• Ackerman, S. A., and S. K. Cox, 1981: GATE Phase III mean synoptic-scale radiative convergence profiles. Mon. Wea. Rev., 109, 371383, https://doi.org/10.1175/1520-0493(1981)109<0371:GPIMSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., and S. K. Cox, 1987: Radiative energy budget estimates for the 1979 southwest summer monsoon. J. Atmos. Sci., 44, 30523078, https://doi.org/10.1175/1520-0469(1987)044<3052:REBEFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear-sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157, https://doi.org/10.1029/1998JD200032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., A. Heidinger, M. J. Foster, and B. Maddux, 2013: Satellite regional cloud climatology over the Great Lakes. Remote Sens., 5, 62236240, https://doi.org/10.3390/rs5126223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adirosi, E., E. Volpi, F. Lombardo, and L. Baldini, 2016: Raindrop size distribution: Fitting performance of common theoretical models. Adv. Water Resour., 96, 290305, https://doi.org/10.1016/j.advwatres.2016.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convection and stratiform rainfall. J. Appl. Meteor., 27, 3051, https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., M. J. Markus, D. D. Fenn, G. Szejwach, and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Appl. Meteor., 22, 579593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., J.-J. Wang, G. Gu, and G. J. Huffman, 2009: A ten-year rainfall climatology based on a composite of TRMM products. J. Meteor. Soc. Japan, 87A, 281293, https://doi.org/10.2151/jmsj.87A.281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, https://doi.org/10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alishouse, J., S. Snyder, J. Vongsathorn, and R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811816, https://doi.org/10.1109/36.58967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Saadi, J., and Coauthors, 2005: Improving national air quality forecasts with satellite aerosol observations. Bull. Amer. Meteor. Soc., 86, 12491261, https://doi.org/10.1175/BAMS-86-9-1249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 10771103, https://doi.org/10.5194/amt-4-1077-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238, https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arking, A., 1964: Latitudinal distribution of cloud cover from TIROS III photographs. Science, 143, 569571, https://doi.org/10.1126/science.143.3606.569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 24, 322333, https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arndt, D. S., M. O. Baringer, and M. R. Johnson, Eds., 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91 (7), S1S224, https://doi.org/10.1175/BAMS-91-7-StateoftheClimate.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. Hill, K. Furtado, P. Field, and J. Manners, 2014: A coupled cloud physics–radiation parameterization of the bulk optical properties of cirrus and its impact on the Met Office Unified Model Global Atmosphere 5.0 configuration. J. Climate, 27, 77257752, https://doi.org/10.1175/JCLI-D-13-00700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24, 379390, https://doi.org/10.1029/RG024i002p00379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.

  • Battaglia, A., K. Mroz, T. Lang, F. Tridon, S. Tanelli, L. Tian, and G. M. Heymsfield, 2016a: Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores. J. Geophys. Res. Atmos., 121, 93569381, https://doi.org/10.1002/2016JD025269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., K. Mroz, S. Tanelli, F. Tridon, and P.-E. Kirstetter, 2016b: Multiple-scattering-induced “ghost echoes” in GPM DPR observations of a tornadic supercell. J. Appl. Meteor. Climatol., 55, 16531666, https://doi.org/10.1175/JAMC-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, and S. A. Ackerman, 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, https://doi.org/10.1175/JAMC-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K., E. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beer, R., T. A. Glavich, and D. M. Rider, 2001: Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite. Appl. Opt., 40, 23562367, https://doi.org/10.1364/AO.40.002356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger, 2011: Pollution from China increases cloud droplet number, suppresses rain over the East China Sea. Geophys. Res. Lett., 38, L09704, https://doi.org/10.1029/2011GL047235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33, 26392654, https://doi.org/10.1175/JTECH-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., and M. Folmer, 2018: Utility of CrIS/ATMS profiles to diagnose extratropical transition. Results Phys., 8, 184185, https://doi.org/10.1016/j.rinp.2017.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., B. T. Zavodsky, and M. J. Folmer, 2016: Development and application of atmospheric infrared sounder ozone retrieval products for operational meteorology. IEEE Trans. Geosci. Remote Sens., 54, 958967, https://doi.org/10.1109/TGRS.2015.2471259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., A. Molthan, W. W. Vaughan, and K. Fuell, 2017: Transforming satellite data into weather forecasts. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO064449.

