Abramson, E., D. Imre, J. Beranek, J. Wilson, and A. Zelenyuk, 2013: Experimental determination of chemical diffusion within secondary organic aerosol particles. Phys. Chem. Chem. Phys., 15, 2983–2991, https://doi.org/10.1039/c2cp44013j.
Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.
Adel, A., 1939: Note on the atmospheric oxides of nitrogen. Astrophys. J., 90, 627, https://doi.org/10.1086/144129.
Adel, A., 1941: The grating infrared solar spectrum II. Rotational structure of the nitrous oxide (NNO) band ν1 at 7.78 μ. Astrophys. J., 93, 509–510, https://doi.org/10.1086/144298.
Ajavon, A.-L. N., P. A. Newman, J. A. Pyle, and A. R. Ravishankara, Eds., 2014: Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project Rep. 55, WMO, 416 pp., https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.
Albert-Lévy, 1877: Ozone. Annuaire de l’Observatoire de Montsouris pour l’an 1877, 398–405.
Altshuller, A. P., and J. J. Bufalini, 1971: Photochemical aspects of air pollution: A review. Environ. Sci. Technol., 5, 39–64, https://doi.org/10.1021/es60048a001.
Ammann, M., R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, 2013: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—Heterogeneous reactions with liquid substrates. Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013.
Anderson, J. G., 1975: The absolute concentration of O(3P) in the Earth’s stratosphere. Geophys. Res. Lett., 2, 231–234, https://doi.org/10.1029/GL002i006p00231.
Anderson, J. G., 1976: The absolute concentration of OH(X2Π) in the Earth’s stratosphere. Geophys. Res. Lett., 3, 165–168, https://doi.org/10.1029/GL003i003p00165.
Anderson, J. G., 1980: Free radicals in the Earth’s stratosphere: A review of recent results. NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences, M. Nicolet and A. C. Aiken, Eds., U.S. Department of Transportation, 233–251.
Anderson, J. G., 1995: Polar processes in ozone depletion. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific, 744–770.
Anderson, J. G., 2016: Curriculum vitae of James G. Anderson. J. Phys. Chem., 120A, 1321, https://doi.org/10.1021/acs.jpca.5b12138.
Anderson, J. G., J. J. Margitan, and D. H. Stedman, 1977: Atomic chlorine and the chlorine monoxide radical in the stratosphere. Science, 198, 501–503, https://doi.org/10.1126/science.198.4316.501.
Anderson, J. G., H. J. Grassl, R. E. Shetter, and J. J. Margitan, 1980: Stratospheric free chlorine measured by balloon borne in situ resonance fluorescence. J. Geophys. Res., 85, 2869–2887, https://doi.org/10.1029/JC085iC05p02869.
Anderson, J. G., W. H. Brune, and M. H. Proffitt, 1989: Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO-O anticorrelation based on in situ ER-2 data. J. Geophys. Res., 94, 11 465–11 479, https://doi.org/10.1029/JD094iD09p11465.
Anderson, J. G., D. W. Toohey, and W. H. Brune, 1991: Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science, 251, 39–46, https://doi.org/10.1126/science.251.4989.39.
Anderson, J. G., J. M. Russell III, S. Solomon, and L. E. Deaver, 2000: Halogen occultation experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol. J. Geophys. Res., 105, 4483–4490, https://doi.org/10.1029/1999JD901075.
Assmann, R., 1902: Über die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 24, 1–10.
Atkinson, R., 1989: Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds. Journal of Physical and Chemical Reference Data Monogr., No. 1, American Chemical Society, 246 pp.
Atkinson, R., 2007: Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method. Atmos. Environ., 41, 8468–8485, https://doi.org/10.1016/j.atmosenv.2007.07.002.
Atkinson, R., and W. P. L. Carter, 1984: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev., 84, 437–470, https://doi.org/10.1021/cr00063a002.
Barker, J. R., 2001: Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int. J. Chem. Kinet., 33, 232–245, https://doi.org/10.1002/kin.1017.
Barker, J. R., and Coauthors, 2017: Multiwell Program Suite. University of Michigan, http://clasp-research.engin.umich.edu/multiwell/?url=multiwell/.
Barrie, L. A., J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen, 1988: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature, 334, 138–141, https://doi.org/10.1038/334138a0.
Bartle, K. D., and P. Myers, 2002: History of gas chromatography. Trends Anal. Chem., 21, 547–557, https://doi.org/10.1016/S0165-9936(02)00806-3.
Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301–326, https://doi.org/10.1029/JZ055i003p00301.
Bates, D. R., and A. E. Witherspoon, 1952: The photo-chemistry of some minor constituents of the Earth’s atmosphere (CO2, CO, CH4, N2O). Mon. Not. Roy. Astron. Soc., 112, 101–124, https://doi.org/10.1093/mnras/112.1.101.
Bates, D. R., and P. B. Hays, 1967: Atmospheric nitrous oxide. Planet. Space Sci., 15, 189–197, https://doi.org/10.1016/0032-0633(67)90074-8.
Bates, K. H., J. D. Crounse, J. M. St. Clair, N. B. Bennett, T. B. Nguyen, J. H. Seinfeld, B. M. Stoltz, and P. O. Wennberg, 2014: Gas phase production and loss of isoprene epoxydiols. J. Phys. Chem., 118A, 1237–1246, https://doi.org/10.1021/jp4107958.
Beaver, M. R., and Coauthors, 2012: Importance of biogenic precursors to the budget of organic nitrates: Observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009. Atmos. Chem. Phys., 12, 5773–5785, https://doi.org/10.5194/acp-12-5773-2012.
