100 Years of Progress in Gas-Phase Atmospheric Chemistry Research

T. J. Wallington Research and Advanced Engineering, Ford Motor Company, Dearborn, Michigan

Search for other papers by T. J. Wallington in
Current site
Google Scholar
PubMed
Close
,
J. H. Seinfeld California Institute of Technology, Pasadena, California

Search for other papers by J. H. Seinfeld in
Current site
Google Scholar
PubMed
Close
, and
J. R. Barker Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by J. R. Barker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Remarkable progress has occurred over the last 100 years in our understanding of atmospheric chemical composition, stratospheric and tropospheric chemistry, urban air pollution, acid rain, and the formation of airborne particles from gas-phase chemistry. Much of this progress was associated with the developing understanding of the formation and role of ozone and of the oxides of nitrogen, NO and NO2, in the stratosphere and troposphere. The chemistry of the stratosphere, emerging from the pioneering work of Chapman in 1931, was followed by the discovery of catalytic ozone cycles, ozone destruction by chlorofluorocarbons, and the polar ozone holes, work honored by the 1995 Nobel Prize in Chemistry awarded to Crutzen, Rowland, and Molina. Foundations for the modern understanding of tropospheric chemistry were laid in the 1950s and 1960s, stimulated by the eye-stinging smog in Los Angeles. The importance of the hydroxyl (OH) radical and its relationship to the oxides of nitrogen (NO and NO2) emerged. The chemical processes leading to acid rain were elucidated. The atmosphere contains an immense number of gas-phase organic compounds, a result of emissions from plants and animals, natural and anthropogenic combustion processes, emissions from oceans, and from the atmospheric oxidation of organics emitted into the atmosphere. Organic atmospheric particulate matter arises largely as gas-phase organic compounds undergo oxidation to yield low-volatility products that condense into the particle phase. A hundred years ago, quantitative theories of chemical reaction rates were nonexistent. Today, comprehensive computer codes are available for performing detailed calculations of chemical reaction rates and mechanisms for atmospheric reactions. Understanding the future role of atmospheric chemistry in climate change and, in turn, the impact of climate change on atmospheric chemistry, will be critical to developing effective policies to protect the planet.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. J. Wallington, twalling@ford.com

Abstract

Remarkable progress has occurred over the last 100 years in our understanding of atmospheric chemical composition, stratospheric and tropospheric chemistry, urban air pollution, acid rain, and the formation of airborne particles from gas-phase chemistry. Much of this progress was associated with the developing understanding of the formation and role of ozone and of the oxides of nitrogen, NO and NO2, in the stratosphere and troposphere. The chemistry of the stratosphere, emerging from the pioneering work of Chapman in 1931, was followed by the discovery of catalytic ozone cycles, ozone destruction by chlorofluorocarbons, and the polar ozone holes, work honored by the 1995 Nobel Prize in Chemistry awarded to Crutzen, Rowland, and Molina. Foundations for the modern understanding of tropospheric chemistry were laid in the 1950s and 1960s, stimulated by the eye-stinging smog in Los Angeles. The importance of the hydroxyl (OH) radical and its relationship to the oxides of nitrogen (NO and NO2) emerged. The chemical processes leading to acid rain were elucidated. The atmosphere contains an immense number of gas-phase organic compounds, a result of emissions from plants and animals, natural and anthropogenic combustion processes, emissions from oceans, and from the atmospheric oxidation of organics emitted into the atmosphere. Organic atmospheric particulate matter arises largely as gas-phase organic compounds undergo oxidation to yield low-volatility products that condense into the particle phase. A hundred years ago, quantitative theories of chemical reaction rates were nonexistent. Today, comprehensive computer codes are available for performing detailed calculations of chemical reaction rates and mechanisms for atmospheric reactions. Understanding the future role of atmospheric chemistry in climate change and, in turn, the impact of climate change on atmospheric chemistry, will be critical to developing effective policies to protect the planet.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. J. Wallington, twalling@ford.com
Save
  • Abramson, E., D. Imre, J. Beranek, J. Wilson, and A. Zelenyuk, 2013: Experimental determination of chemical diffusion within secondary organic aerosol particles. Phys. Chem. Chem. Phys., 15, 29832991, https://doi.org/10.1039/c2cp44013j.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Crossref
    • Export Citation
  • Adel, A., 1939: Note on the atmospheric oxides of nitrogen. Astrophys. J., 90, 627, https://doi.org/10.1086/144129.

  • Adel, A., 1941: The grating infrared solar spectrum II. Rotational structure of the nitrous oxide (NNO) band ν1 at 7.78 μ. Astrophys. J., 93, 509510, https://doi.org/10.1086/144298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajavon, A.-L. N., P. A. Newman, J. A. Pyle, and A. R. Ravishankara, Eds., 2014: Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project Rep. 55, WMO, 416 pp., https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.

  • Albert-Lévy, 1877: Ozone. Annuaire de l’Observatoire de Montsouris pour l’an 1877, 398–405.

  • Altshuller, A. P., and J. J. Bufalini, 1971: Photochemical aspects of air pollution: A review. Environ. Sci. Technol., 5, 3964, https://doi.org/10.1021/es60048a001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, M., R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, 2013: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—Heterogeneous reactions with liquid substrates. Atmos. Chem. Phys., 13, 80458228, https://doi.org/10.5194/acp-13-8045-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., 1975: The absolute concentration of O(3P) in the Earth’s stratosphere. Geophys. Res. Lett., 2, 231234, https://doi.org/10.1029/GL002i006p00231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., 1976: The absolute concentration of OH(X2Π) in the Earth’s stratosphere. Geophys. Res. Lett., 3, 165168, https://doi.org/10.1029/GL003i003p00165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., 1980: Free radicals in the Earth’s stratosphere: A review of recent results. NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences, M. Nicolet and A. C. Aiken, Eds., U.S. Department of Transportation, 233–251.

  • Anderson, J. G., 1995: Polar processes in ozone depletion. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific, 744–770.

    • Crossref
    • Export Citation
  • Anderson, J. G., 2016: Curriculum vitae of James G. Anderson. J. Phys. Chem., 120A, 1321, https://doi.org/10.1021/acs.jpca.5b12138.

  • Anderson, J. G., J. J. Margitan, and D. H. Stedman, 1977: Atomic chlorine and the chlorine monoxide radical in the stratosphere. Science, 198, 501503, https://doi.org/10.1126/science.198.4316.501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., H. J. Grassl, R. E. Shetter, and J. J. Margitan, 1980: Stratospheric free chlorine measured by balloon borne in situ resonance fluorescence. J. Geophys. Res., 85, 28692887, https://doi.org/10.1029/JC085iC05p02869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., W. H. Brune, and M. H. Proffitt, 1989: Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO-O anticorrelation based on in situ ER-2 data. J. Geophys. Res., 94, 11 46511 479, https://doi.org/10.1029/JD094iD09p11465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. W. Toohey, and W. H. Brune, 1991: Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science, 251, 3946, https://doi.org/10.1126/science.251.4989.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., J. M. Russell III, S. Solomon, and L. E. Deaver, 2000: Halogen occultation experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol. J. Geophys. Res., 105, 44834490, https://doi.org/10.1029/1999JD901075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assmann, R., 1902: Über die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 24, 110.

    • Search Google Scholar
    • Export Citation
  • Atkinson, R., 1989: Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds. Journal of Physical and Chemical Reference Data Monogr., No. 1, American Chemical Society, 246 pp.

  • Atkinson, R., 2007: Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method. Atmos. Environ., 41, 84688485, https://doi.org/10.1016/j.atmosenv.2007.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, R., and W. P. L. Carter, 1984: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev., 84, 437470, https://doi.org/10.1021/cr00063a002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, J. R., 2001: Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int. J. Chem. Kinet., 33, 232245, https://doi.org/10.1002/kin.1017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, J. R., and Coauthors, 2017: Multiwell Program Suite. University of Michigan, http://clasp-research.engin.umich.edu/multiwell/?url=multiwell/.

  • Barrie, L. A., J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen, 1988: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature, 334, 138141, https://doi.org/10.1038/334138a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartle, K. D., and P. Myers, 2002: History of gas chromatography. Trends Anal. Chem., 21, 547557, https://doi.org/10.1016/S0165-9936(02)00806-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301326, https://doi.org/10.1029/JZ055i003p00301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and A. E. Witherspoon, 1952: The photo-chemistry of some minor constituents of the Earth’s atmosphere (CO2, CO, CH4, N2O). Mon. Not. Roy. Astron. Soc., 112, 101124, https://doi.org/10.1093/mnras/112.1.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and P. B. Hays, 1967: Atmospheric nitrous oxide. Planet. Space Sci., 15, 189197, https://doi.org/10.1016/0032-0633(67)90074-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, K. H., J. D. Crounse, J. M. St. Clair, N. B. Bennett, T. B. Nguyen, J. H. Seinfeld, B. M. Stoltz, and P. O. Wennberg, 2014: Gas phase production and loss of isoprene epoxydiols. J. Phys. Chem., 118A, 12371246, https://doi.org/10.1021/jp4107958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaver, M. R., and Coauthors, 2012: Importance of biogenic precursors to the budget of organic nitrates: Observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009. Atmos. Chem. Phys., 12, 57735785, https://doi.org/10.5194/acp-12-5773-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedanov, V. M., W. Tsang, and M. R. Zachariah, 1995: Master equation analysis of thermal activation reactions: Reversible isomerization and decomposition. J. Phys. Chem., 99, 11 45211 457, https://doi.org/10.1021/j100029a024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. L., and D. Davis, 2001: Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ. Health Perspect., 109, 389394, https://doi.org/10.1289/ehp.01109s3389.

    • Search Google Scholar
    • Export Citation
  • Benson, S. W., 1976: Thermochemical Kinetics. 2nd ed. Wiley, 320 pp.

