1175/WAF-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.

    • Crossref
    • Export Citation
  • Leopold, L. B., 1968: Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use. Geological Survey Circular 554, 26 pp., https://pubs.usgs.gov/circ/1968/0554/report.pdf.

    • Crossref
    • Export Citation
  • Limber, M., S. Drobot, and T. Fowler, 2010: Clarus quality checking algorithm documentation report. Federal Highway Administration Rep. FHWA-JPO-11-075, 18 pp., https://rosap.ntl.bts.gov/view/dot/3313.

  • Lopez, A., B. Roberts, D. Heimiller, N. Blair, and G. Porro, 2012: U.S. renewable energy technical potentials: A GIS-based analysis. National Renewable Energy Laboratory Tech. Rep. NREL/TP-6A20-51946, 32 pp., https://www.nrel.gov/docs/fy12osti/51946.pdf.

    • Crossref
    • Export Citation
  • Lorenz, E., J. Kuhnert, and D. Heinemann, 2014: Overview of irradiance and photovoltaic power prediction. Weather Matters for Energy, A. Troccoli, L. Dubus, and S. E. Haupt, Eds., Springer, 429–454, https://doi.org/10.1007/978-1-4614-9221-4_21.

    • Crossref
    • Export Citation
  • Lowry, W. P., 1998: Urban effects on precipitation amount. Prog. Phys. Geogr., 22, 477520, https://doi.org/10.1177/030913339802200403.

  • Lowry, W. P., and S. C. Lowry, 1988: Atmospheric Ecology for Designers and Planners. Peavine Publications, 435 pp.

  • Machta, L., H. Hamilton, L. F. Hubert, R. J. List, and K. M. Nagler, 1957: Airborne measurements of atomic debris. J. Meteor., 14, 165175, https://doi.org/10.1175/1520-0469(1957)014<0165:AMOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., III, and J. M. O’Sullivan, 2013: Realizing the potential of vehicle-based observations. Bull. Amer. Meteor. Soc., 94, 10071018, https://doi.org/10.1175/BAMS-D-12-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., III, S. Drobot, P. Pisano, B. McKeever, and J. O’Sullivan, 2010: Vehicles as mobile weather observation systems. Bull. Amer. Meteor. Soc., 91, 11791182, https://doi.org/10.1175/2010BAMS2954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., III, and Coauthors, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670682, https://doi.org/10.1109/TSTE.2012.2201758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manfredi, J., T. Walters, G. Wilke, L. Osborne, R. Hart, T. Incrocci, and T. Schmitt, 2005: Road Weather Information System environmental sensor station siting guidelines. Federal Highway Administration Rep. FHWA-HOP-05-026, 52 pp., https://ops.fhwa.dot.gov/publications/ess05/ess05.pdf.

  • Manfredi, J., and Coauthors, 2008: Road Weather Information System environmental sensor station siting guidelines, version 2.0. Federal Highway Administration Rep. FHWA-HOP-05-026 and FHWA-JPO-09-012, 85 pp., https://rosap.ntl.bts.gov/view/dot/3290.

  • Marquez, R., and C. F. M. Coimbra, 2013: Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy, 91, 327336, https://doi.org/10.1016/j.solener.2012.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCall, T. C., 2017: S.S. Edmund Fitzgerald online. Accessed 4 February 2018, http://www.ssedmundfitzgerald.org/.

  • McCandless, T. C., S. E. Haupt, and G. S. Young, 2015: A model tree approach to forecasting solar irradiance variability. Sol. Energy, 120, 514524, https://doi.org/10.1016/j.solener.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCandless, T. C., S. E. Haupt, and G. S. Young, 2016a: A regime-dependent artificial neural network technique for short-range solar irradiance forecasting. Renewable Energy, 89, 351359, https://doi.org/10.1016/j.renene.2015.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCandless, T. C., G. S. Young, S. E. Haupt, and L. M. Hinkelman, 2016b: Regime-dependent short-range solar irradiance forecasting. J. Appl. Meteor. Climatol., 55, 15991613, https://doi.org/10.1175/JAMC-D-15-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCracken, R., 2018: Global wind capacity additions stall in 2017, but remain above 50 GW. S&P Global, accessed 26 February 2018, https://www.platts.com/latest-news/electric-power/london/global-wind-capacity-additions-stall-in-2017-26891792.