Bedanov, V. M., W. Tsang, and M. R. Zachariah, 1995: Master equation analysis of thermal activation reactions: Reversible isomerization and decomposition. J. Phys. Chem., 99, 11 452–11 457, https://doi.org/10.1021/j100029a024.
Bell, M. L., and D. Davis, 2001: Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ. Health Perspect., 109, 389–394, https://doi.org/10.1289/ehp.01109s3389.
Benson, S. W., 1976: Thermochemical Kinetics. 2nd ed. Wiley, 320 pp.
Benson, S. W., and A. E. Axworthy Jr., 1957: Mechanism of the gas phase, thermal decomposition of ozone. J. Chem. Phys., 26, 1718–1726, https://doi.org/10.1063/1.1743610.
Benson, S. W., and A. E. Axworthy Jr., 1965: Reconsideration of the rate constants from the thermal decomposition of ozone. J. Chem. Phys., 42, 2614–2615, https://doi.org/10.1063/1.1696345.
Benson, S. W., D. M. Golden, and J. R. Barker, Eds., 1975: Proceedings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmosphere. Int. J. Chem. Kinet., 1 (Suppl. 1), 1–656.
Blacet, F. E., 1952: Photochemistry in the lower atmosphere. Ind. Eng. Chem., 44, 1339–1342, https://doi.org/10.1021/ie50510a044.
Black, J., 1756: Experiments upon magnesia alba, quick lime and some other alkaline substances. Philos. Soc. Edinburgh, 2, 157–225.
Blake, D. R., and F. S. Rowland, 1988: Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239, 1129–1131, https://doi.org/10.1126/science.239.4844.1129.
Blake, D. R., E. W. Mayer, S. C. Tyler, Y. Makide, D. C. Montague, and F. S. Rowland, 1982: Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys. Res. Lett., 9, 477–480, https://doi.org/10.1029/GL009i004p00477.
Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. 2nd ed. D. Reidel, 452 pp.
Braun, W., and M. Lenzi, 1967: Resonance fluorescence method for kinetics of atomic reactions. Reactions of atomic hydrogen with olefins. Discuss. Faraday Soc., 44, 252–262, https://doi.org/10.1039/df9674400252.
Brimblecombe, P., 1977: London air pollution, 1500–1900. Atmos. Environ., 11, 1157–1162, https://doi.org/10.1016/0004-6981(77)90091-9.
Brimblecombe, P., 1995: History of air pollution. Composition, Chemistry, and Climate of the Atmosphere, H. B. Singh, Ed., Van Nostrand, 1–18.
Brimblecombe, P., Ed., 2017: Air Pollution Episodes. Vol. 6, Air Pollution Reviews, World Scientific, 396 pp.
Brönnimann, S., J. Staehelin, S. F. G. Farmer, J. C. Caine, T. Svendby, and T. Svenøe, 2003: Total ozone observations prior to the IGY. I: A history. Quart. J. Roy. Meteor. Soc., 129, 2797–2817, https://doi.org/10.1256/qj.02.118.
Brown, H. T., and F. Escombe, 1900: Method used for determining the carbon dioxide absorbed by solutions of sodium hydroxide. Philos. Trans. Roy. Soc. London, 193B, 289–291.
Brown, H. T., and F. Escombe, 1905: On a new method for the determination of atmospheric carbon dioxide, based on the rate of its absorption by a free surface of a solution of caustic alkali. Proc. Roy. Soc. London, 76B, 112–117, https://doi.org/10.1098/rspb.1905.0003.
Brown, S. S., and Coauthors, 2009: Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmos. Chem. Phys., 9, 3027–3042, https://doi.org/10.5194/acp-9-3027-2009.
Brown, S. S., and Coauthors, 2013: Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: Aircraft vertical profiles in Houston, TX. Atmos. Chem. Phys., 13, 11 317–11 337, https://doi.org/10.5194/acp-13-11317-2013.
Brune, W. H., J. G. Anderson, and K. R. Chan, 1989: In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54°S to 72°S latitude. J. Geophys. Res., 94, 16 649–16 663, https://doi.org/10.1029/JD094iD14p16649.
Buchwitz, M., and Coauthors, 2005: Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set. Atmos. Chem. Phys., 5, 3313–3329, https://doi.org/10.5194/acp-5-3313-2005.
Budisulistiorini, S. H., and Coauthors, 2015: Examining the effects anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015.
Burkholder, J. B., and Coauthors, 2015: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation 18, JPL Publ. 15-10, 1392 pp., https://jpldataeval.jpl.nasa.gov/pdf/JPL_Publication_15-10.pdf.
Burrows, J. P., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.
Cadle, R. D., and C. Schadt, 1952: Kinetics of the gas phase reaction of olefins with ozone. J. Amer. Chem. Soc., 74, 6002–6004, https://doi.org/10.1021/ja01143a053.
Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Meteor. Soc., 64, 223–237, https://doi.org/10.1002/qj.49706427503.
Cape, J. N., 1993: Direct damage to vegetation caused by acid rain and polluted cloud: Definition of critical levels for forest trees. Environ. Pollut., 82, 167–180, https://doi.org/10.1016/0269-7491(93)90114-4.
Calvert, J. G., J. J. Orlando, W. R. Stockwell, and T. J. Wallington, 2015: The Mechanisms of Reactions Influencing Atmospheric Ozone. Oxford University Press, 608 pp.
Cardelino, C. A., and W. L. Chameides, 1990: Natural hydrocarbons, urbanization, and urban ozone. J. Geophys. Res., 95, 13 971–13 979, https://doi.org/10.1029/JD095iD09p13971.