    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., D. F. Heath, and A. F. Fleig, 1985: Observation of anomalously small ozone densities in south polar stratosphere during October 1983 and 1984. Symp. on Dynamics and Remote Sensing of the Middle Atmosphere, Prague, Czechoslovakia, International Association of Geomagnetism and Aeronomy.

  • Blake, E. S., and R. J. Pasch, 2010: Eastern North Pacific hurricane season of 2008. Mon. Wea. Rev., 138, 705721, https://doi.org/10.1175/2009MWR3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, https://doi.org/10.1175/JCLI-D-15-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D212204, https://doi.org/10.1029/2005JD005763.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., and S. Colzy, 2000: Global distribution of cloud droplet effective radius from POLDER polarization measurements. Geophys. Res. Lett., 27, 40654068, https://doi.org/10.1029/2000GL011691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., and T. Schneider, 2016: Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Climate, 29, 58215835, https://doi.org/10.1175/JCLI-D-15-0897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buriez, J.-C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 27852813, https://doi.org/10.1080/014311697217332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, J. P., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callis, L. B., and M. Natarajan, 1986: The Antarctic ozone minimum: Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle. J. Geophys. Res., 91, 10 77110 796, https://doi.org/10.1029/JD091iD10p10771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayla, F., and J. Pascale, 1995: IASI: Instrument overview. Proc. SPIE, 2553, 316328, https://doi.org/10.1117/12.221368.

  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 83058314, https://doi.org/10.1029/JD093iD07p08305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1968: Determination of the temperature profile in an atmosphere from its outgoing radiance. J. Opt. Soc. Amer., 58, 16341637, https://doi.org/10.1364/JOSA.58.001634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1974: Remote sounding of cloudy atmospheres. I: The single cloud layer. J. Atmos. Sci., 31, 233243, https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, S., R. Fu, J. S. Wright, and S. T. Massie, 2015: Relationships between convective structure and transport of aerosols to the upper troposphere deduced from satellite observations. J. Geophys. Res. Atmos., 120, 65156536, https://doi.org/10.1002/2015JD023528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson, 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci., 2, 181184, https://doi.org/10.1038/ngeo437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, D., and Coauthors, 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res., 117, D17207, https://doi.org/10.1029/2012JD017894.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res., 114, D13103, https://doi.org/10.1029/2008JD011103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P. Y., R. Srinivasan, G. Fedosejevs, and B. Narasimhan, 2002: An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA. Int. J. Remote Sens., 23, 29392950, https://doi.org/10.1080/01431160110075631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., H. Wang, J. Min, X.-Y. Huang, P. Minnis, R. Zhang, J. Haggerty, and R. Palikonda, 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. J. Appl. Meteor. Climatol, 54, 18091825, https://doi.org/10.1175/JAMC-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., R. Zhang, D. Meng, J. Min, and L. Zhang, 2016: Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case. Adv. Atmos. Sci., 33, 11581170, https://doi.org/10.1007/s00376-016-6004-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 4132–4154, https://doi.org/10.1002/2015JD023161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 32913 337, https://doi.org/10.1029/JD094iD11p13329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, D. A., Y. J. Kaufman, G. Zibordi, J. D. Chern, J. Mao, C. Li, and B. N. Holben, 2003: Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 108, 4661, https://doi.org/10.1029/2002JD003179.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. C., 1945: Extra-terrestrial relays: Can rocket stations give worldwide radio coverage? Wireless World, 51 (10), 305308.

  • Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, https://doi.org/10.1175/JCLI-D-12-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr., and F. P. Bretherton, 1986: Cloud cover from high resolution scanner data: Detecting and allowing for partial field fields of view. J. Atmos. Sci., 43, 10251035, https://doi.org/10.1175/1520-0469(1986)043<1025:TEOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., A. R. Naeger, and A. Molthan, 2017: Structure and evolution of a warm frontal precipitation band during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 473493, https://doi.org/10.1175/MWR-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., and K. T. Griffith, 1979: Estimates of radiative divergence during Phase III of the GARP Atlantic Tropical Experiment: Part I. Methodology. J. Atmos. Sci., 36, 576585, https://doi.org/10.1175/1520-0469(1979)036<0576:EORDDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE–The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dave, J. V., and C. L. Mateer, 1967: A preliminary study of the possibility of estimating the atmospheric ozone from satellite measurements. J. Atmos. Sci., 24, 414427, https://doi.org/10.1175/1520-0469(1967)024<0414:APSOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, R., V. M. Jovanovic, and C. M. Moroney, 2017: Cloud heights measured by MISR from 2000 to 2015. J. Geophys. Res. Atmos., 122, 39753986, https://doi.org/10.1002/2017JD026456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, G., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, https://doi.org/10.1117/1.2642347.