  • Mellit, A., 2008: Artificial intelligence technique for modeling and forecasting of solar radiation data: A review. Int. J. Artif. Intell. Soft Comput., 1, 5276, https://doi.org/10.1504/IJAISC.2008.021264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellit, A., A. Massi Pavan, and V. Lughi, 2014: Short-term forecasting of power production in a large-scale photovoltaic plant. Sol. Energy, 105, 401413, https://doi.org/10.1016/j.solener.2014.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, K. A., A. F. Hamlet, D. S. Kenney, and K. T. Redmond, Eds., 2016: Water Policy and Planning in a Variable and Changing Climate. CRC Press, 452 pp.

    • Crossref
    • Export Citation
  • Miller, S. D., A. K. Heidinger, and M. Sengupta, 2013: Physically based satellite methods. Solar Energy Forecasting, J. Kleissl, Ed., Elsevier, 504 pp.

    • Crossref
    • Export Citation
  • Miller, S. D., M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, 2018: Short-term solar irradiance forecasting via satellite/model coupling. Sol. Energy, 168, 102117, https://doi.org/10.1016/j.solener.2017.11.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, G., and Coauthors, 2010: Climate information for improved planning and management of mega cities (needs perspective). Procedia Environ. Sci., 1, 228246, https://doi.org/10.1016/j.proenv.2010.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., and Coauthors, 2018: Large-eddy simulation sensitivities to variations of configuration and forcing parameters in canonical boundary layer flows for wind energy applications. Wind Energy Sci., 3, 589613, https://doi.org/10.5194/wes-3-589-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, C., and J. Shepherd, 2016: Urban precipitation: A global perspective. Routledge Handbook of Urbanization and Global Environment Change, K. C. Seto, W. D. Solecki, and C. A. Griffith, Eds., Routledge, 152–168.

  • Monin, A., and A. Obukhov, 1953: Dimensionless characteristics of turbulence in the layer of atmosphere near the ground. Dokl. Akad. Nauk USSR, 93, 257267.

    • Search Google Scholar
    • Export Citation
  • Morf, H., 2014: Sunshine and cloud cover prediction based on Markov processes. Sol. Energy, 110, 615626, https://doi.org/10.1016/j.solener.2014.09.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, A. E. J., 1994: History of Urban Form before the Industrial Revolutions. Prentice Hall, 456 pp.

  • Morrison, J., 2016: Air pollution goes back way further than you think. Smithsonian.com, accessed 15 October 2018, https://www.smithsonianmag.com/science-nature/air-pollution-goes-back-way-further-you-think-180957716/.

  • Muñoz-Esparza, D., J. K. Lundquist, J. A. Sauer, B. Kosović, and R. R. Linn, 2017: Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst., 9, 15721594, https://doi.org/10.1002/2017MS000960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, W., G. Wiener, S. Linden, and S. E. Haupt, 2011: A consensus forecasting approach for improved turbine hub height wind speed predictions. Proc. WindPower 2011, Anaheim, CA, Amer. Wind Energy Assoc., 6 pp., https://opensky.ucar.edu/islandora/object/conference%3A3296.

  • National Research Council, 2004: Where the Weather Meets the Road: A Research Agenda for Improving Road Weather Services. National Academies Press, 188 pp., https://doi.org/10.17226/10893.

    • Crossref
    • Export Citation
  • National Research Council, 2012: Urban Meteorology: Forecasting, Monitoring, and Meeting Users' Needs. National Academies Press, 190 pp., https://doi.org/10.17226/13328.

    • Crossref
    • Export Citation
  • Nelson, M., and M. Brown, 2013: The QUIC Start Guide (v 6.01). Los Alamos National Laboratory Doc. LA-UR-13-27291, 261 pp., https://www.lanl.gov/projects/quic/open_files/QUICv6.01_StartGuide.pdf.