Carpenter, L. J., 2003: Iodine in the marine boundary layer. Chem. Rev., 103, 4953–4962, https://doi.org/10.1021/cr0206465.
Cavendish, H., 1785: Experiments on air. Philos. Trans. Roy. Soc. London, 75, 372–384, https://doi.org/10.1098/rstl.1785.0023.
Chameides, W., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 8751–8760, https://doi.org/10.1029/JC078i036p08751.
Chan, A. W. H., and Coauthors, 2010: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys., 10, 7169–7188, https://doi.org/10.5194/acp-10-7169-2010.
Chan, A. W. H., and Coauthors, 2013: Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. J. Geophys. Res. Atmos., 118, 6783–6796, https://doi.org/10.1002/jgrd.50533.
Chapman, S., 1930a: XXXV. On ozone and atomic oxygen in the upper atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci. Ser. 7, 10, 369–383, https://doi.org/10.1080/14786443009461588.
Chapman, S., 1930b: A theory of upper-atmosphere ozone. Mem. Roy. Meteor. Soc., 3, 103–125.
Chapman, S., 1931: The absorption and dissociative or ionizing effect of monochromatic radiations in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 26–45, https://doi.org/10.1088/0959-5309/43/1/305.
Chapman, S., 1942: The photochemistry of atmospheric oxygen. Rep. Prog. Phys., 9, 92–100, https://doi.org/10.1088/0034-4885/9/1/310.
Chipperfield, M. P., and Coauthors, 2017: Detecting recovery of the stratospheric ozone layer. Nature, 549, 211–218, https://doi.org/10.1038/nature23681.
Chung, E. S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA, 111, 11 636–11 641, https://doi.org/10.1073/pnas.1409659111.
Cicerone, R. J., S. Walters, and S. C. Liu, 1983: Nonlinear response of stratospheric ozone column to chlorine injections. J. Geophys. Res., 88, 3647–3661, https://doi.org/10.1029/JC088iC06p03647.
Claeys, M., and Coauthors, 2004: Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805.
Clyne, M. A. A., and H. W. Cruse, 1972: Atomic resonance fluorescence spectrometry for rate constants of rapid bimolecular reactions. Part 1. Reactions O + NO2, Cl + ClNO, Br + ClNO. J. Chem. Soc. Faraday Trans. II, 68, 1281–1299, https://doi.org/10.1039/F29726801281.
Cooper, O. R., and Coauthors, 2014: Global distribution and trends of tropospheric ozone: An observation-based review. Elementa Sci. Anth., 2, p.000029, http://doi.org/10.12952/journal.elementa.000029.
Cornu, A., 1879: Sur la limite ultra-violette du spectre solaire. C. R. Acad. Sci. Paris, 88, 1101–1108.
Cowling, E. B., 1982: Acid precipitation in historical perspective. Environ. Sci. Technol., 16, 110A–123A, https://doi.org/10.1021/es00096a725.
Cox, R. A., 2012: Evaluation of laboratory kinetics and photochemical data for atmospheric chemistry application. Chem. Rev., 41, 6231–6246, https://doi.org/10.1039/c2cs35092k.
Cox, R. A., and S. A. Penkett, 1971: Oxidation of atmospheric SO2 by products of ozone-olefin reaction. Nature, 230, 321–322, https://doi.org/10.1038/230321a0.
Criegee, R., 1957: The course of ozonization of unsaturated compounds. Rec. Chem. Prog., 18, 111–120.
Crutzen, P., 1971: Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res., 76, 7311–7327, https://doi.org/10.1029/JC076i030p07311.
Crutzen, P., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106–108, 1385–1399, https://doi.org/10.1007/BF00881092.
Crutzen, P., 1974: A review of upper atmospheric photochemistry. Can. J. Chem., 52, 1569–1581, https://doi.org/10.1139/v74-229.
Crounse, J. D., L. B. Nielsen, S. Jorgensen, H. G. Kjaergaard, and P. O. Wennberg, 2013: Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207.
Crowley, J. N., M. Ammann, R. G. Hynes, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, 2010: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—Heterogeneous reactions on solid substrates. Atmos. Chem. Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010.
Crutzen, P., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320–325, https://doi.org/10.1002/qj.49709640815.
Dalton, J., 1802: On the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on expansion of gases by heat. Mem. Lit. Philos. Soc. Manchester, 5, 535–602.
Dalton, J., 1805: Experimental enquiry into the proportion of the several gases or elastic fluids, constituting the atmosphere. Mem. Lit. Philos. Soc. Manchester Ser. II, 1, 244–258.
De Bort, L. P. T., 1902: Variations de la température de l’air libre, dans la zone comprise entre 8 et 15 kilomètres d’altitude. C. R. Acad. Sci., 134, 987–989.
De Broglie, L., 1925: Recherches sur la théorie des quanta. Ann. Phys., 10, 22–128, https://doi.org/10.1051/anphys/192510030022.
de Zafra, R. L., M. Jaramillo, A. Parrish, P. Solomon, B. Connor, and J. Barrett, 1987: High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: Diurnal variation. Nature, 328, 408–411, https://doi.org/10.1038/328408a0.
Dlugokencky, E., 2018: Trends in atmospheric methane. NOAA/ESRL, accessed October 2018, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.
Dlugokencky, E., and P. Tans, 2018: Trends in atmospheric carbon dioxide. NOAA/ESRL, accessed October 2018, www.esrl.noaa.gov/gmd/ccgg/trends/.
Dlugokencky, E., and Coauthors, 2005: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J. Geophys. Res., 110, D18306, https://doi.org/10.1029/2005JD006035.