  • De Mazière, M., and Coauthors, 2018: The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys., 18, 49354964, https://doi.org/10.5194/acp-18-4935-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43, 282296, https://doi.org/10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: TC4 validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, https://doi.org/10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872302, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derrien, M., B. Farki, L. Harang, H. LeGleau, A. Noyalet, D. Pochic, and A. Sairouni, 1993: Automatic cloud detection applied to NOAA-11 AVHRR imagery. Remote Sens. Environ., 46, 246267, https://doi.org/10.1016/0034-4257(93)90046-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbois, M., G. Séze, and G. Szejwach, 1982: Automatic classification of clouds on METEOSAT imagery: Application to high clouds. J. Appl. Meteor., 21, 401412, https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Séze, 1994: The POLDER Mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598615, https://doi.org/10.1109/36.297978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, https://doi.org/10.1126/science.1192546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and Coauthors, 1998: Selected science highlights from the first 5 years of the Upper Atmosphere Research Satellite (UARS) Program. Rev. Geophys., 36, 183210, https://doi.org/10.1029/97RG03549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, H. B., A. Cazenave, K. V. Schuckmann, M. Ablain, and B. Meyssignac, 2015: Sea level budget over 2005–2013: Missing contributions and data errors. Ocean Sci., 11, 789802, https://doi.org/10.5194/os-11-789-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, and P. E. Mlynczak, 2016: Advances in geostationary-derived longwave fluxes for the CERES Synoptic (SYN1deg) product. J. Atmos. Oceanic Technol., 33, 503521, https://doi.org/10.1175/JTECH-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño Rapid Response field campaign. Bull. Amer. Meteor. Soc., 97, 9751001, https://doi.org/10.1175/BAMS-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen, 2008: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res., 113, D03204, https://doi.org/10.1029/2007JD008438.

    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, S. Qiu, P. Minnis, S. Sun-Mack, and F. Rose, 2016: A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model. J. Geophys. Res. Atmos., 121, 10 17510 198, https://doi.org/10.1002/2016JD025255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowling, D. R., and L. F. Radke, 1990: A summary of the physical properties of cirrus clouds. J. Appl. Meteor., 29, 970978, https://doi.org/10.1175/1520-0450(1990)029<0970:ASOTPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drummond, J. R., and G. S. Mand, 1996: The Measurements of Pollution in the Troposphere (MOPITT) instrument: Overall performance and calibration requirements. J. Atmos. Oceanic Technol., 13, 314320, https://doi.org/10.1175/1520-0426(1996)013<0314:TMOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 472–492.

    • Crossref
    • Export Citation
  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Edwards, D. P., and Coauthors, 2004: Observations of carbon monoxide and aerosol from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res., 109, D24202, https://doi.org/10.1029/2004JD004727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu, 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 31373145, https://doi.org/10.5194/acp-9-3137-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1985: Detection of high level turbulence using satellite imagery and upper air data. NOAA Tech. Memo. NESDIS 10, 30 pp.