  • NERC, 2014: Polar vortex review. North American Electric Reliability Corporation Doc., 49 pp., http://www.nerc.com/pa/rrm/January%202014%20Polar%20Vortex%20Review/Polar_Vortex_Review_29_Sept_2014_Final.pdf.

  • Nguyen, D., and J. Kleissl, 2014: Stereographic methods for cloud base height determination using two sky imagers. Sol. Energy, 107, 495509, https://doi.org/10.1016/j.solener.2014.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nodop, K., R. Connolly, and F. Girardia, 1998: The field campaign of the European Tracer Experiment (ETEX): Overview and results. Atmos. Environ., 32, 40954108, https://doi.org/10.1016/S1352-2310(98)00190-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, P., P. Lynch, and C. Sweeney, 2014: Simulating the future wind energy resource of Ireland using the COSMO-CLM model. Wind Energy, 17, 1937, https://doi.org/10.1002/we.1554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2002: Weather information for surface transportation: National needs assessment report. OFCM Rep. FCM-R18-2002, 302 pp., https://www.ofcm.gov/publications/WIST/entire_wist.pdf.

  • Ohashi, Y., and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 3045, https://doi.org/10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed., Methuen, 435 pp.

  • Olgyay, V., J. Reynolds, K. Yeang, A. Olgyay, and D. Lyndon, 2015: Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press, 224 pp.

    • Crossref
    • Export Citation
  • Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 25972600, https://doi.org/10.1029/2001GL012990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orwig, K. D., and Coauthors, 2014: Recent trends in variable generation forecasting and its value to the power system. IEEE Trans. Renewable Energy, 6, 924933, https://doi.org/10.1109/TSTE.2014.2366118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, L. F., Jr., 2006: A blowing and drifting snow algorithm supporting winter road maintenance decision making. 22nd Conf. on Interactive Information Processing Systems, Atlanta, GA, Amer. Meteor. Soc., 13.8, https://ams.confex.com/ams/pdfpapers/105089.pdf.

  • Osborne, L. F., Jr., 2012: Development and demonstration of a freezing drizzle algorithm for roadway environmental sensing systems—http://aurora-program.org. Aurora Project Final Rep. 2007-04, 13 pp., http://publications.iowa.gov/14510/.

  • Owens, M. S., 2000: The Advanced Transportation Weather Information System (ATWIS). Mid-Continent Transp. Symp. Proc., Ames, IA, Center for Transportation Research and Education, 9–13, https://rosap.ntl.bts.gov/view/dot/14180.

  • Park, D. C., M. A. El-Sharkawi, R. J. Jarks II, L. E. Atlas, and M. J. Damborg, 1991: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst., 6, 442448, https://doi.org/10.1109/59.76685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parks, K., Y.-H. Wan, G. Wiener, and Y. Liu, 2011: Wind energy forecasting: A collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy. National Renewable Energy Laboratory Rep. NREL/SR-5500-52233, 35 pp., https://www.nrel.gov/docs/fy12osti/52233.pdf.

    • Crossref
    • Export Citation
  • Pasquill, F., 1956: Meteorological research at Porton. Nature, 177, 11481158, https://doi.org/10.1038/1771148a0.

  • Pasquill, F., 1961: The estimation of the dispersion of windborne material. Meteor. Mag., 90, 3349.

  • Pasquill, F., 1974: Atmospheric Diffusion. 2nd ed., John Wiley and Sons, 429 pp.

  • Pelland, S., J. Remund, J. Kleissl, T. Oozeki, and K. De Brabandere, 2013: Photovoltaic and solar forecasting: State of the art. International Energy Agency Rep. IEA PVPS T14-01:2013, 36 pp. http://iea-pvps.org/index.php?id=278.

  • Peng, Z., D. Yu, D. Huang, J. Heiser, S. Yoo, and P. Kalb, 2015: 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol. Energy, 118, 496519, https://doi.org/10.1016/j.solener.2015.05.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, R., and Coauthors, 2013: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada, and Europe. Sol. Energy, 94, 305326, https://doi.org/10.1016/j.solener.2013.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, S., A. Cimorelli, J. Weil, A. Venkatram, R. Paine, R. Wilson, R. Lee, and W. Peters, 2005: AERMOD: A dispersion model for industrial source applications Part II: Model performance against seventeen field-study databases. J. Appl. Meteor., 44, 694708, https://doi.org/10.1175/JAM2228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., F. Houssain, L. R. Leung, N. McDowell, M. Rodell, F. Tapiador, F. J. Turk, and A. Wood, 2019: 100 years of progress in hydrology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1.