  • Benson, S. W., and A. E. Axworthy Jr., 1957: Mechanism of the gas phase, thermal decomposition of ozone. J. Chem. Phys., 26, 17181726, https://doi.org/10.1063/1.1743610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, S. W., and A. E. Axworthy Jr., 1965: Reconsideration of the rate constants from the thermal decomposition of ozone. J. Chem. Phys., 42, 26142615, https://doi.org/10.1063/1.1696345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, S. W., D. M. Golden, and J. R. Barker, Eds., 1975: Proceedings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmosphere. Int. J. Chem. Kinet., 1 (Suppl. 1), 1656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blacet, F. E., 1952: Photochemistry in the lower atmosphere. Ind. Eng. Chem., 44, 13391342, https://doi.org/10.1021/ie50510a044.

  • Black, J., 1756: Experiments upon magnesia alba, quick lime and some other alkaline substances. Philos. Soc. Edinburgh, 2, 157225.

  • Blake, D. R., and F. S. Rowland, 1988: Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239, 11291131, https://doi.org/10.1126/science.239.4844.1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, D. R., E. W. Mayer, S. C. Tyler, Y. Makide, D. C. Montague, and F. S. Rowland, 1982: Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys. Res. Lett., 9, 477480, https://doi.org/10.1029/GL009i004p00477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. 2nd ed. D. Reidel, 452 pp.

    • Crossref
    • Export Citation
  • Braun, W., and M. Lenzi, 1967: Resonance fluorescence method for kinetics of atomic reactions. Reactions of atomic hydrogen with olefins. Discuss. Faraday Soc., 44, 252262, https://doi.org/10.1039/df9674400252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimblecombe, P., 1977: London air pollution, 1500–1900. Atmos. Environ., 11, 11571162, https://doi.org/10.1016/0004-6981(77)90091-9.

  • Brimblecombe, P., 1995: History of air pollution. Composition, Chemistry, and Climate of the Atmosphere, H. B. Singh, Ed., Van Nostrand, 1–18.

  • Brimblecombe, P., Ed., 2017: Air Pollution Episodes. Vol. 6, Air Pollution Reviews, World Scientific, 396 pp.

    • Crossref
    • Export Citation
  • Brönnimann, S., J. Staehelin, S. F. G. Farmer, J. C. Caine, T. Svendby, and T. Svenøe, 2003: Total ozone observations prior to the IGY. I: A history. Quart. J. Roy. Meteor. Soc., 129, 27972817, https://doi.org/10.1256/qj.02.118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, H. T., and F. Escombe, 1900: Method used for determining the carbon dioxide absorbed by solutions of sodium hydroxide. Philos. Trans. Roy. Soc. London, 193B, 289291.

    • Search Google Scholar
    • Export Citation
  • Brown, H. T., and F. Escombe, 1905: On a new method for the determination of atmospheric carbon dioxide, based on the rate of its absorption by a free surface of a solution of caustic alkali. Proc. Roy. Soc. London, 76B, 112117, https://doi.org/10.1098/rspb.1905.0003.

    • Search Google Scholar
    • Export Citation
  • Brown, S. S., and Coauthors, 2009: Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmos. Chem. Phys., 9, 30273042, https://doi.org/10.5194/acp-9-3027-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. S., and Coauthors, 2013: Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: Aircraft vertical profiles in Houston, TX. Atmos. Chem. Phys., 13, 11 31711 337, https://doi.org/10.5194/acp-13-11317-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, W. H., J. G. Anderson, and K. R. Chan, 1989: In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54°S to 72°S latitude. J. Geophys. Res., 94, 16 64916 663, https://doi.org/10.1029/JD094iD14p16649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchwitz, M., and Coauthors, 2005: Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set. Atmos. Chem. Phys., 5, 33133329, https://doi.org/10.5194/acp-5-3313-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budisulistiorini, S. H., and Coauthors, 2015: Examining the effects anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmos. Chem. Phys., 15, 88718888, https://doi.org/10.5194/acp-15-8871-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkholder, J. B., and Coauthors, 2015: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation 18, JPL Publ. 15-10, 1392 pp., https://jpldataeval.jpl.nasa.gov/pdf/JPL_Publication_15-10.pdf.

  • Burrows, J. P., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadle, R. D., and C. Schadt, 1952: Kinetics of the gas phase reaction of olefins with ozone. J. Amer. Chem. Soc., 74, 60026004, https://doi.org/10.1021/ja01143a053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Meteor. Soc., 64, 223237, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cape, J. N., 1993: Direct damage to vegetation caused by acid rain and polluted cloud: Definition of critical levels for forest trees. Environ. Pollut., 82, 167180, https://doi.org/10.1016/0269-7491(93)90114-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvert, J. G., J. J. Orlando, W. R. Stockwell, and T. J. Wallington, 2015: The Mechanisms of Reactions Influencing Atmospheric Ozone. Oxford University Press, 608 pp.

    • Crossref
    • Export Citation
  • Cardelino, C. A., and W. L. Chameides, 1990: Natural hydrocarbons, urbanization, and urban ozone. J. Geophys. Res., 95, 13 97113 979, https://doi.org/10.1029/JD095iD09p13971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, L. J., 2003: Iodine in the marine boundary layer. Chem. Rev., 103, 49534962, https://doi.org/10.1021/cr0206465.

  • Cavendish, H., 1785: Experiments on air. Philos. Trans. Roy. Soc. London, 75, 372384, https://doi.org/10.1098/rstl.1785.0023.

  • Chameides, W., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 87518760, https://doi.org/10.1029/JC078i036p08751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, A. W. H., and Coauthors, 2010: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys., 10, 71697188, https://doi.org/10.5194/acp-10-7169-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, A. W. H., and Coauthors, 2013: Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. J. Geophys. Res. Atmos., 118, 67836796, https://doi.org/10.1002/jgrd.50533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930a: XXXV. On ozone and atomic oxygen in the upper atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci. Ser. 7, 10, 369383, https://doi.org/10.1080/14786443009461588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930b: A theory of upper-atmosphere ozone. Mem. Roy. Meteor. Soc., 3, 103125.

  • Chapman, S., 1931: The absorption and dissociative or ionizing effect of monochromatic radiations in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 2645, https://doi.org/10.1088/0959-5309/43/1/305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1942: The photochemistry of atmospheric oxygen. Rep. Prog. Phys., 9, 92100, https://doi.org/10.1088/0034-4885/9/1/310.

  • Chipperfield, M. P., and Coauthors, 2017: Detecting recovery of the stratospheric ozone layer. Nature, 549, 211218, https://doi.org/10.1038/nature23681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E. S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA, 111, 11 63611 641, https://doi.org/10.1073/pnas.1409659111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cicerone, R. J., S. Walters, and S. C. Liu, 1983: Nonlinear response of stratospheric ozone column to chlorine injections. J. Geophys. Res., 88, 36473661, https://doi.org/10.1029/JC088iC06p03647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claeys, M., and Coauthors, 2004: Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303, 11731176, https://doi.org/10.1126/science.1092805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clyne, M. A. A., and H. W. Cruse, 1972: Atomic resonance fluorescence spectrometry for rate constants of rapid bimolecular reactions. Part 1. Reactions O + NO2, Cl + ClNO, Br + ClNO. J. Chem. Soc. Faraday Trans. II, 68, 12811299, https://doi.org/10.1039/F29726801281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and Coauthors, 2014: Global distribution and trends of tropospheric ozone: An observation-based review. Elementa Sci. Anth., 2, p.000029, http://doi.org/10.12952/journal.elementa.000029.

    • Search Google Scholar
    • Export Citation
  • Cornu, A., 1879: Sur la limite ultra-violette du spectre solaire. C. R. Acad. Sci. Paris, 88, 11011108.

  • Cowling, E. B., 1982: Acid precipitation in historical perspective. Environ. Sci. Technol., 16, 110A123A, https://doi.org/10.1021/es00096a725.

  • Cox, R. A., 2012: Evaluation of laboratory kinetics and photochemical data for atmospheric chemistry application. Chem. Rev., 41, 62316246, https://doi.org/10.1039/c2cs35092k.

    • Search Google Scholar
    • Export Citation
  • Cox, R. A., and S. A. Penkett, 1971: Oxidation of atmospheric SO2 by products of ozone-olefin reaction. Nature, 230, 321322, https://doi.org/10.1038/230321a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Criegee, R., 1957: The course of ozonization of unsaturated compounds. Rec. Chem. Prog., 18, 111120.

  • Crutzen, P., 1971: Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res., 76, 73117327, https://doi.org/10.1029/JC076i030p07311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106–108, 13851399, https://doi.org/10.1007/BF00881092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1974: A review of upper atmospheric photochemistry. Can. J. Chem., 52, 15691581, https://doi.org/10.1139/v74-229.

  • Crounse, J. D., L. B. Nielsen, S. Jorgensen, H. G. Kjaergaard, and P. O. Wennberg, 2013: Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett., 4, 35133520, https://doi.org/10.1021/jz4019207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, J. N., M. Ammann, R. G. Hynes, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, 2010: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—Heterogeneous reactions on solid substrates. Atmos. Chem. Phys., 10, 90599223, https://doi.org/10.5194/acp-10-9059-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320325, https://doi.org/10.1002/qj.49709640815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalton, J., 1802: On the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on expansion of gases by heat. Mem. Lit. Philos. Soc. Manchester, 5, 535602.

    • Search Google Scholar
    • Export Citation
  • Dalton, J., 1805: Experimental enquiry into the proportion of the several gases or elastic fluids, constituting the atmosphere. Mem. Lit. Philos. Soc. Manchester Ser. II, 1, 244258.

    • Search Google Scholar
    • Export Citation
  • De Bort, L. P. T., 1902: Variations de la température de l’air libre, dans la zone comprise entre 8 et 15 kilomètres d’altitude. C. R. Acad. Sci., 134, 987989.

    • Search Google Scholar
    • Export Citation
  • De Broglie, L., 1925: Recherches sur la théorie des quanta. Ann. Phys., 10, 22128, https://doi.org/10.1051/anphys/192510030022.

  • de Zafra, R. L., M. Jaramillo, A. Parrish, P. Solomon, B. Connor, and J. Barrett, 1987: High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: Diurnal variation. Nature, 328, 408411, https://doi.org/10.1038/328408a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dlugokencky, E., 2018: Trends in atmospheric methane. NOAA/ESRL, accessed October 2018, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.

  • Dlugokencky, E., and P. Tans, 2018: Trends in atmospheric carbon dioxide. NOAA/ESRL, accessed October 2018, www.esrl.noaa.gov/gmd/ccgg/trends/.

  • Dlugokencky, E., and Coauthors, 2005: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J. Geophys. Res., 110, D18306, https://doi.org/10.1029/2005JD006035.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1923: Measurements of the Sun’s ultra-violet radiation and its absorption in the Earth’s atmosphere. Proc. Roy. Soc. London, 104A, 252271, https://doi.org/10.1098/rspa.1923.0107.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1968: Exploring the Atmosphere. 2nd ed. Oxford University Press, 209 pp.

  • Dobson, G. M. B., and D. N. Harrison, 1926: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, 110A, 660693, https://doi.org/10.1098/rspa.1926.0040.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1927: Measurements of the amount of ozone in the Earth’s atmosphere arid its relation to other geophysical conditions—Part II. Proc. Roy. Soc. London, 114A, 521541, https://doi.org/10.1098/rspa.1927.0056.

    • Search Google Scholar
    • Export Citation
  • Donahue, N. M., J. H. Kroll, S. N. Pandis, and A. L. Robinson, 2012a: A two-dimensional volatility basis set—Part 2: Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys., 12, 615634, https://doi.org/10.5194/acp-12-615-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donahue, N. M., and Coauthors, 2012b: Aging of biogenic secondary organic aerosols via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA, 109, 13 50313 508, https://doi.org/10.1073/pnas.1115186109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donahue, N. M., W. Chuang, and M. Schervish, 2019: Gas-phase organic oxidation chemistry and atmospheric particles. Organic Oxidation and Multiphase Chemistry, J. R. Barker, A. L. Steiner, and T. J. Wallington, Eds., Advances in Atmospheric Chemistry, Vol. 2, World Scientific, 199–317, https://doi.org/10.1142/9789813271838_0004.

    • Crossref
    • Export Citation
  • Dotto, L., and H. Schiff, 1978: The Ozone War. Doubleday & Co., 342 pp.

  • Douglass, A. R., P. A. Newman, and S. Solomon, 2014: The Antarctic ozone hole: An update. Phys. Today, 67 (7), 4248, https://doi.org/10.1063/PT.3.2449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., S. E. Strahan, L. D. Oman, and R. S. Stolarski, 2017: Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change. Atmos. Chem. Phys., 17, 12 08112 096, https://doi.org/10.5194/acp-17-12081-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duong, M. V., H. T. Nguyen, N. Truong, T. N. M. Le, and L. K. Huynh, 2015: Multi-Species Multi-Channel (MSMC): An ab initio-based parallel thermodynamic and kinetic code for complex chemical systems. Int. J. Chem. Kinet., 47, 564575, https://doi.org/10.1002/kin.20930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dütsch, H. U., 1974: The ozone distribution in the atmosphere. Can. J. Chem., 52, 14911504, https://doi.org/10.1139/v74-220.

  • Dütsch, H. U., 1992: F. W. Paul Götz—The man and his work. J. Atmos. Terr. Phys., 54, 485496, https://doi.org/10.1016/0021-9169(92)90092-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehhalt, D. H., 1974: Sampling of stratospheric trace constituents. Can. J. Chem., 52, 15101518, https://doi.org/10.1139/v74-222.

  • Ehn, M., and Coauthors, 2012: Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmos. Chem. Phys., 12, 51135127, https://doi.org/10.5194/acp-12-5113-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehn, M., and Coauthors, 2014: A large source of low-volatility secondary organic aerosol. Nature, 506, 476479, https://doi.org/10.1038/nature13032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldering, A., and Coauthors, 2017a: The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech., 10, 549563, https://doi.org/10.5194/amt-10-549-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldering, A., and Coauthors, 2017b: The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358, https://doi.org/10.1126/science.aam5745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., B. J. Turpin, and R. J. Weber, 2011: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field, and model studies. Atmos. Chem. Phys., 11, 11 06911 102, https://doi.org/10.5194/acp-11-11069-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., Y. B. Lim, A. Sorooshian, and B. J. Turpin, 2014: Key parameters controlling aqSOA formation. J. Geophys. Res. Atmos., 119, 39974016, https://doi.org/10.1002/2013JD021021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan, 1996: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res., 101, 41154128, https://doi.org/10.1029/95JD03410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etheridge, D., L. Steele, R. Francey, and R. Langenfelds, 1998: Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res., 103, 15 97915 993, https://doi.org/10.1029/98JD00923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, C., and H. Buisson, 1913: L’absorption de l’ultra-violet par l’ozone et la limite du spectre solaire. J. Phys. Theor. Appl., 3, 196206, https://doi.org/10.1051/jphystap:019130030019601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, C., and H. Buisson, 1921: Étude de l’extrémité ultra-violette du spectre solaire. J. Phys. Radium, 2, 197226, https://doi.org/10.1051/jphysrad:0192100207019700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W., and A. R. Ravishankara, 1999: Summer in the stratosphere. Science, 285, 208210, https://doi.org/10.1126/science.285.5425.208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W ., P. A. Newman, J. A. Pyle, and B. Safari, Eds., 2019: Scientific assessment of ozone depletion: 2018. Global Ozone Research and Monitoring Project Rep. 58, WMO, 590 pp., https://www.esrl.noaa.gov/csd/assessments/ozone/2018/report/2018OzoneAssessment.pdf.

  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, C. B., G. C. Toon, P. W. Schaper, J.-F. Blavier, and L. L. Lowes, 1987: Stratospheric trace gases in the spring 1986 Antarctic atmosphere. Nature, 329, 126130, https://doi.org/10.1038/329126a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fermann, J. T., B. C. Hoffman, G. S. Tschumper, and H. F. Schaefer, 1997: The hydroperoxyl radical dimer: Triplet ring or singlet string? J. Chem. Phys., 106, 51025108, https://doi.org/10.1063/1.473530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez-Ramos, A., B. A. Ellingson, B. C. Garrett, and D. G. Truhlar, 2007: Variational transition state theory with multidimensional tunneling. Reviews in Computational Chemistry, K. B. Lipkowitz and T. R. Cundari, Eds., Wiley, 125–232, ttps://doi.org/10.1002/9780470116449.ch3.

    • Crossref
    • Export Citation
  • Ferretti, D. F., D. C. Lowe, R. J. Martin, and G. W. Brailsford, 2000: A new GC-IRMS technique for high precision, N2O-free analysis of δ13C and δ18O in atmospheric CO2 from small air samples. J. Geophys. Res., 105, 67096718, https://doi.org/10.1029/1999JD901051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlayson-Pitts, B. J., and J. N. Pitts Jr., 2000: Chemistry of the Upper and Lower Atmosphere. Academic Press, 969 pp., https://doi.org/10.1016/B978-0-12-257060-5.X5000-X.

    • Crossref
    • Export Citation
  • Finlayson-Pitts, B. J., M. J. Ezell, and J. N. Pitts Jr., 1989: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature, 337, 241244, https://doi.org/10.1038/337241a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontijn, A., A. J. Sabadell, and R. J. Ronco, 1970: Homogenous chemiluminescent measurement of nitric oxide with ozone. Anal. Chem., 42, 575579, https://doi.org/10.1021/ac60288a034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forst, W., 2003: Unimolecular Reactions: A Concise Introduction. Cambridge University Press, 319 pp.

  • Foster, K. L., R. A. Plastridge, J. W. Bottenheim, P. B. Shepson, B. J. Finlayson-Pitts, and C. W. Spicer, 2001: The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science, 291, 471474, https://doi.org/10.1126/science.291.5503.471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, A., and R. J. Strutt, 1917: Absorption bands of atmospheric ozone in the spectra of sun and stars. Proc. Roy. Soc. London, 93A, 577, https://doi.org/10.1098/rspa.1917.0041.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, L., and Coauthors, 2006: Temporal decrease in upper atmospheric chlorine. Geophys. Res. Lett., 33, L23812, https://doi.org/10.1029/2006GL027600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fry, J. L., and Coauthors, 2013: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmos. Chem. Phys., 13, 85858605, https://doi.org/10.5194/acp-13-8585-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbally, I. E., D. Tarasick, T. J. Wallington, J. Stähelin, M. Steinbacher, M. Schultz, O. Cooper, and S. Oltmans, 2017: The historic surface ozone record, 1896-1975, and its relation to modern measurements. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract A54E-04, https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/252127.

  • Gao, S., and Coauthors, 2004: Particle phase acidity and oligomer formation in secondary organic aerosol. Environ. Sci. Technol., 38, 65826589, https://doi.org/10.1021/es049125k.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaston, C. J., T. P. Riedel, Z. Zhang, A. Gold, J. D. Surratt, and J. A. Thornton, 2014: Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol., 48, 11 17811 186, https://doi.org/10.1021/es5034266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatley, D. P., 2004: Psychrometric chart celebrates 100th anniversary. ASHRAE J., 46, 1620.

  • Gear, C. W., 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.

  • Gentner, D. R., and Coauthors, 2017: Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol., 51, 10741093, https://doi.org/10.1021/acs.est.6b04509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giunta, C. J., 1998: Using history to teach the scientific method: The case of argon. J. Chem. Educ., 75, 13221325, https://doi.org/10.1021/ed075p1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glasius, M., and A. H. Goldstein, 2016: Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol., 50, 27542764, https://doi.org/10.1021/acs.est.5b05105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glasstone, S., K. J. Laidler, and H. Eyring, 1941: The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. McGraw-Hill, 611 pp.

  • Glowacki, D. R., C. H. Liang, C. Morley, M. J. Pilling, and S. H. Robertson, 2012: MESMER: An open-source master equation solver for multi-energy well reactions. J. Phys. Chem., 116A, 95459560, https://doi.org/10.1021/jp3051033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., and I. E. Galbally, 2007: Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol., 41, 15151521, https://doi.org/10.1021/es072476p.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Götz, F. W. P., G. M. B. Dobson, and A. R. Meetham, 1933: Vertical distribution of ozone in the atmosphere. Nature, 132, 281, https://doi.org/10.1038/132281a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Götz, F. W. P., A. R. Meetham, and G. M. B. Dobson, 1934: The vertical distribution of ozone in the atmosphere. Proc. Roy. Soc. London, 145A, 416446, https://doi.org/10.1098/rspa.1934.0109.

    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., and Coauthors, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emission of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, https://doi.org/10.5194/acp-6-3181-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., and Coauthors, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5, 14711492, https://doi.org/10.5194/gmd-5-1471-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haagen-Smit, A. J., 1952: Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem., 44, 13421346, https://doi.org/10.1021/ie50510a045.

  • Haagen-Smit, A. J., C. E. Bradley, and M. M. Fox, 1953: Ozone formation in photochemical oxidation of organic substances. Ind. Eng. Chem., 45, 20862089, https://doi.org/10.1021/ie50525a044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallquist, M., and Coauthors, 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys., 9, 51555236, https://doi.org/10.5194/acp-9-5155-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, P., 1887: On the estimation of the relative accounts of caustic and carbonate of soda in commercial soda. J. Soc. Chem. Ind., 6, 347.

    • Search Google Scholar
    • Export Citation
  • Hartley, W. N., 1881: On the absorption of solar rays by atmospheric ozone. J. Chem. Soc. Trans., 39, 111128, https://doi.org/10.1039/CT8813900111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartley, H., 1947: Antoine Laurent Lavoisier 26 August 1743–8 May 1794. Proc. Roy. Soc., 189A, 427456, https://doi.org/10.1098/rspa.1947.0050.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., T. L. Killeen, and B. C. Kennedy, 1981: The Fabry-Perot interferometer on Dynamics Explorer. Space Sci. Instrum., 5, 395416.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, 1993: The high-resolution doppler imager on the Upper Atmosphere Research Satellite. J. Geophys. Res., 98, 10 71310 723, https://doi.org/10.1029/93JD00409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2008: Total observed organic carbon (TOOC) in the atmosphere: A synthesis of North American observations. Atmos. Chem. Phys., 8, 20072025, https://doi.org/10.5194/acp-8-2007-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2010: A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010GL042737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidorn, K. C., 1978: A chronology of important events in the history of air pollution meteorology to 1970. Bull. Amer. Meteor. Soc., 59, 15891597, https://doi.org/10.1175/1520-0477(1978)059<1589:ACOIEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hering, W. S., and T. R. Borden, 1965: Ozonesonde obervations over North America. Vol. 3, AFCRL-64-30, Air Force Cambridge Research Laboratories, 265 pp.

  • Hindmarsh, A. C., 1974: GEAR: Ordinary Differential Equation System Solver. Lawrence Livermore Laboratory, 79 pp.

  • Hodzic, A., P. S. Khasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, and R. J. Park, 2016: Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys., 16, 79177941, https://doi.org/10.5194/acp-16-7917-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., 1988: Balloon-borne measurements of middle atmosphere aerosols and trace gases in Antarctica. Rev. Geophys., 26, 113130, https://doi.org/10.1029/RG026i001p00113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., S. J. Oltmans, J. A. Lathrop, J. M. Harris, and H. Vömel, 1994: Record low ozone at the South Pole in the spring of 1993. Geophys. Res. Lett., 21, 421424, https://doi.org/10.1029/94GL00309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Energy Agency, 2018: World Energy Outlook 2017. OECD, 763 pp.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Isaacman-VanWertz, G., and Coauthors, 2016: Ambient gas-particle partitioning of tracers for biogenic oxidation. Environ. Sci. Technol., 50, 99529962, https://doi.org/10.1021/acs.est.6b01674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaacman-VanWertz, G., and Coauthors, 2017: Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: Current capabilities and remaining gaps. Faraday Discuss., 200, 579598, https://doi.org/10.1039/C7FD00021A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate–chemistry interactions. Atmos. Environ., 43, 51385192, https://doi.org/10.1016/j.atmosenv.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and Coauthors, 2016: Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Phys. Chem., 16, 14 37114 396, https://doi.org/10.5194/acp-16-14371-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Japar, S. M., and H. Niki, 1975: Gas-phase reactions of the nitrate radical with olefins. J. Phys. Chem., 79, 16291632, https://doi.org/10.1021/j100583a002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkin, M. E., S. M. Saunders, V. Wagner, and M. J. Pilling, 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys., 3, 181193, https://doi.org/10.5194/acp-3-181-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 15251529, https://doi.org/10.1126/science.1180353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, P., Z. Lu, and A. L. Steiner, 2017: The ozone-climate penalty in the Midwestern U.S. Atmos. Environ., 170, 130142, https://doi.org/10.1016/j.atmosenv.2017.09.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517522, https://doi.org/10.1126/science.173.3996.517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. V., Ed., 2004: The next generation in scientific ballooning. Adv. Space Res., 33 (special issue), 1587–1846.

    • Crossref
    • Export Citation
  • Junge, C. E., 1962: Global ozone budget and exchange between stratosphere and troposphere. Tellus, 14, 363377.

  • Junge, C. E., C. W. Chagnon, and J. E. Manson, 1961: Stratospheric aerosols. J. Meteor., 18, 81108, https://doi.org/10.1175/1520-0469(1961)018<0081:SA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalberer, M., and Coauthors, 2004: Identification of polymers as major components of atmospheric organic aerosols. Science, 303, 16591662, https://doi.org/10.1126/science.1092185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamens, R. M., H. E. Jeffries, M. W. Gery, R. W. Wiener, K. G. Sexton, and G. B. Howe, 1981: The impact of α-pinene on urban smog formation: An outdoor smog chamber study. Atmos. Environ., 15, 969981, https://doi.org/10.1016/0004-6981(81)90097-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamens, R. M., M. W. Gery, H. E. Jeffries, M. Jackson, and E. I. Cole, 1982: Ozone-isoprene reactions: Product formation and aerosol potential. Int. J. Chem. Kinet., 14, 955975, https://doi.org/10.1002/kin.550140902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassel, L. S., 1932: Kinetics of Homogeneous Gas Reactions. ACS Monogr., Vol. 57, American Chemical Society, 330 pp.

  • Keeling, C. D., 1958: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta, 13, 322333, https://doi.org/10.1016/0016-7037(58)90033-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 7, 200203.

  • Keeling, R. F., 1988: Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air. J. Atmos. Chem., 7, 153176, https://doi.org/10.1007/BF00048044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschke, S., and Coauthors, 2013: Three decades of global methane sources and sinks. Nat. Geosci., 6, 813823, https://doi.org/10.1038/ngeo1955.

  • Kleffmann, J., G. V. Tapia, I. Bejan, R. Kurtenbach, and P. Wiesen, 2013: NO2 measurement techniques: Pitfalls and new developments. Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, I. Barnes and K. J. Rudzinski, Eds., NATO Science for Peace and Security Series C: Environmental Security, Springer, 15–28.

    • Crossref
    • Export Citation
  • Kley, D., A. Volz, and F. Mulheims, 1988: Ozone measurements in historic perspective. Tropospheric Ozone, I. S. A. Isaksen, Ed., NATO ASI Series, Vol. 227, D. Reidel, https://doi.org/10.1007/978-94-009-2913-5_4, 63–72.

    • Crossref
    • Export Citation
  • Klippenstein, S. J., A. F. Wagner, S. H. Robertson, R. Dunbar, and D. M. Wardlaw, 1999: VARIFLEX, version 1.0. Argonne National Laboratory.

  • Knyazev, V. D., and W. Tsang, 2000: Chemically and thermally activated decomposition of secondary butyl radical. J. Phys. Chem., 104A, 10 74710 765, https://doi.org/10.1021/jp001921z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolb, C. E., and Coauthors, 1995: Laboratory studies of atmospheric heterogeneous chemistry. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific Publishing Company, 374–419.

  • Kreidenweis, S., M. Petters, and U. Lohmann, 2019: 100 years of progress in cloud physics, aerosols, and aerosol chemistry. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.

    • Crossref
    • Export Citation
  • Kroll, J. H., and J. H. Seinfeld, 2008: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ., 42, 35933624, https://doi.org/10.1016/j.atmosenv.2008.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroll, J. H., N. L. Ng, S. M. Murphy, R. C. Flagan, and J. H. Seinfeld, 2006: Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol., 40, 18691877, https://doi.org/10.1021/es0524301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroll, J. H., and Coauthors, 2011: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem., 3, 133139, https://doi.org/10.1038/nchem.948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, A. J., 1973: The mean ozone distributions from several series of rocket soundings to 52 km at latitudes from 58°S to 64°N. Pure Appl. Geophys., 106-108, 12711280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 67166733, https://doi.org/10.1364/AO.48.006716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuze, A., and Coauthors, 2016: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech., 9, 24452461, https://doi.org/10.5194/amt-9-2445-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, A., and Coauthors, 2007: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724.

    • Search Google Scholar
    • Export Citation
  • Lane, N., 2002: Oxygen: The Molecule that Made the World. Oxford University Press, 384 pp.

  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist Air. Bull. Amer. Meteor. Soc., 86, 225233, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leather, K. E., and Coauthors, 2012: Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS). Atmos. Chem. Phys., 12, 469479, https://doi.org/10.5194/acp-12-469-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. H., and Coauthors, 2016: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proc. Natl. Acad. Sci. USA, 113, 15161521, https://doi.org/10.1073/pnas.1508108113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, P. J., 1961: Photochemistry of Air Pollution. Academic Press, 312 pp.

  • Leone, J. A., R. C. Flagan, D. Grosjean, and J. H. Seinfeld, 1985: An outdoor smog chamber and modeling study of toluene-NOx photooxidation. Int. J. Chem. Kinet., 17, 177216, https://doi.org/10.1002/kin.550170206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173, 141143, https://doi.org/10.1126/science.173.3992.141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, A. G., and Coauthors, 2000: A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature, 405, 778781, https://doi.org/10.1038/35015540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K.-F., Q. Zhang, S. Wang, S. P. Sander, and Y. L. Yung, 2017: Resolving the model-observation discrepancy in the mesospheric and stratospheric HOx chemistry. Earth Space Sci., 4, 607624, https://doi.org/10.1002/2017EA000283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2016: Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. USA, 113, 58745879, https://doi.org/10.1073/pnas.1525736113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., J. Liu, J. E. Shilling, S. M. Kathmann, J. Laskin, and A. Laskin, 2015: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys., 17, 23 31223 325, https://doi.org/10.1039/C5CP02563J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-H., and Coauthors, 2013: Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA, 110, 67186723, https://doi.org/10.1073/pnas.1221150110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindemann, F. A., and G. M. B. Dobson, 1923: A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc. Roy. Soc. London, 102A, 411437, https://doi.org/10.1098/rspa.1923.0003.

    • Search Google Scholar
    • Export Citation
  • Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy, 1981: Tropospheric chemistry: A global perspective. J. Geophys. Res., 86, 72107254, https://doi.org/10.1029/JC086iC08p07210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, J. A., and Coauthors, 2012: Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. J. Geophys. Res., 117, D09301, https://doi.org/10.1029/2011JD016952.

    • Search Google Scholar
    • Export Citation
  • Lovelock, J. E., 1958: A sensitive detector for gas chromatography. J. Chromatogr., 1A, 3546, https://doi.org/10.1016/S0021-9673(00)93398-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovelock, J. E., 1961: Ionization methods for the analysis of gases and vapors. Anal. Chem., 33, 162178, https://doi.org/10.1021/ac60170a003.

  • Lovelock, J. E., 1974: Atmospheric halocarbons and stratospheric ozone. Nature, 252, 292, https://doi.org/10.1038/252292a0.

  • Lovelock, J. E., 1977: Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 267, 32, https://doi.org/10.1038/267032a0.

  • Lovelock, J. E., R. J. Maggs, and R. J. Wade, 1973: Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194196, https://doi.org/10.1038/241194a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machta, L., and E. Hughes, 1970: Atmospheric oxygen in 1967 to 1970. Science, 168, 15821584, https://doi.org/10.1126/science.168.3939.1582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makra, L., 2015: Anthropogenic air pollution in ancient times. History of Toxicology and Environmental Health, P. Wexler, Ed., Vol. II, Toxicology in Antiquity, Elsevier, 21–40.

    • Crossref
    • Export Citation
  • Manning, A. C., and R. F. Keeling, 2006: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus, 58B, 95116, https://doi.org/10.1111/j.1600-0889.2006.00175.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, R. A., 1952a: Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys., 20, 359364, https://doi.org/10.1063/1.1700424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, R. A., 1952b: Lifetimes of active molecules. I. J. Chem. Phys., 20, 352354, https://doi.org/10.1063/1.1700422.

  • Marcus, R. A., 1952c: Lifetimes of active molecules. II. J. Chem. Phys., 20, 355359, https://doi.org/10.1063/1.1700423.

  • Margitan, J. J., F. Kaufman, and J. G. Anderson, 1975: Kinetics of the reaction OH + HNO3 yields H2O + NO3. First Symp. on Chemical Kinetics Data for the Upper and Lower Atmosphere, Warrenton, VA, NASA, 281–287.

  • Marvin, C. F., 1900: Psychrometric tables for obtaining the vapor pressure, relative humidity, and temperature of the dew point (from readings of the wet- and dry-bulb thermometers). Weather Bureau Publ. 236, 96 pp.

  • McConnell, J. C., M. B. McElroy, and S. C. Wofsy, 1971: Natural sources of atmospheric CO. Nature, 233, 187188, https://doi.org/10.1038/233187a0.

  • McElroy, M. B., R. J. Salawitch, S. C. Wofsy, and J. A. Logan, 1986: Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature, 321, 759762, https://doi.org/10.1038/321759a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath, W. D., and R. G. W. Norrish, 1960: Studies of the reactions of excited atoms and molecules produced in the flash photolysis of ozone. Proc. Roy. Soc. London, 254, 317326, https://doi.org/10.1098/rspa.1960.0022.

    • Search Google Scholar
    • Export Citation
  • McNeill, V. F., 2015: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols. Environ. Sci. Technol., 49, 12371244, https://doi.org/10.1021/es5043707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeill, V. F., 2017: Atmospheric aerosols: Clouds, chemistry and climate. Annu. Rev. Chem. Biomol. Eng., 8, 427444, https://doi.org/10.1146/annurev-chembioeng-060816-101538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeill, V. F., N. Sareen, and A. N. Schwier, 2014: Surface-active organics in atmospheric aerosols. Top. Curr. Chem., 339, 201259, https://doi.org/10.1007/128_2012_404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinel, A. B., 1950: Identification of the 6560 Å emission in the spectrum of the night sky. Astrophys. J., 111, 433434, https://doi.org/10.1086/145279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., 1979: Remote measurement of ClO in the stratosphere. Geophys. Res. Lett., 6, 151154, https://doi.org/10.1029/GL006i003p00151.

  • Michael, J. V., and R. E. Weston Jr., 1966: Determination of hydrogen-atom concentration by Lyman-α photometry. I. Oscillator strength of the hydrogen-atom 2P3/2,1/22S1/2 transition. II. Kinetics of the reaction of hydrogen atoms with acetylene and ethylene. J. Chem. Phys., 45, 36323641, https://doi.org/10.1063/1.1727381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migeotte, M. V., 1948a: Spectroscopic evidence of methane in the Earth’s atmosphere. Phys. Rev., 73, 519520, https://doi.org/10.1103/PhysRev.73.519.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migeotte, M. V., 1948b: Methane in the Earth’s atmosphere. J. Astrophys., 107, 400403, https://doi.org/10.1086/145024.

  • Miller, W. H., 1977: Semi-classical theory for non-separable systems: Construction of “good” action-angle variables for reaction rate constants. Faraday Discuss. Chem. Soc., 62, 4046, https://doi.org/10.1039/DC9776200040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W. H., R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willetts, 1990: Ab-initio calculation of anharmonic constants for a transition-state, with application to semiclassical transition-state tunneling probabilities. Chem. Phys. Lett., 172, 6268, https://doi.org/10.1016/0009-2614(90)87217-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, L. T., and M. J. Molina, 1987: Production of Cl2O2 from the self-reaction of the ClO radical. J. Phys. Chem., 91A, 433436, https://doi.org/10.1021/j100286a035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810, https://doi.org/10.1038/249810a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., T.-L. Tso, L. T. Molina, and F. C.-Y. Wang, 1987: Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: Release of active chlorine. Science, 238, 12531257, https://doi.org/10.1126/science.238.4831.1253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, D., 2008: On the history of the scientific exploration of fog, dew, rain and other atmospheric water. Erde, 139, 1144.

  • Monks, P. J., and Coauthors, 2015: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys., 15, 88898973, https://doi.org/10.5194/acp-15-8889-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, E. D., and H. Niki, 1974: Reaction of the nitrate radical with acetaldehyde and propylene. J. Phys. Chem., 78, 13371338, https://doi.org/10.1021/j100606a600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mount, G. H., R. W. Sanders, A. L. Schmeltekopf, and S. Solomon, 1987: Visible spectroscopy at McMurdo Station, Antarctica: 1. Overview and daily variations of NO2 and O3 austral spring, 1986. J. Geophys. Res., 92, 83208328, https://doi.org/10.1029/JD092iD07p08320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murazaki, K., and P. Hess, 2006: How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., 111, D05301, https://doi.org/10.1029/2005JD005873.

    • Search Google Scholar
    • Export Citation
  • Myerson, A. L., H. M. Thompson, and P. J. Joseph, 1965: Resonance absorption spectrophotometry of the hydrogen atom behind shock waves. J. Chem. Phys., 42, 33313332, https://doi.org/10.1063/1.1696424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2018: GISS surface temperature analysis. NASA GISS, accessed October 2018, https://www.giss.nasa.gov/.

  • Ng, N. L., and Coauthors, 2007: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys., 7, 51595174, https://doi.org/10.5194/acp-7-5159-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, N. L., and Coauthors, 2017: Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys., 17, 21032162, https://doi.org/10.5194/acp-17-2103-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. B., and Coauthors, 2015: Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Phys. Chem. Chem. Phys., 17, 17 91417 926, https://doi.org/10.1039/C5CP02001H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. L., J. F. Stanton, and J. R. Barker, 2010: A practical implementation of semi-classical transition state theory for polyatomics. Chem. Phys. Lett., 499, 915, https://doi.org/10.1016/j.cplett.2010.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. L., J. F. Stanton, and J. R. Barker, 2011: Ab initio reaction rate constants computed using semiclassical transition-state theory: OH + H2 → H2O + H and isotopologues. J. Phys. Chem., 115A, 51185126, https://doi.org/10.1021/jp2022743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. L., B. Xue, R. E. Weston Jr., J. R. Barker, and J. F. Stanton, 2012: Reaction of OH with CO: Tunneling is indeed important. J. Phys. Chem. Lett., 3, 15491553, https://doi.org/10.1021/jz300443a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. L., J. R. Barker, and J. F. Stanton, 2017: Atmospheric reaction rate constants and kinetic isotope effects computed using the HEAT protocol and cemi-classical transition state theory. Advances in Atmospheric Chemistry, J. R. Barker, A. L. Steiner, and T. J. Wallington, Eds., World Scientific, 403–492.

    • Crossref
    • Export Citation
  • Niki, H., A. Warnick, and R. R. Lord, 1971: Ozone-NO chemiluminescence method for NO analysis in piston and turbine engines. SAE Trans., 80, 246255.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2018: Halocarbons and other atmospheric trace species group. ESRL, accessed October 2018, https://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc.php?site=mlo&gas=n2o.

  • Norrish, R. G. W., and G. Porter, 1949: Chemical reactions produced by very high light intensities. Nature, 164, 658, https://doi.org/10.1038/164658a0.

  • O’Brien, R. J., J. R. Holmes, and A. H. Bockian, 1975a: Formation of photochemical aerosol from hydrocarbons. Chemical reactivity and products. Environ. Sci. Technol., 9, 568576, https://doi.org/10.1021/es60104a006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, R. J., J. R. Holmes, and A. H. Bockian, 1975b: Formation of photochemical aerosol from hydrocarbons. Atmospheric analysis. Environ. Sci. Technol., 9, 577582, https://doi.org/10.1021/es60104a004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Odum, J. R., T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld, 1996: Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol., 30, 25802585, https://doi.org/10.1021/es950943+.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, H. R., and S. Oliver, 2003: Meteorologist’s profile—John Dalton. Weather, 58, 206211, https://doi.org/10.1256/wea.202.02.

  • Oltmans, S. J., and Coauthors, 2013: Recent tropospheric ozone changes—A pattern dominated by slow or no growth. Atmos. Environ., 67, 331351, https://doi.org/10.1016/j.atmosenv.2012.10.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pales, J. C., and C. D. Keeling, 1965: The concentration of atmospheric carbon dioxide in Hawaii. J. Geophys. Res., 70, 60536076, https://doi.org/10.1029/JZ070i024p06053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandis, S. N., S. E. Paulson, J. H. Seinfeld, and R. C. Flagan, 1991: Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos. Environ., 25A, 9971008, https://doi.org/10.1016/0960-1686(91)90141-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. D., and Coauthors, 2012: Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmos. Chem. Phys., 12, 11 48511 504, https://doi.org/10.5194/acp-12-11485-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patrick, R., and D. M. Golden, 1983: Third-order rate constants of atmospheric importance. Int. J. Chem. Kinet., 15, 11891227, https://doi.org/10.1002/kin.550151107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patrick, R., J. R. Barker, and D. M. Golden, 1984: Computational study of the HO2 + HO2 and DO2 + DO2 Reactions. J. Phys. Chem., 88, 128136, https://doi.org/10.1021/j150645a031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulot, F., J. D. Crounse, H. G. Kjaergaard, A. Kurten, J. M. St. Clair, J. H. Seinfeld, and P. O. Wennberg, 2009a: Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science, 325, 730733, https://doi.org/10.1126/science.1172910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulot, F., J. D. Crounse, H. G. Kjaergaard, J. H. Kroll, J. H. Seinfeld, and P. O. Wennberg, 2009b: Isoprene photooxidation: New insights into the production of acids and organic nitrates. Atmos. Chem. Phys., 9, 14791501, https://doi.org/10.5194/acp-9-1479-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfrang, C., M. Shiraiwa, and U. Poschl, 2011: Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles. Atmos. Chem. Phys., 11, 73437354, https://doi.org/10.5194/acp-11-7343-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, U., D. Perner, A. M. Winer, G. W. Harris, and J. N. Pitts Jr., 1980: Detection of NO3 in the polluted troposphere by differential optical absorption. Geophys. Res. Lett., 7, 8992, https://doi.org/10.1029/GL007i001p00089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praske, E., and Coauthors, 2018: Atmospheric autoxidation is increasingly important in urban and suburban North America. Proc. Natl. Acad. Sci. USA, 115, 6469, https://doi.org/10.1073/pnas.1715540115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., and C. D. Holmes, 2013: A perspective on time: Loss frequencies, time scales and lifetimes. Environ. Chem., 10, 7379, https://doi.org/10.1071/EN13017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., M. B. McElroy, and S. C. Wofsy, 1984: Reductions in ozone at high concentrations of stratospheric halogens. Nature, 312, 227231, https://doi.org/10.1038/312227a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., C. D. Holmes, and J. Hsu, 2012: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett., 39, L09803, https://doi.org/10.1029/2012GL051440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prinn, R., and Coauthors, 1992: Global average concentrations and trends for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990. J. Geophys. Res., 97, 24452461, https://doi.org/10.1029/91JD02755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prinn, R. G., and Coauthors, 2000: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res., 105, 17 75117 792, https://doi.org/10.1029/2000JD900141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pszenny, A. A. P., W. C. Keene, D. J. Jacob, S. Fan, J. R. Maben, M. P. Zetwo, M. Springer-Young, and J. N. Galloway, 1993: Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air. Geophys. Res. Lett., 20, 699702, https://doi.org/10.1029/93GL00047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pye, H. O. T., A. W. H. Chan, M. P. Barkley, and J. H. Seinfeld, 2010: Global modeling of organic aerosol: The importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys., 10, 11 26111 276, https://doi.org/10.5194/acp-10-11261-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, W., 1915: The Gases of the Atmosphere. 4th ed. Macmillan & Co., 296 pp.

  • Ramsay, W., and M. W. Travers, 1900: Argon and its companions. Proc. Roy. Soc., 67, 329333.

  • Rasmussen, R. A., and M. A. K. Khalil, 1981: Atmospheric methane (CH4): Trends and seasonal cycles. J. Geophys. Res., 86, 98269832, https://doi.org/10.1029/JC086iC10p09826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1892: Density of nitrogen. Nature, 46, 512513, https://doi.org/10.1038/046512c0.

  • Rayleigh, L., 1893: On the densities of the principal gases. Proc. Royal Soc., 53, 134149, https://doi.org/10.1098/rspl.1893.0017.

  • Rayleigh, L., and W. Ramsay, 1895: Argon, a new constituent of the atmosphere. Philos. Trans. Roy. Soc. London, 186A, 187241, https://doi.org/10.1098/rsta.1895.0006.

    • Search Google Scholar
    • Export Citation
  • Read, K. A., and Coauthors, 2008: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature, 453, 12321235, https://doi.org/10.1038/nature07035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regener, E., and V. H. Regener, 1934: Aufnahme des ultravioletten Sonnenspektrums in der Stratosphäre und vertikale Ozonverteilung. Z. Phys., 35, 788793.

    • Search Google Scholar
    • Export Citation
  • Renzetti, N. A., 1956: Ozone in the Los Angeles atmosphere. J. Chem. Phys., 24, 909910, https://doi.org/10.1063/1.1742639.

  • Ricaud, P., J.-L. Attié, H. Teyssedre, L. El Amraoui, V.-H. Peuch, M. Matricardi, and P. Schluessel, 2009: Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: Implications for transport processes. Atmos. Chem. Phys., 9, 39473956, https://doi.org/10.5194/acp-9-3947-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, B. A., M. A. Carroll, G. L. Gregory, and G. W. Sachse, 1988: NO and NO2 in the troposphere: Technique and measurements in regions of a folded troposphere. J. Geophys. Res., 93, 15 81315 830, https://doi.org/10.1029/JD093iD12p15813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., J. S. Levine, and T. Miles, 1985: Concentration of methane in the troposphere deduced from 1951 infrared solar spectra. Nature, 318, 245249, https://doi.org/10.1038/318245a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., and Coauthors, 2003: Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. J. Geophys. Res., 108, 4252, https://doi.org/10.1029/2002JD003001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roche, A. E., J. B. Kumer, J. L. Mergenthaler, G. A. Ely, W. G. Uplinger, J. F. Potter, T. C. James, and L. W. Sterritt, 1993: The cryogenic limb array etalon spectrometer (CLAES) on UARS: Experimental description and performance. J. Geophys. Res., 98, 10 76310 775, https://doi.org/10.1029/93JD00800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, L. H., 1958: Report on photochemical smog. J. Chem. Educ., 35, 310313, https://doi.org/10.1021/ed035p310.

  • Roscoe, H. K., and K. C. Clemitshaw, 1997: Measurement techniques in gas-phase tropospheric chemistry: A selective view of the past, present, and future. Science, 276, 10651072, https://doi.org/10.1126/science.276.5315.1065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowland, F. S., 1982: Light, Chemical Change and Life: A Source Book in Photochemistry, J. D. Coyle, R. R. Hill, and D. R. Roberts, Eds., Open University Press, 406 pp.

  • Royal Society, 2008: Ground-level ozone in the 21st century: Future trends, impacts and policy implications. RS Policy Doc. 15/08, 148 pp., https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2008/7925.pdf.

  • Rubin, M. B., 2001: The history of ozone. The Schönbein period, 1839-1868. Bull. Hist. Chem., 26, 4056.

  • Russell, J. M., III, and Coauthors, 1993: The Halogen Occultation Experiment. J. Geophys. Res., 98, 10 77710 797, https://doi.org/10.1029/93JD00799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safieddine, S. A., C. L. Heald, and B. H. Henderson, 2017: The global nonmethane reactive organic carbon budget: A modeling perspective. Geophys. Res. Lett., 44, 38973906, https://doi.org/10.1002/2017GL072602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saiz-Lopez, A., and Coauthors, 2012: Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys., 12, 39393949, https://doi.org/10.5194/acp-12-3939-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltzman, B. E., 1954: Colorimetric microdetermination of nitrogen dioxide in the atmosphere. Anal. Chem., 26, 19491955, https://doi.org/10.1021/ac60096a025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, S. P., R. R. Friedl, and J. S. Francisco, 1995: Experimental and theoretical studies of atmospheric inorganic chlorine chemistry. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific, 876–921.

    • Crossref
    • Export Citation
  • Santee, M., and Coauthors, 2008: A study of stratospheric chlorine partitioning based on new satellite measurements and modeling. J. Geophys. Res., 113, D12307, https://doi.org/10.1029/2007JD009057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santee, M., S. P. Sander, N. Livesey, and L. Froidevaux, 2010: Constraining the chlorine monoxide (ClO)/chlorine peroxide (ClOOCl) equilibrium constant from Aura Microwave Limb Sounder measurements of nighttime ClO. Proc. Natl. Acad. Sci. USA, 107, 65886593, https://doi.org/10.1073/pnas.0912659107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, S. M., M. E. Jenkin, R. G. Derwent, and M. J. Pilling, 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys., 3, 161180, https://doi.org/10.5194/acp-3-161-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiff, H. I., 1969: Neutral reactions involving oxygen and nitrogen. Can. J. Chem., 47, 19031916, https://doi.org/10.1139/v69-309.

  • Schiff, H. I., Ed., 1974: Proceedings of the Symposium on Aeronomy of the Stratosphere and Mesosphere (Kyoto, Japan, 1973). Can. J. Chem., 15 (8), 13811634.

    • Search Google Scholar
    • Export Citation
  • Schiff, H. I., G. I. MacKay, and J. Bechara, 1994: The use of tunable diode laser absorption spectroscopy for atmospheric measurements. Res. Chem. lntermed., 20, 525556, https://doi.org/10.1163/156856794X00441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. S., and D. L. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 4652, https://doi.org/10.1126/science.251.4989.46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., A. R. Douglass, and C. H. Jackman, 1994: Overview and highlights of the Upper Atmosphere Research Satellite (UARS) Mission. Int. Symp. on Optics, Imaging, and Instrumentation, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, San Diego, CA, SPIE, 254–265.

    • Crossref
    • Export Citation
  • Schönbein, C. F., 1840: On the odour accompanying electricity and on the probability of its dependency on the presence of a new substance. Philos. Mag., 17, 293294.

    • Search Google Scholar
    • Export Citation
  • Schönbein, C. F., 1851: On some secondary physiological effects produced by atmospheric electricity. Med. Chir. Trans., 34, 205220, https://doi.org/10.1177/095952875103400117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrödinger, E., 1926: Quantisierung als Eigenwertproblem. Ann. Phys., 384, 361376, https://doi.org/10.1002/andp.19263840404.

  • Schroeder, H. W., and P. Urone, 1974: Formation of nitrosyl chloride from salt particles in air. Environ. Sci. Technol., 8, 756758, https://doi.org/10.1021/es60093a015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotto, J., T. R. Fears, and G. B. Gori, 1975: Measurements of ultraviolet radiation in the U.S. and comparisons with skin cancer data. U.S. Department of Health, Education, and Welfare, 274 pp.

  • Schwantes, R. H., and Coauthors, 2017: Science of the environmental chamber. Advances in Atmospheric Chemistry, Vol. 1, J. R. Barker, A. L. Steiner, and T. J. Wallington, Eds., World Scientific, 1–93, https://doi.org/10.1142/9789813147355_0001.

    • Crossref
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley & Sons, 1203 pp.

  • Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar, 2006: Role of tropospheric ozone increases in 20th-century climate change. J. Geophys. Res., 111, D08302, https://doi.org/10.1029/2005JD006348.

    • Search Google Scholar
    • Export Citation
  • Shiraiwa, M., A. Zuend, A. K. Bertram, and J. H. Seinfeld, 2013: Gas-particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys., 15, 11 44111 453, https://doi.org/10.1039/c3cp51595h.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiraiwa, M., T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Poschl, 2014: Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmos. Chem. Phys., 14, 83238341, https://doi.org/10.5194/acp-14-8323-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiraiwa, M., and Coauthors, 2017: Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun., 8, 15002, https://doi.org/10.1038/ncomms15002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrivastava, M., and Coauthors, 2017: Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys., 55, 509559, https://doi.org/10.1002/2016RG000540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillman, S., J. A. Logan, and S. C. Wofsy, 1990: The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res., 95, 18371851, https://doi.org/10.1029/JD095iD02p01837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skeie, R., T. Berntsen, G. Myhre, K. Tanaka, M. Kvalevag, and C. Hoyle, 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11 82711 857, https://doi.org/10.5194/acp-11-11827-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, V. N., 1953: A recording infrared analyser. Instruments, 26, 421427.

  • Snyder, L. P., 1994: The death-dealing smog over Donora, Pennsylvania: Industrial air pollution, public health, and federal policy. Environ. Hist. Rev., 18, 117139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huan, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, https://doi.org/10.1126/science.1115602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, 1986: On the depletion of Antarctic ozone. Nature, 321, 755758, https://doi.org/10.1038/321755a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., G. H. Mount, R. W. Sanders, and A. L. Schmeltekopf, 1987: Visible Spectroscopy at McMurdo Station, Antarctica. 2: Observations of OClO. J. Geophys. Res., 92, 83298338, https://doi.org/10.1029/JD092iD07p08329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soret, J-L., 1863: Note sur les relations volumétriques de l’ozone. C. R. Acad. Sci., 62, 608.

  • Sorooshian, A., M.-L. Lu, F. J. Brechtel, H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2007: On the sources of organic aerosol layers above clouds. Environ. Sci. Technol., 41, 46474654, https://doi.org/10.1021/es0630442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Søvde, O., C. Hoyle, G. Myhre, and I. Isaksen, 2011: The HNO3 forming branch of the HO2 + NO reaction: Preindustrial-to-present trends in atmospheric species and radiative forcings. Atmos. Chem. Phys., 11, 89298943, https://doi.org/10.5194/acp-11-8929-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., and Coauthors, 2011: Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys., 11, 12 10912 136, https://doi.org/10.5194/acp-11-12109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staehelin, J., J. Thudium, R. Buehler, A. Volz-Thomas, and W. Graber, 1994: Trends in surface ozone concentrations at Arosa (Switzerland). Atmos. Environ., 28, 7588, https://doi.org/10.1016/1352-2310(94)90024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stedman, D. H., E. E. Daby, F. Stuhl, and H. Niki, 1972: Analysis of ozone and nitric oxide by a chemiluminescent method in laboratory and atmospheric studies of photochemical smog. J. Air Pollut. Control Assoc., 22, 260263, https://doi.org/10.1080/00022470.1972.10469635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, L. P., and Coauthors, 1987: The global distribution of methane in the troposphere. J. Atmos. Chem., 5, 125171, https://doi.org/10.1007/BF00048857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. L., S. Tonse, R. C. Cohen, A. H. Goldstein, and R. A. Harley, 2006: Influence of future climate and emissions on regional air quality in California. J. Geophys. Res., 111, D18303, https://doi.org/10.1029/2005JD006935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, E. R., 1964: Absorptivities for infrared determination of peroxyacyl nitrates. Anal. Chem., 36, 928929, https://doi.org/10.1021/ac60210a064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, E. R., 1969: The formation, reactions and properties of peroxyacetyl nitrates (PANs) in photochemical pollution. Advances in Environmental Science and Technology, Vol. I, J. N. Pitts Jr. and R. L. Metcalf, Eds., John Wiley & Sons, 119–146.

  • Stephens, E. R., 1985: Tropospheric methane: Concentrations between 1963 and 1970. J. Geophys. Res., 90, 13 07613 080, https://doi.org/10.1029/JD090iD07p13076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, E. R., W. E. Scott, P. L. Hanst, and R. C. Doerr, 1956: Recent developments in the study of the organic chemistry of the atmosphere. J. Air Pollut. Control Assoc., 6, 159165, https://doi.org/10.1080/00966665.1956.10467748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, J. E., R. C. Flagan, D. Grosjean, and J. H. Seinfeld, 1987: Aerosol formation and growth in atmospheric aromatic hydrocarbon photooxidation. Environ. Sci. Technol., 21, 12241231, https://doi.org/10.1021/es00165a011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stimpfle, R. M., D. M. Wilmouth, R. J. Salawitch, and J. G. Anderson, 2004: First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex. J. Geophys. Res., 109, D03301, https://doi.org/10.1029/2003JD003811.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., and R. J. Cicerone, 1974: Stratospheric chlorine: A possible sink for ozone. Can. J. Chem., 52, 16101615, https://doi.org/10.1139/v74-233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, D., L. K. Whalley, and D. E. Heard, 2012: Tropospheric OH and HO2 radicals: Field measurements and model comparisons. Chem. Soc. Rev., 41, 63486404, https://doi.org/10.1039/c2cs35140d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, R., 2002: Counting the cost of London’s killer smog. Science, 298, 21062107, https://doi.org/10.1126/science.298.5601.2106b.

  • Strahan, S. E., and A. R. Douglass, 2018: Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from aura microwave limb sounder observations: Antarctic O3 loss and chlorine decline. Geophys. Res. Lett., 45, 382390, https://doi.org/10.1002/2017GL074830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strutt, R. J., 1918: Ultra-violet transparency of the lower atmosphere, and its relative poverty in ozone. Proc. Roy. Soc. London, 94A, 260268, https://doi.org/10.1098/rspa.1918.0012.

    • Search Google Scholar
    • Export Citation
  • Surratt, J. D., and Coauthors, 2006: Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem., 110A, 96659690, https://doi.org/10.1021/jp061734m.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surratt, J. D., and Coauthors, 2008: Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem., 112A, 83458378, https://doi.org/10.1021/jp802310p.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surratt, J. D., and Coauthors, 2010: Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA, 107, 66406645, https://doi.org/10.1073/pnas.0911114107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surratt, J. D., M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, and J. H. Seinfeld, 2007: Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol., 41, 53635369, https://doi.org/10.1021/es0704176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taatjes, C. A., 2017: Criegee intermediates: What direct production and detection can teach us about reactions of carbonyl oxides. Annu. Rev. Phys. Chem., 68, 183207, https://doi.org/10.1146/annurev-physchem-052516-050739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taatjes, C. A., D. E. Shallcross, and C. J. Percival, 2014: Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys. Chem. Chem. Phys., 16, 17041718, https://doi.org/10.1039/c3cp52842a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Y., and Coauthors, 2012: Mechanisms leading to oligomers and SOA through aqueous photooxidation: Insights from OH radical oxidation of acetic acid and methylglyoxal. Atmos. Chem. Phys., 12, 801813, https://doi.org/10.5194/acp-12-801-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tango, W. J., J. K. Link, and R. N. Zare, 1968: Spectroscopy of K2 using laser-induced fluorescence. J. Chem. Phys., 49, 42644268, https://doi.org/10.1063/1.1669869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tardy, D. C., and B. S. Rabinovitch, 1966: Collisional energy transfer. Thermal unimolecular systems in the low pressure region. J. Chem. Phys., 45, 37203730, https://doi.org/10.1063/1.1727392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., J. A. MacLeod, R. C. Robbins, R. C. Goettelman, R. W. Eldridge, and L. H. Rogers, 1956: Automatic apparatus for determination of nitric oxide and nitrogen dioxide in the atmosphere. Anal. Chem., 28, 18101816, https://doi.org/10.1021/ac60120a004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, J. A., and Coauthors, 2010: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 464, 271274, https://doi.org/10.1038/nature08905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolbert, M. A., M. J. Rossi, R. Malhotra, and D. M. Golden, 1987: Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures. Science, 238, 12581260, https://doi.org/10.1126/science.238.4831.1258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, R. C., 1938: The Principles of Statistical Mechanics. Oxford University Press, 660 pp.

  • Toon, O. B., R. P. Turco, J. Jordan, J. Goodman, and G. Ferry, 1989: Physical processes in polar stratospheric ice clouds. J. Geophys. Res., 94, 11 35911 380, https://doi.org/10.1029/JD094iD09p11359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toulmin, S. E., 1957: Crucial experiments: Priestley and Lavoisier. J. Hist. Ideas, 18, 205220, https://doi.org/10.2307/2707624.

  • Troe, J., 1977a: Theory of thermal unimolecular reactions at low pressures. I. Solution of the Master Equation. J. Chem. Phys., 66, 47454757, https://doi.org/10.1063/1.433837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troe, J., 1977b: Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. Applications. J. Chem. Phys., 66, 47584775, https://doi.org/10.1063/1.433838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trostl, J., and Coauthors, 2016: The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 533, 527531, https://doi.org/10.1038/nature18271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truhlar, D. G., A. D. Isaacson, and B. C. Garrett, 1985: Generalized transition state theory. Theory of Chemical Reaction Dynamics, M. Baer, Ed., CRC Press, 65–137.

  • Tsang, W., and R. F. Hampson, 1986: Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data, 15, 10871279, https://doi.org/10.1063/1.555759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsang, W., V. Bedanov, and M. R. Zachariah, 1996: Master equation analysis of thermal activation reactions: Energy-transfer constraints on falloff behavior in the decomposition of reactive intermediates with low thresholds. J. Phys. Chem., 100, 40114018, https://doi.org/10.1021/jp9524901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsigaridis, K., and Coauthors, 2014: The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys., 14, 10 84510 895, https://doi.org/10.5194/acp-14-10845-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turco, R. P., 1985: The photochemistry of the stratosphere. The Photochemistry of Atmospheres: Earth, the Other Planets, and Comets, J. S. Levine, Ed., Academic Press, 77–128.

    • Crossref
    • Export Citation
  • U.S. NAPAP, 1991: The U.S. National Acid Precipitation Assessment Program. Vol. I, U.S. Government Printing Office.

  • Vereecken, L., and J. S. Francisco, 2012: Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev., 41, 62596293, https://doi.org/10.1039/c2cs35070j.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vereecken, L., D. R. Glowacki, and M. J. Pilling, 2015: Theoretical chemical kinetics in tropospheric chemistry: Methodologies and applications. Chem. Rev., 115, 40634114, https://doi.org/10.1021/cr500488p.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogt, R., P. J. Crutzen, and R. Sander, 1996: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature, 383, 327330, https://doi.org/10.1038/383327a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volz, A., and D. Kley, 1988: Evaluation of the Montsouris series of ozone measurements made in the 19th century. Nature, 332, 240242, https://doi.org/10.1038/332240a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voulgarakis, A., and Coauthors, 2013: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys., 13, 25632587, https://doi.org/10.5194/acp-13-2563-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, M., 2012: History of the Meteorological Office. Cambridge University Press, 450 pp.

  • Warneck, P., 1988: Chemistry of the Natural Atmosphere. Academic Press, 927 pp.

  • Waters, J. W., J. C. Hardy, R. F. Jarnot, and H. M. Pickett, 1981: Chlorine monoxide radical, ozone, and hydrogen peroxide: Stratospheric measurements by microwave limb sounding. Science, 214, 6164, https://doi.org/10.1126/science.214.4516.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waters, J. W., L. Froidevaux, W. G. Read, G. L. Manney, L. S. Elson, D. A. Flower, R. F. Jarnot, and R. S. Harwood, 1993: Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. Nature, 362, 597602, https://doi.org/10.1038/362597a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wayne, R. P., and Coauthors, 1991: The nitrate radical: Physics, chemistry, and the atmosphere. Atmos. Environ., 25A, 1203, https://doi.org/10.1016/0960-1686(91)90192-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wayne, R. P., 2000: Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets, and Their Satellites. 3rd ed. Oxford University Press, 775 pp.

  • Webster, C. R., and Coauthors, 1994: Hydrochloric acid and the chlorine budget of the lower stratosphere. Geophys. Res. Lett., 21, 25752578, https://doi.org/10.1029/94GL02806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weeks, M. E., 1934: Daniel Rutherford and the discovery of nitrogen. J. Chem. Educ., 11, 101107, https://doi.org/10.1021/ed011p101.

  • Weinstock, B., 1969: Carbon monoxide: Residence time in the atmosphere. Science, 166, 224225, https://doi.org/10.1126/science.166.3902.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welz, O., J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, 2012: Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science, 335, 204207, https://doi.org/10.1126/science.1213229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wennberg, P. O., and Coauthors, 2018: Gas-phase reactions of isoprene and its major oxidation products. Chem. Rev., 118, 33373390, https://doi.org/10.1021/acs.chemrev.7b00439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Went, F. W., 1960a: Blue hazes in the atmosphere. Nature, 187, 641643, https://doi.org/10.1038/187641a0.

  • Went, F. W., 1960b: Organic matter in the atmosphere, and its possible relation to petroleum formation. Proc. Natl. Acad. Sci. USA, 46, 212221, https://doi.org/10.1073/pnas.46.2.212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weston, R. E., Jr., T. L. Nguyen, J. F. Stanton, and J. R. Barker, 2013: OH + CO reaction rates and H/D kinetic isotope effects: Master equation models with ab Initio SCTST rate constants. J. Phys. Chem., 117A, 821835, https://doi.org/10.1021/jp311928w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigner, E., 1938: The transition state method. Trans. Faraday Soc., 34, 2940, https://doi.org/10.1039/tf9383400029.

  • Wild, O., 2007: Modelling the global tropospheric ozone budget: Exploring the variability in current models. Atmos. Chem. Phys., 7, 26432660, https://doi.org/10.5194/acp-7-2643-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisniewski, J., and J. D. Kinsman, 1982: An overview of acid rain monitoring activities in North America. Bull. Amer. Meteor. Soc., 63, 598618, https://doi.org/10.1175/1520-0477(1982)063<0598:AOOARM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wohltmann, I., R. Lehmann, and M. Rex, 2017: A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core. Atmos. Chem. Phys., 17, 10 53510 563, https://doi.org/10.5194/acp-17-10535-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, J. L., and Coauthors, 2013: Aqueous aerosol SOA formation: Impact on aerosol physical properties. Faraday Discuss., 165, 357367, https://doi.org/10.1039/c3fd00032j.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wordsworth, R. D., 2016: Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett., 447, 103111, https://doi.org/10.1016/j.epsl.2016.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worton, D. R., and Coauthors, 2017: Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry. Analyst, 142, 23952403, https://doi.org/10.1039/C7AN00625J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunch, D., and Coauthors, 2017: Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech., 10, 22092238, https://doi.org/10.5194/amt-10-2209-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., M. S. Kollman, C. Song, J. E. Shilling, and N. L. Ng, 2014: Effects of NOx on the volatility of secondary organic aerosols from isoprene photooxidation. Environ. Sci. Technol., 48, 22532262, https://doi.org/10.1021/es404842g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S. Suresh, H. Guo, R. J. Weber, and N. L. Ng, 2015a: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmos. Chem. Phys., 15, 73077336, https://doi.org/10.5194/acp-15-7307-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and Coauthors, 2015b: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. USA, 112, 3742, https://doi.org/10.1073/pnas.1417609112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yee, L. D., and Coauthors, 2012: Secondary organic aerosol formation from low-NOx photooxidation of dodecane: Evolution of multigeneration gas-phase chemistry and aerosol composition. J. Phys. Chem., 116A, 62116230, https://doi.org/10.1021/jp211531h.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yee, L. D., and Coauthors, 2013: Effect of chemical structure on secondary organic aerosol formation from C12 alkanes. Atmos. Chem. Phys., 13, 11 12111 140, https://doi.org/10.5194/acp-13-11121-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, P. J., and Coauthors, 2013: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 20632090, https://doi.org/10.5194/acp-13-2063-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahniser, M. S., F. Kaufman, and J. G. Anderson, 1976: Kinetics of the reaction Cl + O3 → ClO + O2. Chem. Phys. Lett., 37, 226231, https://doi.org/10.1016/0009-2614(76)80203-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaveri, R., and Coauthors, 2018: Growth kinetics and size distribution dynamics of viscous secondary organic aerosol. Environ. Sci. Technol., 52, 11911199, https://doi.org/10.1021/acs.est.7b04623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, J., and Coauthors, 2017: Polyrate 17-B: Computer program for the calculation of chemical reaction rates for polyatomics. University of Minnesota, accessed December 2017, https://comp.chem.umn.edu/polyrate/.

  • Zhu, R. S., and M. C. Lin, 2001: The self-reaction of hydroperoxyl radicals: Ab initio characterization of dimer structures and reaction mechanisms. PhysChemComm, 4, 106111, https://doi.org/10.1039/b107602g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, R. S., and M. C. Lin, 2002: Ab initio study of the catalytic effect of H2O on the self-reaction of HO2. Chem. Phys. Lett., 354, 217226, https://doi.org/10.1016/S0009-2614(02)00063-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, R. S., and M. C. Lin, 2003: Ab initio studies of ClOx reactions. IV. Kinetics and mechanism for the self-reaction of ClO radicals. J. Chem. Phys., 118, 40944106, https://doi.org/10.1063/1.1540623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziemann, P. J., 2011: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkene. Int. Rev. Phys. Chem., 30, 161195, https://doi.org/10.1080/0144235X.2010.550728.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7132 2791 255
PDF Downloads 2764 322 36