  • Elsaesser, G. S., C. W. O’Dell, M. D. Lebsock, R. Bennartz, T. J. Greenwald, and F. J. Wentz, 2017: The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). J. Climate, 30, 10 19310 210, https://doi.org/10.1175/JCLI-D-16-0902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2019: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff, 2004: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 38, 24952509, https://doi.org/10.1016/j.atmosenv.2004.01.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ernst, J. A., 1976: SMS-1 nighttime infrared imagery of low-level mountain waves. Mon. Wea. Rev., 104, 207209, https://doi.org/10.1175/1520-0493(1976)104<0207:SNIIOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic ocean temperature anomalies. Science, 324, 778781, https://doi.org/10.1126/science.1167404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., A. H. Evans, I. G. Nolt, and B. T. Marshall, 1999: The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer. J. Appl. Meteor., 38, 514525, https://doi.org/10.1175/1520-0450(1999)038<0514:TPFRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., and A. Lorenc, 1989: Direct use of satellite sounding radiances in numerical weather prediction. Meteor. Mag., 118, 316.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fauchez, T., P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer, 2015: Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry. Atmos. Meas. Tech., 8, 633647, https://doi.org/10.5194/amt-8-633-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, M., R. Knuteson, S. A. Ackerman, and H. Revercomb, 2014: Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders. Atmos. Meas. Tech., 7, 37513762, https://doi.org/10.5194/amt-7-3751-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferlay, N., and Coauthors, 2010: Toward new inferences about cloud structures from multidirectional measurements in the oxygen A band: Middle-of-cloud pressure and cloud geometrical thickness from POLDER-3/PARASOL. J. Appl. Meteor. Climatol., 49, 24922507, https://doi.org/10.1175/2010JAMC2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049, https://doi.org/10.1109/TGRS.2004.843249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fett, R. W., and R. G. Isaacs, 1979: Concerning causes of “anomalous gray shades” in DMSP visible imagery. J. Appl. Meteor., 18, 13401351, https://doi.org/10.1175/1520-0450(1979)018<1340:CCOGSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, https://doi.org/10.1002/2015GL065497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. D., and Coauthors, 2015: Development of a global fire weather database. Nat. Hazards Earth Syst. Sci., 15, 14071423, https://doi.org/10.5194/nhess-15-1407-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., R. Preusker, and L. Schüller, 1997: ATBD cloud top pressure. European Space Agency Algorithm Theoretical Basis Doc. PO-TN-MEL-GS-0006, 28 pp.

  • Fishman, J., and W. Seiler, 1983: Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. J. Geophys. Res., 88, 36623670, https://doi.org/10.1029/JC088iC06p03662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and A. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414425, https://doi.org/10.1175/JCLI-D-11-00666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and Coauthors, 2017:Cloudiness [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S27S28, https://doi.org/10.1175/2017BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, and B. J. Soden, 1996: Climate parameters from satellite spectral measurements. Part I: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter. J. Climate, 9, 327344, https://doi.org/10.1175/1520-0442(1996)009<0327:CPFSSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 10571072, https://doi.org/10.1175/2008JTECHA1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, S., 1965: The significance of mountain lee waves as seen from satellite pictures. J. Appl. Meteor., 4, 3137, https://doi.org/10.1175/1520-0450(1965)004<0031:TSOMLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., G. Lesins, J. Higgins, T. Charlock, P. Chylek, and J. Michalsky, 1998: Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett., 25, 11691172, https://doi.org/10.1029/98GL00846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., and C. D. Barnet, 2013: Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens., 51, 32073216, https://doi.org/10.1109/TGRS.2012.2220369.

    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., and C. D. Barnet, 2018: Atmospheric soundings from hyperspectral satellite observations. Comprehensive Remote Sensing, Vol. 7, Elsevier, 6496, https://doi.org/10.1016/B978-0-12-409548-9.10384-7.

    • Crossref
    • Export Citation
  • Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 31893206, https://doi.org/10.1002/qj.3172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX Observation Impact Intercomparison Experiment. Mon. Wea. Rev., 138, 40094025, https://doi.org/10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions. J. Climate, 28, 12881307, https://doi.org/10.1175/JCLI-D-14-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glumb, R. J., D. C. Jordan, and P. Mantica, 2002: Development of the Crosstrack Infrared Sounder (CrIS) sensor design. Proc. SPIE, 4486, 411424, https://doi.org/10.1117/12.455124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., Y. Qu, L. M. McMillin, W. W. Wolf, L. Zhou, and M. Divakarla, 2003: AIRS near-real-time products and algorithms in support of operational weather prediction. IEEE Trans. Geosci. Remote Sens., 41, 379389, https://doi.org/10.1109/TGRS.2002.808307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Seze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geol. Res., 105, 14 74714 759, https://doi.org/10.1029/1999JD901183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., and D. L. Wu, 2017: Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements. Atmos. Chem. Phys., 17, 27412757, https://doi.org/10.5194/acp-17-2741-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., T. J. Schmit, J. Daniels, W. Denig, and K. Metcalf, 2018: GOES: Past, present and future. Comprehensive Remote Sensing, Vol. 1, Elsevier, 119–149, https://doi.org/10.1016/B978-0-12-409548-9.10315-X.

    • Crossref
    • Export Citation
  • Gravelle, C. M., J. R. Mecikalski, W. E. Line, K. M. Bedka, R. A. Petersen, J. M. Sieglaff, G. T. Stano, and S. J. Goodman, 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 6984, https://doi.org/10.1175/BAMS-D-14-00054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., 2009: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett., 36, L20805, https://doi.org/10.1029/2009GL040394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., G. L. Stephens, T. H. Vonder Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18 47118 488, https://doi.org/10.1029/93JD00339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sidkar, 1978: Rain estimates from geosynchronous satellite imagery: Visible and infrared studies. Mon. Wea. Rev., 106, 11531171, https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and E. Eloranta, 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 6, https://doi.org/10.1117/12.55766.