    • Crossref
    • Export Citation
  • Petty, K. R., and W. P. Mahoney, 2008: The U.S. Federal Highway Administration winter road Maintenance Decision Support System (MDSS): Recent enhancements and refinements. Proc. of SIRWEC 14th Int. Road Weather Conf., Prague, Czech Republic, Standing International Road Weather Commission, http://sirwec.org/wp-content/uploads/Papers/2008-Prague/D-29.pdf.

  • Popp, D., 2003: Pollution control innovations and the Clean Air Act of 1990. J. Policy Anal. Manage., 22, 641660, https://doi.org/10.1002/pam.10159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2011: Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl. Acad. Sci. USA, 108, 81678171, https://doi.org/10.1073/pnas.1019388108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthemie, and E. Kjellstrom, 2005: Potential climate change impact on wind energy resources in northern Europe: Analyses using a regional climate model. Climate Dyn., 25, 815835, https://doi.org/10.1007/s00382-005-0072-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, N. E. Clausen, M. Drews, N. MacKellar, and E. Kjellstrom, 2012a: Analysis of possible changes in intense and extreme winds speeds over northern Europe under climate change scenarios. Climate Dyn., 38, 189208, https://doi.org/10.1007/s00382-010-0955-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and J. T. Schoof, 2012b: Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res., 117, D19119, https://doi.org/10.1029/2012JD017449.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., G. Nikulin, and C. Jones, 2012c: Influence of spatial resolution on regional climate model derived wind climates. J. Geophys. Res., 117, D03117, https://doi.org/10.1029/2011JD016822.

    • Search Google Scholar
    • Export Citation
  • Quesada-Ruiz, S., Y. Chu, J. Tovar-Pescador, H. T. C. Pedro, and C. F. M. Coimbra, 2014: Cloud-tracking methodology for intra-hour DNI forecasting. Sol. Energy, 102, 267275, https://doi.org/10.1016/j.solener.2014.01.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randerson, D., 1972: Temporal changes in the horizontal diffusion parameters of a single nuclear debris cloud. J. Appl. Meteor., 11, 670673, https://doi.org/10.1175/1520-0450(1972)011<0670:TCIHDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. T., S. Galmarini, and K. Puckett, 2011: Air quality model evaluation international initiative (AQMEII): Advancing the state of the science in regional photochemical modeling and its applications. Bull. Amer. Meteor. Soc., 92, 2330, https://doi.org/10.1175/2010BAMS3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reikard, G., S. E. Haupt, and T. Jensen, 2017: Forecasting ground-level irradiance over short horizons: Meteorological and time series models. Renew. Energy, 112, 474485, https://doi.org/10.1016/j.renene.2017.05.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • REN21, 2018: Renewables 2017: Global status report. Accessed 16 October 2018, http://www.ren21.net/gsr-2017/.

  • Reynolds, S., S. Burian, J. Shepherd, and M. Manyin, 2008: Urban induced rainfall modifications on urban hydrologic response. Reliable Modeling of Urban Water Systems, W. James et al. Eds., Computational Hydraulics International, 99–122.

    • Crossref
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbor graph. Proc. Roy. Soc. London, 110A, 709737, https://doi.org/10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., and M. Roser, 2018: Energy production & changing energy sources. OurWorldInData.org, accessed 3 October 2018, https://ourworldindata.org/energy-production-and-changing-energy-sources.

  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossetti, M. A., 2007: Analysis of weather events on U.S. railroads. 23rd Conf. on Interactive Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 4A.2, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_118791.htm.

  • SEforALL, 2014: Sustainable Energy for All: 2014 annual report. United Nations, 64 pp., https://www.seforall.org/sites/default/files/SE4ALL_2014_annual_report_final_0.pdf.

  • Sailor, D., M. Shepherd, S. Sheridan, B. Stone, L. Kalkstein, A. Russell, J. Vargo, and T. Andersen, 2016: Improving heat-related health outcomes in an urban environment with science-based policy. Sustainability, 8, 1015, https://doi.org/10.3390/su8101015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, https://doi.org/10.1002/2013JD021225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauer, V. B., W. Thomas Jr., V. Stricker, and K. Wilson, 1983: Flood characteristics of urban watersheds in the United States. USGS Water-Supply Paper 2207, 63 pp., https://pubs.usgs.gov/wsp/2207/report.pdf.

  • Scire, J. S., D. G. Strimaitis, and R. J. Yamartino, 2000: A user’s guide for the CALPUFF Dispersion Model (v 5). Earth Tech, 521 pp., http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf.

  • Seaman, N. L., 2000: Meteorological modeling for air quality assessments. Atmos. Environ., 34, 22312259, https://doi.org/10.1016/S1352-2310(99)00466-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SEIA, 2017: Solar Industry Research Data. Solar Energy Industries Association, accessed 10 July 2017, http://www.seia.org/research-resources/solar-industry-data.

  • Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley and Sons, 1152 pp.

  • Seto, K. C., and J. M. Shepherd, 2009: Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustainability, 1, 8995, https://doi.org/10.1016/j.cosust.2009.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, N., P. Sharma, D. Irwin, and P. Shenoy, 2011: Predicting solar generation from weather forecasts using machine learning. 2011 IEEE Int. Conf. on Smart Grid Communications, Brussels, Belgium, IEEE, 528–533, https://doi.org/10.1109/SmartGridComm.2011.6102379.

    • Crossref
    • Export Citation
  • Shepherd, J. M., 2013: Impacts of urbanization on precipitation and storms: Physical Insights and vulnerabilities. Vulnerability of Water Resources to Climate Change, Vol. 5, Climate Vulnerability, Elsevier, 109–125, https://doi.org/10.1016/B978-0-12-384703-4.00503-7.

    • Crossref
    • Export Citation
  • Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689701, https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., T. Anderson, L. Bounoua, A. Horst, C. Mitra, and C. Strother, 2013: Urban Climate Archipelagos: A new framework for urban-climate interactions. IEEE Earthzine, IEEE Oceanic Engineering Society, https://earthzine.org/urban-climate-archipelagos-a-new-framework-for-urban-impacts-on-climate/.

  • Souch, C., and S. Grimmond, 2006: Applied climatology: Urban climate. Prog. Phys. Geogr., 30, 270279, https://doi.org/10.1191/0309133306pp484pr.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stallins, J. A., and L. S. Rose, 2008: Urban lightning: Current research, methods, and the geographical perspective. Geogr. Compass, 2, 620639, https://doi.org/10.1111/j.1749-8198.2008.00110.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, A. D., V. P. Shah, K. J. Biesecker, C. Yeung, P. Pisano, and J. Pol, 2007: Vehicles as mobile sensing platforms for meteorological observations: A first look. 23rd Conf. on Interactive Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 4A.6, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_118986.htm.

  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, https://doi.org/10.1175/BAMS-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, B., Jr., 2012: The City and the Coming Climate: Climate Change in the Places We Live. Cambridge University Press, 187 pp., https://doi.org/10.1017/CBO9781139061353.

    • Crossref
    • Export Citation
  • Stone, B., Jr., J. J. Hess, and H. Frumkin, 2010: Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect., 118, 14251428, https://doi.org/10.1289/ehp.0901879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, B., Jr., J. Vargo, and D. Habeeb, 2012: Managing climate change in cities: Will climate action plans work? Landscape Urban Plann., 107, 263271, https://doi.org/10.1016/j.landurbplan.2012.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strimaitis, D. G., R. J. Paine, B. A. Egan, and R. J. Yamartino, 1987: EPA complex terrain model development: Final report. Environmental Protection Agency Tech. Rep., 484 pp https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100JVE1.txt.

  • Stull, R. B., 2000: Meteorology for Scientists and Engineers. 2nd ed. Brooks/Cole/Thomson, 502 pp.

  • Svirejeva-Hopkins, A., H. J. Schellnhuber, and V. L. Pomaz, 2004: Urbanized territories as a specific component of the global carbon cycle. Ecol. Modell., 173, 295312, https://doi.org/10.1016/j.ecolmodel.2003.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., S. Parker, D. Henn, and B. Chowdhury, 2007: SCIPUFF version 2.3 technical documentation. L-3 Technologies, Inc., Rep., 336 pp.

  • Sznaider, R. J., and J. H. Block, 2003: Weather-enabled decision support systems used in business applications. 19th Conf. on Interactive Information Processing Systems, Long Beach, CA, Amer. Meteor. Soc., 3.8, https://ams.confex.com/ams/pdfpapers/54993.pdf.

  • Takle, E. S., and T. Greenfield, 2005: Test and validation of a model for forecasting frost on bridges. Minnesota Dept. of Transportation Final Rep. MN/RC 2005-29, 15 pp., https://www.lrrb.org/media/reports/200529.pdf.

  • Taylor, G. I., 1921: Diffusion by continuous moments. Proc. London Math. Soc., 20, 196200, https://doi.org/10.1112/plms/s2-20.1.196.

  • Tighe, S. L., B. Mills, C. T. Haas, and S. Baiz, 2007: Using Road Weather Information Systems (RWIS) to control load restrictions on gravel and surface-treated highways. Ministry of Transportation of Ontario (MTO) Engineering Standards Branch Rep., 127 pp., https://intrans.iastate.edu/app/uploads/2019/05/spring-load-restrictions.pdf.

  • Tinarelli, G., G. Brusasca, O. Oldrini, D. Anfossi, S. T. Castelli, and J. Moussafir, 2007: Micro-Swift-Spray (MSS): A new modelling system for the simulation of dispersion at microscale. General description and validation. Air Pollution Modeling and Its Application XVII, C. Borrego and A. L. Norma, Eds., Springer, 449–454, https://doi.org/10.1007/978-0-387-68854-1_49.

    • Crossref
    • Export Citation
  • Trenberth, K., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Troccoli, A., Ed., 2018: Weather and Climate Services for the Energy Industry. Palgrave MacMillan, 197 pp., https://doi.org/10.1007/978-3-319-68418-5.

    • Crossref
    • Export Citation
  • Troccoli, A., and Coauthors, 2013: Promoting new links between energy and meteorology. Bull. Amer. Meteor. Soc., 94, ES36ES40, https://doi.org/10.1175/BAMS-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troccoli, A., L. Dubus, and S. E. Haupt, Eds., 2014: Weather Matters for Energy. Springer, 528 pp., https://doi.org/10.1007/978-1-4614-9221-4.

    • Crossref
    • Export Citation
  • Troccoli, A., M. Bruno Soares, L. Dubus, S. E. Haupt, M. Dadeck Boulahya, and S. Dorling, 2018: Forging a dialogue between the energy industry and the meteorological community. Weather and Climate Services for the Energy Industry, A. Troccoli, Ed., Palgrave Macmillan, 65–83, https://doi.org/10.1007/978-3-319-68418-5_5.

    • Crossref
    • Export Citation
  • Tuohy, A., and Coauthors, 2015: Solar forecasting: Method, challenges, and performance. IEEE Power Energy Mag., 13, 5059, https://doi.org/10.1109/MPE.2015.2461351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. B., 1967: Workbook of atmospheric dispersion estimates. Public Health Service Pub. 999-AP-26, 86 pp., https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100JEIO.txt.

  • United Nations, 2014: World urbanization prospects, the 2014 revision: Highlights. U.N. Dept. of Economic and Social Affairs Rep. ST/ESA/SER.A/352, 27 pp., https://population.un.org/wup/Publications/Files/WUP2014-Highlights.pdf.

  • United Nations, 2018: World Population Prospects 2017. Accessed 30 September 2018, https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.

  • U.S. Coast Guard, 2017: 2016 Recreational boating statistics. USCG Rep. COMDTPUB P16754.30, 83 pp., https://www.uscgboating.org/library/accident-statistics/Recreational-Boating-Statistics-2016.pdf.

  • USDOT FHWA Road Weather Management Program, 2017a: How do weather events impact roads? Accessed 4 February 2018, https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm.

  • USDOT FHWA Road Weather Management Program, 2017b: 511 travel information telephone services. Accessed 11 February 2018, https://ops.fhwa.dot.gov/511/index.htm.

  • USDOT FHWA Road Weather Management Program, 2017c: Surveillance, monitoring and prediction. Accessed 11 February 2018, https://ops.fhwa.dot.gov/weather/mitigating_impacts/surveillance.htm.

  • USDOT FHWA Road Weather Management Program, 2017d: Surveillance, projects and programs. Accessed 12 February 2018, https://ops.fhwa.dot.gov/weather/mitigating_impacts/programs.htm#p1.

  • van Ulden, A. P., 1978: Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ., 12, 21252129, https://doi.org/10.1016/0004-6981(78)90167-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voelcker, J., 2014: 1.2 billion vehicles on world's roads now, 2 billion by 2035: Report. Green Car Reports, accessed 15 October 2018 https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report.

  • Voogt, J. A., 2017: Urban climatology. International Encyclopedia of Geography: People, the Earth, Environment and Technology, John Wiley and Sons, 7305–7318.

  • Voogt, J. A., and T. R. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370384, https://doi.org/10.1016/S0034-4257(03)00079-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, H., Z. Zhong, X. Yang, and X. Li, 2015: Ensembles to model the impact of urbanization for a summertime rainstorm process in Yangtze River Delta, China. Meteor. Appl., 22, 105112, https://doi.org/10.1002/met.1360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Y. Gong, 2010: The impact of an urban dry island on the summer heat wave and sultry weather in Beijing City. Chin. Sci. Bull., 55, 16571661, https://doi.org/10.1007/s11434-010-3088-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., D. Niu, and L. Ji, 2012: Short-term power load forecasting based on IVL-BP neural network technology. Syst. Eng. Proc., 4, 168174, https://doi.org/10.1016/j.sepro.2011.11.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissman, G., R. Sargent, and B. Fanshaw, 2018: Renewables on the rise 2018: A decade of progress toward a clean energy future. Environment America Rep., 42 pp., https://environmentamerica.org/sites/environment/files/reports/AME_Renewables-on-the-Rise_Jul18-Web.pdf.

  • Wilczak, J., and Coauthors, 2015: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs. Bull. Amer. Meteor. Soc., 96, 16991718, https://doi.org/10.1175/BAMS-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., M. Brown, B. Singh, and D. Boswell, 2004: QUIC-PLUME theory guide. Los Alamos National Laboratory Doc. LA-UR-04-0561, 21 pp., https://www.lanl.gov/projects/quic/open_files/QUICPLUME_theory.pdf.

  • WMO, 2015: Valuing weather and climate: Economic assessment of meteorological and hydrological services. WMO, World Bank Group, GFDRR, and USAID Rep. WMO-1153, 286 pp., https://library.wmo.int/doc_num.php?explnum_id=3314.

  • Worldometers, 2018: Current world population. Accessed 30 September 2018, http://www.worldometers.info/world-population/.

  • Xcel Energy, 2018: Wind operations. Accessed 4 February 2018, https://www.xcelenergy.com/energy_portfolio/renewable_energy/wind/wind_operations.

  • Yang, D., P. Jirutitijaroen, and W. M. Walsh, 2012: Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy, 86, 35313543, https://doi.org/10.1016/j.solener.2012.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. A. Smith, D. B. Wright, M. L. Baeck, G. Villarini, F. Tian, and H. Hu, 2013: Urbanization and climate change: An examination of nonstationarities in urban flooding. J. Hydrometeor., 14, 17911809, https://doi.org/10.1175/JHM-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yow, D. M., 2007: Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass, 1, 12271251, https://doi.org/10.1111/j.1749-8198.2007.00063.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagouras, A., A. Kazantzidis, E. Nikitidou, and A. A. Argiriou, 2013: Determination of measuring sites for solar irradiance, based on cluster analysis of satellite-derived cloud estimations. Sol. Energy, 97, 111, https://doi.org/10.1016/j.solener.2013.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4783 2641 469
PDF Downloads 1408 201 15