Dobson, G. M. B., 1923: Measurements of the Sun’s ultra-violet radiation and its absorption in the Earth’s atmosphere. Proc. Roy. Soc. London, 104A, 252–271, https://doi.org/10.1098/rspa.1923.0107.
Dobson, G. M. B., 1968: Exploring the Atmosphere. 2nd ed. Oxford University Press, 209 pp.
Dobson, G. M. B., and D. N. Harrison, 1926: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, 110A, 660–693, https://doi.org/10.1098/rspa.1926.0040.
Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1927: Measurements of the amount of ozone in the Earth’s atmosphere arid its relation to other geophysical conditions—Part II. Proc. Roy. Soc. London, 114A, 521–541, https://doi.org/10.1098/rspa.1927.0056.
Donahue, N. M., J. H. Kroll, S. N. Pandis, and A. L. Robinson, 2012a: A two-dimensional volatility basis set—Part 2: Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys., 12, 615–634, https://doi.org/10.5194/acp-12-615-2012.
Donahue, N. M., and Coauthors, 2012b: Aging of biogenic secondary organic aerosols via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA, 109, 13 503–13 508, https://doi.org/10.1073/pnas.1115186109.
Donahue, N. M., W. Chuang, and M. Schervish, 2019: Gas-phase organic oxidation chemistry and atmospheric particles. Organic Oxidation and Multiphase Chemistry, J. R. Barker, A. L. Steiner, and T. J. Wallington, Eds., Advances in Atmospheric Chemistry, Vol. 2, World Scientific, 199–317, https://doi.org/10.1142/9789813271838_0004.
Dotto, L., and H. Schiff, 1978: The Ozone War. Doubleday & Co., 342 pp.
Douglass, A. R., P. A. Newman, and S. Solomon, 2014: The Antarctic ozone hole: An update. Phys. Today, 67 (7), 42–48, https://doi.org/10.1063/PT.3.2449.
Douglass, A. R., S. E. Strahan, L. D. Oman, and R. S. Stolarski, 2017: Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change. Atmos. Chem. Phys., 17, 12 081–12 096, https://doi.org/10.5194/acp-17-12081-2017.
Duong, M. V., H. T. Nguyen, N. Truong, T. N. M. Le, and L. K. Huynh, 2015: Multi-Species Multi-Channel (MSMC): An ab initio-based parallel thermodynamic and kinetic code for complex chemical systems. Int. J. Chem. Kinet., 47, 564–575, https://doi.org/10.1002/kin.20930.
Dütsch, H. U., 1974: The ozone distribution in the atmosphere. Can. J. Chem., 52, 1491–1504, https://doi.org/10.1139/v74-220.
Dütsch, H. U., 1992: F. W. Paul Götz—The man and his work. J. Atmos. Terr. Phys., 54, 485–496, https://doi.org/10.1016/0021-9169(92)90092-Y.
Ehhalt, D. H., 1974: Sampling of stratospheric trace constituents. Can. J. Chem., 52, 1510–1518, https://doi.org/10.1139/v74-222.
Ehn, M., and Coauthors, 2012: Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmos. Chem. Phys., 12, 5113–5127, https://doi.org/10.5194/acp-12-5113-2012.
Ehn, M., and Coauthors, 2014: A large source of low-volatility secondary organic aerosol. Nature, 506, 476–479, https://doi.org/10.1038/nature13032.
Eldering, A., and Coauthors, 2017a: The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech., 10, 549–563, https://doi.org/10.5194/amt-10-549-2017.
Eldering, A., and Coauthors, 2017b: The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358, https://doi.org/10.1126/science.aam5745.
Ervens, B., B. J. Turpin, and R. J. Weber, 2011: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field, and model studies. Atmos. Chem. Phys., 11, 11 069–11 102, https://doi.org/10.5194/acp-11-11069-2011.
Ervens, B., Y. B. Lim, A. Sorooshian, and B. J. Turpin, 2014: Key parameters controlling aqSOA formation. J. Geophys. Res. Atmos., 119, 3997–4016, https://doi.org/10.1002/2013JD021021.
Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan, 1996: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res., 101, 4115–4128, https://doi.org/10.1029/95JD03410.
Etheridge, D., L. Steele, R. Francey, and R. Langenfelds, 1998: Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res., 103, 15 979–15 993, https://doi.org/10.1029/98JD00923.
Fabry, C., and H. Buisson, 1913: L’absorption de l’ultra-violet par l’ozone et la limite du spectre solaire. J. Phys. Theor. Appl., 3, 196–206, https://doi.org/10.1051/jphystap:019130030019601.
Fabry, C., and H. Buisson, 1921: Étude de l’extrémité ultra-violette du spectre solaire. J. Phys. Radium, 2, 197–226, https://doi.org/10.1051/jphysrad:0192100207019700.
Fahey, D. W., and A. R. Ravishankara, 1999: Summer in the stratosphere. Science, 285, 208–210, https://doi.org/10.1126/science.285.5425.208.
Fahey, D. W ., P. A. Newman, J. A. Pyle, and B. Safari, Eds., 2019: Scientific assessment of ozone depletion: 2018. Global Ozone Research and Monitoring Project Rep. 58, WMO, 590 pp., https://www.esrl.noaa.gov/csd/assessments/ozone/2018/report/2018OzoneAssessment.pdf.
Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210, https://doi.org/10.1038/315207a0.
Farmer, C. B., G. C. Toon, P. W. Schaper, J.-F. Blavier, and L. L. Lowes, 1987: Stratospheric trace gases in the spring 1986 Antarctic atmosphere. Nature, 329, 126–130, https://doi.org/10.1038/329126a0.
Fermann, J. T., B. C. Hoffman, G. S. Tschumper, and H. F. Schaefer, 1997: The hydroperoxyl radical dimer: Triplet ring or singlet string? J. Chem. Phys., 106, 5102–5108, https://doi.org/10.1063/1.473530.
Fernandez-Ramos, A., B. A. Ellingson, B. C. Garrett, and D. G. Truhlar, 2007: Variational transition state theory with multidimensional tunneling. Reviews in Computational Chemistry, K. B. Lipkowitz and T. R. Cundari, Eds., Wiley, 125–232, ttps://doi.org/10.1002/9780470116449.ch3.
Ferretti, D. F., D. C. Lowe, R. J. Martin, and G. W. Brailsford, 2000: A new GC-IRMS technique for high precision, N2O-free analysis of δ13C and δ18O in atmospheric CO2 from small air samples. J. Geophys. Res., 105, 6709–6718, https://doi.org/10.1029/1999JD901051.
Finlayson-Pitts, B. J., and J. N. Pitts Jr., 2000: Chemistry of the Upper and Lower Atmosphere. Academic Press, 969 pp., https://doi.org/10.1016/B978-0-12-257060-5.X5000-X.
Finlayson-Pitts, B. J., M. J. Ezell, and J. N. Pitts Jr., 1989: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature, 337, 241–244, https://doi.org/10.1038/337241a0.
Fontijn, A., A. J. Sabadell, and R. J. Ronco, 1970: Homogenous chemiluminescent measurement of nitric oxide with ozone. Anal. Chem., 42, 575–579, https://doi.org/10.1021/ac60288a034.
Forst, W., 2003: Unimolecular Reactions: A Concise Introduction. Cambridge University Press, 319 pp.
Foster, K. L., R. A. Plastridge, J. W. Bottenheim, P. B. Shepson, B. J. Finlayson-Pitts, and C. W. Spicer, 2001: The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science, 291, 471–474, https://doi.org/10.1126/science.291.5503.471.
Fowler, A., and R. J. Strutt, 1917: Absorption bands of atmospheric ozone in the spectra of sun and stars. Proc. Roy. Soc. London, 93A, 577, https://doi.org/10.1098/rspa.1917.0041.
Froidevaux, L., and Coauthors, 2006: Temporal decrease in upper atmospheric chlorine. Geophys. Res. Lett., 33, L23812, https://doi.org/10.1029/2006GL027600.
Fry, J. L., and Coauthors, 2013: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmos. Chem. Phys., 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013.
Galbally, I. E., D. Tarasick, T. J. Wallington, J. Stähelin, M. Steinbacher, M. Schultz, O. Cooper, and S. Oltmans, 2017: The historic surface ozone record, 1896-1975, and its relation to modern measurements. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract A54E-04, https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/252127.
Gao, S., and Coauthors, 2004: Particle phase acidity and oligomer formation in secondary organic aerosol. Environ. Sci. Technol., 38, 6582–6589, https://doi.org/10.1021/es049125k.
Gaston, C. J., T. P. Riedel, Z. Zhang, A. Gold, J. D. Surratt, and J. A. Thornton, 2014: Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol., 48, 11 178–11 186, https://doi.org/10.1021/es5034266.
Gatley, D. P., 2004: Psychrometric chart celebrates 100th anniversary. ASHRAE J., 46, 16–20.
Gear, C. W., 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.
Gentner, D. R., and Coauthors, 2017: Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol., 51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509.
Giunta, C. J., 1998: Using history to teach the scientific method: The case of argon. J. Chem. Educ., 75, 1322–1325, https://doi.org/10.1021/ed075p1322.
Glasius, M., and A. H. Goldstein, 2016: Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol., 50, 2754–2764, https://doi.org/10.1021/acs.est.5b05105.
Glasstone, S., K. J. Laidler, and H. Eyring, 1941: The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. McGraw-Hill, 611 pp.
Glowacki, D. R., C. H. Liang, C. Morley, M. J. Pilling, and S. H. Robertson, 2012: MESMER: An open-source master equation solver for multi-energy well reactions. J. Phys. Chem., 116A, 9545–9560, https://doi.org/10.1021/jp3051033.
Goldstein, A. H., and I. E. Galbally, 2007: Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol., 41, 1515–1521, https://doi.org/10.1021/es072476p.
Götz, F. W. P., G. M. B. Dobson, and A. R. Meetham, 1933: Vertical distribution of ozone in the atmosphere. Nature, 132, 281, https://doi.org/10.1038/132281a0.
Götz, F. W. P., A. R. Meetham, and G. M. B. Dobson, 1934: The vertical distribution of ozone in the atmosphere. Proc. Roy. Soc. London, 145A, 416–446, https://doi.org/10.1098/rspa.1934.0109.
Guenther, A. B., and Coauthors, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emission of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006.
Guenther, A. B., and Coauthors, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012.
Haagen-Smit, A. J., 1952: Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem., 44, 1342–1346, https://doi.org/10.1021/ie50510a045.
Haagen-Smit, A. J., C. E. Bradley, and M. M. Fox, 1953: Ozone formation in photochemical oxidation of organic substances. Ind. Eng. Chem., 45, 2086–2089, https://doi.org/10.1021/ie50525a044.
Hallquist, M., and Coauthors, 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009.
Hart, P., 1887: On the estimation of the relative accounts of caustic and carbonate of soda in commercial soda. J. Soc. Chem. Ind., 6, 347.
Hartley, W. N., 1881: On the absorption of solar rays by atmospheric ozone. J. Chem. Soc. Trans., 39, 111–128, https://doi.org/10.1039/CT8813900111.
Hartley, H., 1947: Antoine Laurent Lavoisier 26 August 1743–8 May 1794. Proc. Roy. Soc., 189A, 427–456, https://doi.org/10.1098/rspa.1947.0050.
Hays, P. B., T. L. Killeen, and B. C. Kennedy, 1981: The Fabry-Perot interferometer on Dynamics Explorer. Space Sci. Instrum., 5, 395–416.
Hays, P. B., V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, 1993: The high-resolution doppler imager on the Upper Atmosphere Research Satellite. J. Geophys. Res., 98, 10 713–10 723, https://doi.org/10.1029/93JD00409.
Heald, C. L., and Coauthors, 2008: Total observed organic carbon (TOOC) in the atmosphere: A synthesis of North American observations. Atmos. Chem. Phys., 8, 2007–2025, https://doi.org/10.5194/acp-8-2007-2008.
Heald, C. L., and Coauthors, 2010: A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010GL042737.
Heidorn, K. C., 1978: A chronology of important events in the history of air pollution meteorology to 1970. Bull. Amer. Meteor. Soc., 59, 1589–1597, https://doi.org/10.1175/1520-0477(1978)059<1589:ACOIEI>2.0.CO;2.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1.
Hering, W. S., and T. R. Borden, 1965: Ozonesonde obervations over North America. Vol. 3, AFCRL-64-30, Air Force Cambridge Research Laboratories, 265 pp.
Hindmarsh, A. C., 1974: GEAR: Ordinary Differential Equation System Solver. Lawrence Livermore Laboratory, 79 pp.
Hodzic, A., P. S. Khasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, and R. J. Park, 2016: Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016.
Hofmann, D. J., 1988: Balloon-borne measurements of middle atmosphere aerosols and trace gases in Antarctica. Rev. Geophys., 26, 113–130, https://doi.org/10.1029/RG026i001p00113.
Hofmann, D. J., S. J. Oltmans, J. A. Lathrop, J. M. Harris, and H. Vömel, 1994: Record low ozone at the South Pole in the spring of 1993. Geophys. Res. Lett., 21, 421–424, https://doi.org/10.1029/94GL00309.
International Energy Agency, 2018: World Energy Outlook 2017. OECD, 763 pp.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.
Isaacman-VanWertz, G., and Coauthors, 2016: Ambient gas-particle partitioning of tracers for biogenic oxidation. Environ. Sci. Technol., 50, 9952–9962, https://doi.org/10.1021/acs.est.6b01674.
Isaacman-VanWertz, G., and Coauthors, 2017: Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: Current capabilities and remaining gaps. Faraday Discuss., 200, 579–598, https://doi.org/10.1039/C7FD00021A.
Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate–chemistry interactions. Atmos. Environ., 43, 5138–5192, https://doi.org/10.1016/j.atmosenv.2009.08.003.
Jacob, D. J., and Coauthors, 2016: Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Phys. Chem., 16, 14 371–14 396, https://doi.org/10.5194/acp-16-14371-2016.
Japar, S. M., and H. Niki, 1975: Gas-phase reactions of the nitrate radical with olefins. J. Phys. Chem., 79, 1629–1632, https://doi.org/10.1021/j100583a002.
Jenkin, M. E., S. M. Saunders, V. Wagner, and M. J. Pilling, 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003.
Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353.
Jing, P., Z. Lu, and A. L. Steiner, 2017: The ozone-climate penalty in the Midwestern U.S. Atmos. Environ., 170, 130–142, https://doi.org/10.1016/j.atmosenv.2017.09.038.
Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517–522, https://doi.org/10.1126/science.173.3996.517.
Jones, W. V., Ed., 2004: The next generation in scientific ballooning. Adv. Space Res., 33 (special issue), 1587–1846.
Junge, C. E., 1962: Global ozone budget and exchange between stratosphere and troposphere. Tellus, 14, 363–377.
Junge, C. E., C. W. Chagnon, and J. E. Manson, 1961: Stratospheric aerosols. J. Meteor., 18, 81–108, https://doi.org/10.1175/1520-0469(1961)018<0081:SA>2.0.CO;2.
Kalberer, M., and Coauthors, 2004: Identification of polymers as major components of atmospheric organic aerosols. Science, 303, 1659–1662, https://doi.org/10.1126/science.1092185.
Kamens, R. M., H. E. Jeffries, M. W. Gery, R. W. Wiener, K. G. Sexton, and G. B. Howe, 1981: The impact of α-pinene on urban smog formation: An outdoor smog chamber study. Atmos. Environ., 15, 969–981, https://doi.org/10.1016/0004-6981(81)90097-4.
Kamens, R. M., M. W. Gery, H. E. Jeffries, M. Jackson, and E. I. Cole, 1982: Ozone-isoprene reactions: Product formation and aerosol potential. Int. J. Chem. Kinet., 14, 955–975, https://doi.org/10.1002/kin.550140902.
Kassel, L. S., 1932: Kinetics of Homogeneous Gas Reactions. ACS Monogr., Vol. 57, American Chemical Society, 330 pp.
Keeling, C. D., 1958: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta, 13, 322–333, https://doi.org/10.1016/0016-7037(58)90033-4.
Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 7, 200–203.
Keeling, R. F., 1988: Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air. J. Atmos. Chem., 7, 153–176, https://doi.org/10.1007/BF00048044.
Kirschke, S., and Coauthors, 2013: Three decades of global methane sources and sinks. Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955.
Kleffmann, J., G. V. Tapia, I. Bejan, R. Kurtenbach, and P. Wiesen, 2013: NO2 measurement techniques: Pitfalls and new developments. Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, I. Barnes and K. J. Rudzinski, Eds., NATO Science for Peace and Security Series C: Environmental Security, Springer, 15–28.
Kley, D., A. Volz, and F. Mulheims, 1988: Ozone measurements in historic perspective. Tropospheric Ozone, I. S. A. Isaksen, Ed., NATO ASI Series, Vol. 227, D. Reidel, https://doi.org/10.1007/978-94-009-2913-5_4, 63–72.
Klippenstein, S. J., A. F. Wagner, S. H. Robertson, R. Dunbar, and D. M. Wardlaw, 1999: VARIFLEX, version 1.0. Argonne National Laboratory.
Knyazev, V. D., and W. Tsang, 2000: Chemically and thermally activated decomposition of secondary butyl radical. J. Phys. Chem., 104A, 10 747–10 765, https://doi.org/10.1021/jp001921z.
Kolb, C. E., and Coauthors, 1995: Laboratory studies of atmospheric heterogeneous chemistry. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific Publishing Company, 374–419.
Kreidenweis, S., M. Petters, and U. Lohmann, 2019: 100 years of progress in cloud physics, aerosols, and aerosol chemistry. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.
Kroll, J. H., and J. H. Seinfeld, 2008: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003.
Kroll, J. H., N. L. Ng, S. M. Murphy, R. C. Flagan, and J. H. Seinfeld, 2006: Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol., 40, 1869–1877, https://doi.org/10.1021/es0524301.
Kroll, J. H., and Coauthors, 2011: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem., 3, 133–139, https://doi.org/10.1038/nchem.948.
Krueger, A. J., 1973: The mean ozone distributions from several series of rocket soundings to 52 km at latitudes from 58°S to 64°N. Pure Appl. Geophys., 106-108, 1271–1280.
Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 6716–6733, https://doi.org/10.1364/AO.48.006716.
Kuze, A., and Coauthors, 2016: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech., 9, 2445–2461, https://doi.org/10.5194/amt-9-2445-2016.
Lambert, A., and Coauthors, 2007: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724.
Lane, N., 2002: Oxygen: The Molecule that Made the World. Oxford University Press, 384 pp.
Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist Air. Bull. Amer. Meteor. Soc., 86, 225–233, https://doi.org/10.1175/BAMS-86-2-225.
Leather, K. E., and Coauthors, 2012: Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS). Atmos. Chem. Phys., 12, 469–479, https://doi.org/10.5194/acp-12-469-2012.
Lee, B. H., and Coauthors, 2016: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proc. Natl. Acad. Sci. USA, 113, 1516–1521, https://doi.org/10.1073/pnas.1508108113.
Leighton, P. J., 1961: Photochemistry of Air Pollution. Academic Press, 312 pp.
Leone, J. A., R. C. Flagan, D. Grosjean, and J. H. Seinfeld, 1985: An outdoor smog chamber and modeling study of toluene-NOx photooxidation. Int. J. Chem. Kinet., 17, 177–216, https://doi.org/10.1002/kin.550170206.
Levy, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173, 141–143, https://doi.org/10.1126/science.173.3992.141.
Lewis, A. G., and Coauthors, 2000: A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature, 405, 778–781, https://doi.org/10.1038/35015540.
Li, K.-F., Q. Zhang, S. Wang, S. P. Sander, and Y. L. Yung, 2017: Resolving the model-observation discrepancy in the mesospheric and stratospheric HOx chemistry. Earth Space Sci., 4, 607–624, https://doi.org/10.1002/2017EA000283.
Li, Y., and Coauthors, 2016: Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. USA, 113, 5874–5879, https://doi.org/10.1073/pnas.1525736113.
Lin, P., J. Liu, J. E. Shilling, S. M. Kathmann, J. Laskin, and A. Laskin, 2015: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys., 17, 23 312–23 325, https://doi.org/10.1039/C5CP02563J.
Lin, Y.-H., and Coauthors, 2013: Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA, 110, 6718–6723, https://doi.org/10.1073/pnas.1221150110.
Lindemann, F. A., and G. M. B. Dobson, 1923: A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc. Roy. Soc. London, 102A, 411–437, https://doi.org/10.1098/rspa.1923.0003.
Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy, 1981: Tropospheric chemistry: A global perspective. J. Geophys. Res., 86, 7210–7254, https://doi.org/10.1029/JC086iC08p07210.
Logan, J. A., and Coauthors, 2012: Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. J. Geophys. Res., 117, D09301, https://doi.org/10.1029/2011JD016952.
Lovelock, J. E., 1958: A sensitive detector for gas chromatography. J. Chromatogr., 1A, 35–46, https://doi.org/10.1016/S0021-9673(00)93398-3.
Lovelock, J. E., 1961: Ionization methods for the analysis of gases and vapors. Anal. Chem., 33, 162–178, https://doi.org/10.1021/ac60170a003.
Lovelock, J. E., 1974: Atmospheric halocarbons and stratospheric ozone. Nature, 252, 292, https://doi.org/10.1038/252292a0.
Lovelock, J. E., 1977: Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 267, 32, https://doi.org/10.1038/267032a0.
Lovelock, J. E., R. J. Maggs, and R. J. Wade, 1973: Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194–196, https://doi.org/10.1038/241194a0.
Machta, L., and E. Hughes, 1970: Atmospheric oxygen in 1967 to 1970. Science, 168, 1582–1584, https://doi.org/10.1126/science.168.3939.1582.
Makra, L., 2015: Anthropogenic air pollution in ancient times. History of Toxicology and Environmental Health, P. Wexler, Ed., Vol. II, Toxicology in Antiquity, Elsevier, 21–40.
Manning, A. C., and R. F. Keeling, 2006: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus, 58B, 95–116, https://doi.org/10.1111/j.1600-0889.2006.00175.x.
Marcus, R. A., 1952a: Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys., 20, 359–364, https://doi.org/10.1063/1.1700424.
Marcus, R. A., 1952b: Lifetimes of active molecules. I. J. Chem. Phys., 20, 352–354, https://doi.org/10.1063/1.1700422.
Marcus, R. A., 1952c: Lifetimes of active molecules. II. J. Chem. Phys., 20, 355–359, https://doi.org/10.1063/1.1700423.
Margitan, J. J., F. Kaufman, and J. G. Anderson, 1975: Kinetics of the reaction OH + HNO3 yields H2O + NO3. First Symp. on Chemical Kinetics Data for the Upper and Lower Atmosphere, Warrenton, VA, NASA, 281–287.
Marvin, C. F., 1900: Psychrometric tables for obtaining the vapor pressure, relative humidity, and temperature of the dew point (from readings of the wet- and dry-bulb thermometers). Weather Bureau Publ. 236, 96 pp.
McConnell, J. C., M. B. McElroy, and S. C. Wofsy, 1971: Natural sources of atmospheric CO. Nature, 233, 187–188, https://doi.org/10.1038/233187a0.
McElroy, M. B., R. J. Salawitch, S. C. Wofsy, and J. A. Logan, 1986: Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature, 321, 759–762, https://doi.org/10.1038/321759a0.
McGrath, W. D., and R. G. W. Norrish, 1960: Studies of the reactions of excited atoms and molecules produced in the flash photolysis of ozone. Proc. Roy. Soc. London, 254, 317–326, https://doi.org/10.1098/rspa.1960.0022.
McNeill, V. F., 2015: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols. Environ. Sci. Technol., 49, 1237–1244, https://doi.org/10.1021/es5043707.
McNeill, V. F., 2017: Atmospheric aerosols: Clouds, chemistry and climate. Annu. Rev. Chem. Biomol. Eng., 8, 427–444, https://doi.org/10.1146/annurev-chembioeng-060816-101538.
McNeill, V. F., N. Sareen, and A. N. Schwier, 2014: Surface-active organics in atmospheric aerosols. Top. Curr. Chem., 339, 201–259, https://doi.org/10.1007/128_2012_404.
Meinel, A. B., 1950: Identification of the 6560 Å emission in the spectrum of the night sky. Astrophys. J., 111, 433–434, https://doi.org/10.1086/145279.
Menzies, R. T., 1979: Remote measurement of ClO in the stratosphere. Geophys. Res. Lett., 6, 151–154, https://doi.org/10.1029/GL006i003p00151.
Michael, J. V., and R. E. Weston Jr., 1966: Determination of hydrogen-atom concentration by Lyman-α photometry. I. Oscillator strength of the hydrogen-atom 2P3/2,1/2← 2S1/2 transition. II. Kinetics of the reaction of hydrogen atoms with acetylene and ethylene. J. Chem. Phys., 45, 3632–3641, https://doi.org/10.1063/1.1727381.
Migeotte, M. V., 1948a: Spectroscopic evidence of methane in the Earth’s atmosphere. Phys. Rev., 73, 519–520, https://doi.org/10.1103/PhysRev.73.519.2.
Migeotte, M. V., 1948b: Methane in the Earth’s atmosphere. J. Astrophys., 107, 400–403, https://doi.org/10.1086/145024.
Miller, W. H., 1977: Semi-classical theory for non-separable systems: Construction of “good” action-angle variables for reaction rate constants. Faraday Discuss. Chem. Soc., 62, 40–46, https://doi.org/10.1039/DC9776200040.
Miller, W. H., R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willetts, 1990: Ab-initio calculation of anharmonic constants for a transition-state, with application to semiclassical transition-state tunneling probabilities. Chem. Phys. Lett., 172, 62–68, https://doi.org/10.1016/0009-2614(90)87217-F.
Molina, L. T., and M. J. Molina, 1987: Production of Cl2O2 from the self-reaction of the ClO radical. J. Phys. Chem., 91A, 433–436, https://doi.org/10.1021/j100286a035.
Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810, https://doi.org/10.1038/249810a0.
Molina, M. J., T.-L. Tso, L. T. Molina, and F. C.-Y. Wang, 1987: Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: Release of active chlorine. Science, 238, 1253–1257, https://doi.org/10.1126/science.238.4831.1253.
Möller, D., 2008: On the history of the scientific exploration of fog, dew, rain and other atmospheric water. Erde, 139, 11–44.
Monks, P. J., and Coauthors, 2015: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015.
Morris, E. D., and H. Niki, 1974: Reaction of the nitrate radical with acetaldehyde and propylene. J. Phys. Chem., 78, 1337–1338, https://doi.org/10.1021/j100606a600.
Mount, G. H., R. W. Sanders, A. L. Schmeltekopf, and S. Solomon, 1987: Visible spectroscopy at McMurdo Station, Antarctica: 1. Overview and daily variations of NO2 and O3 austral spring, 1986. J. Geophys. Res., 92, 8320–8328, https://doi.org/10.1029/JD092iD07p08320.
Murazaki, K., and P. Hess, 2006: How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., 111, D05301, https://doi.org/10.1029/2005JD005873.
Myerson, A. L., H. M.