  • Guo, H., J.-C. Golaz, L. J. Donner, P. Ginoux, and R. S. Hemler, 2014: Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. J. Climate, 27, 20872108, https://doi.org/10.1175/JCLI-D-13-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 05212 068, https://doi.org/10.1002/2014JD022143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497, https://doi.org/10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, L. M., and J. M. Shepherd, 2009: An investigation of warm season spatial rainfall variability in Oklahoma City: Possible linkage to urbanization and prevailing wind. J. Appl. Meteor. Climatol., 48, 251269, https://doi.org/10.1175/2008JAMC2036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanel, R., and B. Conrath, 1969: Interferometer experiment on Nimbus 3: Preliminary results. Science, 165, 12581260, https://doi.org/10.1126/science.165.3899.1258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget project. Bull. Amer. Meteor. Soc., 86, 945960, https://doi.org/10.1175/BAMS-86-7-945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., D. R. Brooks, P. Minnis, B. A. Wielicki, W. F. Staylor, G. G. Gibson, D. F. Young, and F. M. Denn, 1988: First estimates of the diurnal variation of longwave radiation from the multiple-satellite Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 69, 11441151, https://doi.org/10.1175/1520-0477(1988)069<1144:FEOTDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, https://doi.org/10.1029/JD095iD11p18687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and P. Ceppi, 2014: Trends in the CERES dataset, 2000–13: The effects of sea ice and jet shifts and comparison to climate models. J. Climate, 27, 24442456, https://doi.org/10.1175/JCLI-D-13-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasler, A. F., 1981: Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Amer. Meteor. Soc., 62, 194212, https://doi.org/10.1175/1520-0477(1981)062<0194:SOFGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Y. Li, B. A. Baum, R. E. Holz, S. Platnick, and P. Yang, 2015: Retrieval of cirrus cloud optical depth under day and night conditions from MODIS Collection 6 Cloud property data. Remote Sens., 7, 72577271, https://doi.org/10.3390/rs70607257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, R., 2010: Weather on the Air: A History of Broadcast Meteorology. Amer. Meteor. Soc., 241 pp.

    • Crossref
    • Export Citation
  • Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. J. Geophys. Res., 102, 16 91116 922, https://doi.org/10.1029/96JD03680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos., 119, 53175330, https://doi.org/10.1002/2014JD021504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and R. H. Blackmer Jr., 1988: Satellite observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116, 22002224, https://doi.org/10.1175/1520-0493(1988)116<2200:SOCOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., R. H. Blackmer Jr., and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, P. G., R. P. Allan, J. C. Chiu, and T. H. M. Stein, 2016: A multisatellite climatology of clouds, radiation, and precipitation in southern West Africa and comparison to climate models. J. Geophys. Res. Atmos., 121, 10 85710 879, https://doi.org/10.1002/2016JD025246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347370, https://doi.org/10.1175/BAMS-D-11-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko, 2008: Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol., 47, 544561, https://doi.org/10.1175/2007JAMC1559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 2001: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12 06712 097, https://doi.org/10.1029/2001JD900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R., S. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson, M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improvement to the high spectral resolution CO2-slicing cloud-top altitude retrieval. J. Atmos. Oceanic Technol., 23, 653670, https://doi.org/10.1175/JTECH1877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., and Coauthors, 2016: Resolving cirrus optical depth biases between CALIOP and MODIS using IR retrievals. Atmos. Chem. Phys., 16, 50752016, https://doi.org/10.5194/acp-16-5075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res., 110, D05205, https://doi.org/10.1029/2004JD004949.

    • Search Google Scholar
    • Export Citation
  • Horváth, Á., and R. Davies, 2007: Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR. J. Geophys. Res., 112, D01202, https://doi.org/10.1029/2006JD007101.

    • Search Google Scholar
    • Export Citation
  • Horváth, Á., and C. Gentemann, 2007: Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, non-precipitating marine clouds. Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurements Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • House, F. B., A. Gruber, G. E. Hunt, and A. T. Mecherikunnel, 1986: History of satellite missions and measurements of the Earth Radiation Budget (1957–1984). Rev. Geophys., 24, 357377, https://doi.org/10.1029/RG024i002p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Hsu, N. C., J. R. Herman, J. F. Gleason, O. Torres, and C. J. Seftor, 1999: Satellite detection of smoke aerosols over a snow/ice surface by TOMS. Geophys. Res. Lett., 26, 11651168, https://doi.org/10.1029/1999GL900155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben, 2012: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys., 12, 80378053, https://doi.org/10.5194/acp-12-8037-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., M.-J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S.-C. Tsay, 2013: Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos., 118, 92969315, https://doi.org/10.1002/jgrd.50712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthos, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, L23212, https://doi.org/10.1029/2008JD010620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., J. Liu, B. Chen, and S. L. Nasiri, 2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11 65311 665, https://doi.org/10.5194/acp-15-11653-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, L. F., and L. F. Whitney Jr., 1971: Wind estimation from geostationary-satellite pictures. Mon. Wea. Rev., 99, 665672, https://doi.org/10.1175/1520-0493(1971)099<0665:WEFGP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2017: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.6, 28 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.6.pdf.

  • Husar, R. B., J. M. Prospero, and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J. Geophys. Res., 102, 16 88916 909, https://doi.org/10.1029/96JD04009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2014: WRF–SBM simulations of melting-layer structure in mixed-phase: Precipitation events observed during LPVEx. J. Appl. Meteor. Climatol., 53, 27102731, https://doi.org/10.1175/JAMC-D-13-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iturbide-Sanchez, F., S. R. S. da Silva, Q. Liu, K. L. Pryor, M. E. Pettey, and N. R. Nalli, 2018: Toward the operational weather forecasting application of atmospheric stability products derived from NUCAPS CrIS/ATMS Soundings. IEEE Trans. Geosci. Remote Sens., 56, 45224545, https://doi.org/10.1109/TGRS.2018.2824829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, https://doi.org/10.1175/2008MWR2525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli, 2003: The advanced very high resolution radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84, 785793, https://doi.org/10.1175/BAMS-84-6-785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, P. Xie, M. L. Morrissey, and D. R. Legates, 1995: An examination of the east Pacific ITCZ rainfall distribution. J. Climate, 8, 28102823, https://doi.org/10.1175/1520-0442(1995)008<2810:AEOTEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jethva, H. T., O. Torres, L. Remer, and P. K. Bhartia, 2013: A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: Application to MODIS measurements. IEEE Trans. Geosci. Remote Sens., 51, 38623870, https://doi.org/10.1109/TGRS.2012.2230008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., J. M. Lyman, and N. G. Loeb, 2016: Improving estimates of Earth’s energy imbalance. Nat. Climate Change, 6, 639640, https://doi.org/10.1038/nclimate3043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, https://doi.org/10.1175/WAF-D-11-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn- on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, L. D., 1959: Inferences of atmospheric structures from satellite remote radiation measurements. J. Opt. Soc. Amer., 49, 10041014, https://doi.org/10.1364/JOSA.49.001004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, K.-G., 1989: Development of an operational cloud classification model. Int. J. Remote Sens., 10, 687693, https://doi.org/10.1080/01431168908903910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, https://doi.org/10.1016/S0022-4073(98)00075-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, https://doi.org/10.1175/JTECH-1694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, https://doi.org/10.1007/s10712-012-9179-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, https://doi.org/10.1175/JCLI-D-12-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102, 17 05117 067, https://doi.org/10.1029/96JD03988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaye, J. A., and T. L. Miller, 1996: The ATLAS series of Shuttle missions. Geophys. Res. Lett., 23, 22852288, https://doi.org/10.1029/96GL02228.

  • Khan, R., R. Anwar, S. Akanda, M. D. McDonald, A. Huq, A. Jutla, and R. Colwell, 2017: Assessment of risk of cholera in Haiti following Hurricane Matthew. Amer. J. Trop. Med. Hyg., 97, 896903, https://doi.org/10.4269/ajtmh.17-0048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1990: On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes. J. Atmos. Oceanic Technol., 7, 517522, https://doi.org/10.1175/1520-0426(1990)007<0517:OTUOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., W. M. Gray, and T. H. Vonder Haar, 1978: Estimating tropical cyclone central pressure and outer winds from satellite microwave data. Mon. Wea. Rev., 106, 14581464, https://doi.org/10.1175/1520-0493(1978)106<1458:ETCCPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation