Satellites See the World’s Atmosphere

S. A. Ackerman Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by S. A. Ackerman in
Current site
Google Scholar
PubMed
Close
,
S. Platnick Code 610, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by S. Platnick in
Current site
Google Scholar
PubMed
Close
,
P. K. Bhartia Code 610, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by P. K. Bhartia in
Current site
Google Scholar
PubMed
Close
,
B. Duncan Code 614, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by B. Duncan in
Current site
Google Scholar
PubMed
Close
,
T. L’Ecuyer Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by T. L’Ecuyer in
Current site
Google Scholar
PubMed
Close
,
A. Heidinger Advanced Satellite Products Branch, NOAA/NESDIS/STAR/CoRP, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by A. Heidinger in
Current site
Google Scholar
PubMed
Close
,
G. Skofronick-Jackson Earth Science Division, NASA Headquarters, Washington, DC

Search for other papers by G. Skofronick-Jackson in
Current site
Google Scholar
PubMed
Close
,
N. Loeb NASA Langley Research Center, Hampton, Virginia

Search for other papers by N. Loeb in
Current site
Google Scholar
PubMed
Close
,
T. Schmit Advanced Satellite Products Branch, NOAA/NESDIS/STAR/CoRP, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by T. Schmit in
Current site
Google Scholar
PubMed
Close
, and
N. Smith Science and Technology Corporation, Columbia, Maryland

Search for other papers by N. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite meteorology is a relatively new branch of the atmospheric sciences. The field emerged in the late 1950s during the Cold War and built on the advances in rocketry after World War II. In less than 70 years, satellite observations have transformed the way scientists observe and study Earth. This paper discusses some of the key advances in our understanding of the energy and water cycles, weather forecasting, and atmospheric composition enabled by satellite observations. While progress truly has been an international achievement, in accord with a monograph observing the centennial of the American Meteorological Society, as well as limited space, the emphasis of this chapter is on the U.S. satellite effort.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven A. Ackerman, stevea@ssec.wisc.edu

Abstract

Satellite meteorology is a relatively new branch of the atmospheric sciences. The field emerged in the late 1950s during the Cold War and built on the advances in rocketry after World War II. In less than 70 years, satellite observations have transformed the way scientists observe and study Earth. This paper discusses some of the key advances in our understanding of the energy and water cycles, weather forecasting, and atmospheric composition enabled by satellite observations. While progress truly has been an international achievement, in accord with a monograph observing the centennial of the American Meteorological Society, as well as limited space, the emphasis of this chapter is on the U.S. satellite effort.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven A. Ackerman, stevea@ssec.wisc.edu
Save
  • Ackerman, S. A., and S. K. Cox, 1981: GATE Phase III mean synoptic-scale radiative convergence profiles. Mon. Wea. Rev., 109, 371383, https://doi.org/10.1175/1520-0493(1981)109<0371:GPIMSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., and S. K. Cox, 1987: Radiative energy budget estimates for the 1979 southwest summer monsoon. J. Atmos. Sci., 44, 30523078, https://doi.org/10.1175/1520-0469(1987)044<3052:REBEFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear-sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157, https://doi.org/10.1029/1998JD200032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, https://doi.org/10.1175/2007JTECHA1053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., A. Heidinger, M. J. Foster, and B. Maddux, 2013: Satellite regional cloud climatology over the Great Lakes. Remote Sens., 5, 62236240, https://doi.org/10.3390/rs5126223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adirosi, E., E. Volpi, F. Lombardo, and L. Baldini, 2016: Raindrop size distribution: Fitting performance of common theoretical models. Adv. Water Resour., 96, 290305, https://doi.org/10.1016/j.advwatres.2016.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convection and stratiform rainfall. J. Appl. Meteor., 27, 3051, https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., M. J. Markus, D. D. Fenn, G. Szejwach, and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Appl. Meteor., 22, 579593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., J.-J. Wang, G. Gu, and G. J. Huffman, 2009: A ten-year rainfall climatology based on a composite of TRMM products. J. Meteor. Soc. Japan, 87A, 281293, https://doi.org/10.2151/jmsj.87A.281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, https://doi.org/10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alishouse, J., S. Snyder, J. Vongsathorn, and R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811816, https://doi.org/10.1109/36.58967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Saadi, J., and Coauthors, 2005: Improving national air quality forecasts with satellite aerosol observations. Bull. Amer. Meteor. Soc., 86, 12491261, https://doi.org/10.1175/BAMS-86-9-1249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 10771103, https://doi.org/10.5194/amt-4-1077-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238, https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arking, A., 1964: Latitudinal distribution of cloud cover from TIROS III photographs. Science, 143, 569571, https://doi.org/10.1126/science.143.3606.569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 24, 322333, https://doi.org/10.1175/1520-0450(1985)024<0322:ROCCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arndt, D. S., M. O. Baringer, and M. R. Johnson, Eds., 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91 (7), S1S224, https://doi.org/10.1175/BAMS-91-7-StateoftheClimate.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. Hill, K. Furtado, P. Field, and J. Manners, 2014: A coupled cloud physics–radiation parameterization of the bulk optical properties of cirrus and its impact on the Met Office Unified Model Global Atmosphere 5.0 configuration. J. Climate, 27, 77257752, https://doi.org/10.1175/JCLI-D-13-00700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24, 379390, https://doi.org/10.1029/RG024i002p00379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.

  • Battaglia, A., K. Mroz, T. Lang, F. Tridon, S. Tanelli, L. Tian, and G. M. Heymsfield, 2016a: Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores. J. Geophys. Res. Atmos., 121, 93569381, https://doi.org/10.1002/2016JD025269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., K. Mroz, S. Tanelli, F. Tridon, and P.-E. Kirstetter, 2016b: Multiple-scattering-induced “ghost echoes” in GPM DPR observations of a tornadic supercell. J. Appl. Meteor. Climatol., 55, 16531666, https://doi.org/10.1175/JAMC-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, and S. A. Ackerman, 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, https://doi.org/10.1175/JAMC-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K., E. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beer, R., T. A. Glavich, and D. M. Rider, 2001: Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite. Appl. Opt., 40, 23562367, https://doi.org/10.1364/AO.40.002356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger, 2011: Pollution from China increases cloud droplet number, suppresses rain over the East China Sea. Geophys. Res. Lett., 38, L09704, https://doi.org/10.1029/2011GL047235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33, 26392654, https://doi.org/10.1175/JTECH-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., and M. Folmer, 2018: Utility of CrIS/ATMS profiles to diagnose extratropical transition. Results Phys., 8, 184185, https://doi.org/10.1016/j.rinp.2017.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., B. T. Zavodsky, and M. J. Folmer, 2016: Development and application of atmospheric infrared sounder ozone retrieval products for operational meteorology. IEEE Trans. Geosci. Remote Sens., 54, 958967, https://doi.org/10.1109/TGRS.2015.2471259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., A. Molthan, W. W. Vaughan, and K. Fuell, 2017: Transforming satellite data into weather forecasts. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO064449.

    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., D. F. Heath, and A. F. Fleig, 1985: Observation of anomalously small ozone densities in south polar stratosphere during October 1983 and 1984. Symp. on Dynamics and Remote Sensing of the Middle Atmosphere, Prague, Czechoslovakia, International Association of Geomagnetism and Aeronomy.

  • Blake, E. S., and R. J. Pasch, 2010: Eastern North Pacific hurricane season of 2008. Mon. Wea. Rev., 138, 705721, https://doi.org/10.1175/2009MWR3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, https://doi.org/10.1175/JCLI-D-15-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D212204, https://doi.org/10.1029/2005JD005763.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., and S. Colzy, 2000: Global distribution of cloud droplet effective radius from POLDER polarization measurements. Geophys. Res. Lett., 27, 40654068, https://doi.org/10.1029/2000GL011691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., and T. Schneider, 2016: Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Climate, 29, 58215835, https://doi.org/10.1175/JCLI-D-15-0897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buriez, J.-C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 27852813, https://doi.org/10.1080/014311697217332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, J. P., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callis, L. B., and M. Natarajan, 1986: The Antarctic ozone minimum: Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle. J. Geophys. Res., 91, 10 77110 796, https://doi.org/10.1029/JD091iD10p10771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayla, F., and J. Pascale, 1995: IASI: Instrument overview. Proc. SPIE, 2553, 316328, https://doi.org/10.1117/12.221368.

  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 83058314, https://doi.org/10.1029/JD093iD07p08305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1968: Determination of the temperature profile in an atmosphere from its outgoing radiance. J. Opt. Soc. Amer., 58, 16341637, https://doi.org/10.1364/JOSA.58.001634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1974: Remote sounding of cloudy atmospheres. I: The single cloud layer. J. Atmos. Sci., 31, 233243, https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakraborty, S., R. Fu, J. S. Wright, and S. T. Massie, 2015: Relationships between convective structure and transport of aerosols to the upper troposphere deduced from satellite observations. J. Geophys. Res. Atmos., 120, 65156536, https://doi.org/10.1002/2015JD023528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson, 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci., 2, 181184, https://doi.org/10.1038/ngeo437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, D., and Coauthors, 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res., 117, D17207, https://doi.org/10.1029/2012JD017894.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res., 114, D13103, https://doi.org/10.1029/2008JD011103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P. Y., R. Srinivasan, G. Fedosejevs, and B. Narasimhan, 2002: An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA. Int. J. Remote Sens., 23, 29392950, https://doi.org/10.1080/01431160110075631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., H. Wang, J. Min, X.-Y. Huang, P. Minnis, R. Zhang, J. Haggerty, and R. Palikonda, 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. J. Appl. Meteor. Climatol, 54, 18091825, https://doi.org/10.1175/JAMC-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., R. Zhang, D. Meng, J. Min, and L. Zhang, 2016: Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case. Adv. Atmos. Sci., 33, 11581170, https://doi.org/10.1007/s00376-016-6004-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 4132–4154, https://doi.org/10.1002/2015JD023161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 32913 337, https://doi.org/10.1029/JD094iD11p13329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, D. A., Y. J. Kaufman, G. Zibordi, J. D. Chern, J. Mao, C. Li, and B. N. Holben, 2003: Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 108, 4661, https://doi.org/10.1029/2002JD003179.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. C., 1945: Extra-terrestrial relays: Can rocket stations give worldwide radio coverage? Wireless World, 51 (10), 305308.

  • Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, https://doi.org/10.1175/JCLI-D-12-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr., and F. P. Bretherton, 1986: Cloud cover from high resolution scanner data: Detecting and allowing for partial field fields of view. J. Atmos. Sci., 43, 10251035, https://doi.org/10.1175/1520-0469(1986)043<1025:TEOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., A. R. Naeger, and A. Molthan, 2017: Structure and evolution of a warm frontal precipitation band during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 473493, https://doi.org/10.1175/MWR-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., and K. T. Griffith, 1979: Estimates of radiative divergence during Phase III of the GARP Atlantic Tropical Experiment: Part I. Methodology. J. Atmos. Sci., 36, 576585, https://doi.org/10.1175/1520-0469(1979)036<0576:EORDDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE–The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dave, J. V., and C. L. Mateer, 1967: A preliminary study of the possibility of estimating the atmospheric ozone from satellite measurements. J. Atmos. Sci., 24, 414427, https://doi.org/10.1175/1520-0469(1967)024<0414:APSOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, R., V. M. Jovanovic, and C. M. Moroney, 2017: Cloud heights measured by MISR from 2000 to 2015. J. Geophys. Res. Atmos., 122, 39753986, https://doi.org/10.1002/2017JD026456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, G., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, https://doi.org/10.1117/1.2642347.

  • De Mazière, M., and Coauthors, 2018: The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys., 18, 49354964, https://doi.org/10.5194/acp-18-4935-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43, 282296, https://doi.org/10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: TC4 validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, https://doi.org/10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872302, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derrien, M., B. Farki, L. Harang, H. LeGleau, A. Noyalet, D. Pochic, and A. Sairouni, 1993: Automatic cloud detection applied to NOAA-11 AVHRR imagery. Remote Sens. Environ., 46, 246267, https://doi.org/10.1016/0034-4257(93)90046-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbois, M., G. Séze, and G. Szejwach, 1982: Automatic classification of clouds on METEOSAT imagery: Application to high clouds. J. Appl. Meteor., 21, 401412, https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Séze, 1994: The POLDER Mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598615, https://doi.org/10.1109/36.297978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, https://doi.org/10.1126/science.1192546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and Coauthors, 1998: Selected science highlights from the first 5 years of the Upper Atmosphere Research Satellite (UARS) Program. Rev. Geophys., 36, 183210, https://doi.org/10.1029/97RG03549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, H. B., A. Cazenave, K. V. Schuckmann, M. Ablain, and B. Meyssignac, 2015: Sea level budget over 2005–2013: Missing contributions and data errors. Ocean Sci., 11, 789802, https://doi.org/10.5194/os-11-789-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, and P. E. Mlynczak, 2016: Advances in geostationary-derived longwave fluxes for the CERES Synoptic (SYN1deg) product. J. Atmos. Oceanic Technol., 33, 503521, https://doi.org/10.1175/JTECH-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño Rapid Response field campaign. Bull. Amer. Meteor. Soc., 97, 9751001, https://doi.org/10.1175/BAMS-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen, 2008: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res., 113, D03204, https://doi.org/10.1029/2007JD008438.

    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, S. Qiu, P. Minnis, S. Sun-Mack, and F. Rose, 2016: A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model. J. Geophys. Res. Atmos., 121, 10 17510 198, https://doi.org/10.1002/2016JD025255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowling, D. R., and L. F. Radke, 1990: A summary of the physical properties of cirrus clouds. J. Appl. Meteor., 29, 970978, https://doi.org/10.1175/1520-0450(1990)029<0970:ASOTPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drummond, J. R., and G. S. Mand, 1996: The Measurements of Pollution in the Troposphere (MOPITT) instrument: Overall performance and calibration requirements. J. Atmos. Oceanic Technol., 13, 314320, https://doi.org/10.1175/1520-0426(1996)013<0314:TMOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 472–492.

    • Crossref
    • Export Citation
  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Edwards, D. P., and Coauthors, 2004: Observations of carbon monoxide and aerosol from the Terra satellite: Northern Hemisphere variability. J. Geophys. Res., 109, D24202, https://doi.org/10.1029/2004JD004727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu, 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 31373145, https://doi.org/10.5194/acp-9-3137-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1985: Detection of high level turbulence using satellite imagery and upper air data. NOAA Tech. Memo. NESDIS 10, 30 pp.

  • Elsaesser, G. S., C. W. O’Dell, M. D. Lebsock, R. Bennartz, T. J. Greenwald, and F. J. Wentz, 2017: The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). J. Climate, 30, 10 19310 210, https://doi.org/10.1175/JCLI-D-16-0902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2019: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff, 2004: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 38, 24952509, https://doi.org/10.1016/j.atmosenv.2004.01.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ernst, J. A., 1976: SMS-1 nighttime infrared imagery of low-level mountain waves. Mon. Wea. Rev., 104, 207209, https://doi.org/10.1175/1520-0493(1976)104<0207:SNIIOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic ocean temperature anomalies. Science, 324, 778781, https://doi.org/10.1126/science.1167404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., A. H. Evans, I. G. Nolt, and B. T. Marshall, 1999: The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer. J. Appl. Meteor., 38, 514525, https://doi.org/10.1175/1520-0450(1999)038<0514:TPFRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., and A. Lorenc, 1989: Direct use of satellite sounding radiances in numerical weather prediction. Meteor. Mag., 118, 316.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fauchez, T., P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer, 2015: Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry. Atmos. Meas. Tech., 8, 633647, https://doi.org/10.5194/amt-8-633-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, M., R. Knuteson, S. A. Ackerman, and H. Revercomb, 2014: Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders. Atmos. Meas. Tech., 7, 37513762, https://doi.org/10.5194/amt-7-3751-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferlay, N., and Coauthors, 2010: Toward new inferences about cloud structures from multidirectional measurements in the oxygen A band: Middle-of-cloud pressure and cloud geometrical thickness from POLDER-3/PARASOL. J. Appl. Meteor. Climatol., 49, 24922507, https://doi.org/10.1175/2010JAMC2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049, https://doi.org/10.1109/TGRS.2004.843249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fett, R. W., and R. G. Isaacs, 1979: Concerning causes of “anomalous gray shades” in DMSP visible imagery. J. Appl. Meteor., 18, 13401351, https://doi.org/10.1175/1520-0450(1979)018<1340:CCOGSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, https://doi.org/10.1002/2015GL065497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, R. D., and Coauthors, 2015: Development of a global fire weather database. Nat. Hazards Earth Syst. Sci., 15, 14071423, https://doi.org/10.5194/nhess-15-1407-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., R. Preusker, and L. Schüller, 1997: ATBD cloud top pressure. European Space Agency Algorithm Theoretical Basis Doc. PO-TN-MEL-GS-0006, 28 pp.

  • Fishman, J., and W. Seiler, 1983: Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. J. Geophys. Res., 88, 36623670, https://doi.org/10.1029/JC088iC06p03662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and A. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414425, https://doi.org/10.1175/JCLI-D-11-00666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and Coauthors, 2017:Cloudiness [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S27S28, https://doi.org/10.1175/2017BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, and B. J. Soden, 1996: Climate parameters from satellite spectral measurements. Part I: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter. J. Climate, 9, 327344, https://doi.org/10.1175/1520-0442(1996)009<0327:CPFSSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 10571072, https://doi.org/10.1175/2008JTECHA1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, S., 1965: The significance of mountain lee waves as seen from satellite pictures. J. Appl. Meteor., 4, 3137, https://doi.org/10.1175/1520-0450(1965)004<0031:TSOMLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., G. Lesins, J. Higgins, T. Charlock, P. Chylek, and J. Michalsky, 1998: Broadband water vapor absorption of solar radiation tested using ARM data. Geophys. Res. Lett., 25, 11691172, https://doi.org/10.1029/98GL00846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., and C. D. Barnet, 2013: Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens., 51, 32073216, https://doi.org/10.1109/TGRS.2012.2220369.

    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., and C. D. Barnet, 2018: Atmospheric soundings from hyperspectral satellite observations. Comprehensive Remote Sensing, Vol. 7, Elsevier, 6496, https://doi.org/10.1016/B978-0-12-409548-9.10384-7.

    • Crossref
    • Export Citation
  • Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 31893206, https://doi.org/10.1002/qj.3172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX Observation Impact Intercomparison Experiment. Mon. Wea. Rev., 138, 40094025, https://doi.org/10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions. J. Climate, 28, 12881307, https://doi.org/10.1175/JCLI-D-14-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glumb, R. J., D. C. Jordan, and P. Mantica, 2002: Development of the Crosstrack Infrared Sounder (CrIS) sensor design. Proc. SPIE, 4486, 411424, https://doi.org/10.1117/12.455124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., Y. Qu, L. M. McMillin, W. W. Wolf, L. Zhou, and M. Divakarla, 2003: AIRS near-real-time products and algorithms in support of operational weather prediction. IEEE Trans. Geosci. Remote Sens., 41, 379389, https://doi.org/10.1109/TGRS.2002.808307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Seze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geol. Res., 105, 14 74714 759, https://doi.org/10.1029/1999JD901183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., and D. L. Wu, 2017: Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements. Atmos. Chem. Phys., 17, 27412757, https://doi.org/10.5194/acp-17-2741-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., T. J. Schmit, J. Daniels, W. Denig, and K. Metcalf, 2018: GOES: Past, present and future. Comprehensive Remote Sensing, Vol. 1, Elsevier, 119–149, https://doi.org/10.1016/B978-0-12-409548-9.10315-X.

    • Crossref
    • Export Citation
  • Gravelle, C. M., J. R. Mecikalski, W. E. Line, K. M. Bedka, R. A. Petersen, J. M. Sieglaff, G. T. Stano, and S. J. Goodman, 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 6984, https://doi.org/10.1175/BAMS-D-14-00054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., 2009: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett., 36, L20805, https://doi.org/10.1029/2009GL040394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., G. L. Stephens, T. H. Vonder Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18 47118 488, https://doi.org/10.1029/93JD00339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sidkar, 1978: Rain estimates from geosynchronous satellite imagery: Visible and infrared studies. Mon. Wea. Rev., 106, 11531171, https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and E. Eloranta, 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 6, https://doi.org/10.1117/12.55766.

  • Guo, H., J.-C. Golaz, L. J. Donner, P. Ginoux, and R. S. Hemler, 2014: Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. J. Climate, 27, 20872108, https://doi.org/10.1175/JCLI-D-13-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 05212 068, https://doi.org/10.1002/2014JD022143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497, https://doi.org/10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, L. M., and J. M. Shepherd, 2009: An investigation of warm season spatial rainfall variability in Oklahoma City: Possible linkage to urbanization and prevailing wind. J. Appl. Meteor. Climatol., 48, 251269, https://doi.org/10.1175/2008JAMC2036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanel, R., and B. Conrath, 1969: Interferometer experiment on Nimbus 3: Preliminary results. Science, 165, 12581260, https://doi.org/10.1126/science.165.3899.1258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget project. Bull. Amer. Meteor. Soc., 86, 945960, https://doi.org/10.1175/BAMS-86-7-945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., D. R. Brooks, P. Minnis, B. A. Wielicki, W. F. Staylor, G. G. Gibson, D. F. Young, and F. M. Denn, 1988: First estimates of the diurnal variation of longwave radiation from the multiple-satellite Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 69, 11441151, https://doi.org/10.1175/1520-0477(1988)069<1144:FEOTDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, https://doi.org/10.1029/JD095iD11p18687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and P. Ceppi, 2014: Trends in the CERES dataset, 2000–13: The effects of sea ice and jet shifts and comparison to climate models. J. Climate, 27, 24442456, https://doi.org/10.1175/JCLI-D-13-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasler, A. F., 1981: Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Amer. Meteor. Soc., 62, 194212, https://doi.org/10.1175/1520-0477(1981)062<0194:SOFGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Y. Li, B. A. Baum, R. E. Holz, S. Platnick, and P. Yang, 2015: Retrieval of cirrus cloud optical depth under day and night conditions from MODIS Collection 6 Cloud property data. Remote Sens., 7, 72577271, https://doi.org/10.3390/rs70607257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, R., 2010: Weather on the Air: A History of Broadcast Meteorology. Amer. Meteor. Soc., 241 pp.

    • Crossref
    • Export Citation
  • Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. J. Geophys. Res., 102, 16 91116 922, https://doi.org/10.1029/96JD03680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos., 119, 53175330, https://doi.org/10.1002/2014JD021504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and R. H. Blackmer Jr., 1988: Satellite observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116, 22002224, https://doi.org/10.1175/1520-0493(1988)116<2200:SOCOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., R. H. Blackmer Jr., and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, P. G., R. P. Allan, J. C. Chiu, and T. H. M. Stein, 2016: A multisatellite climatology of clouds, radiation, and precipitation in southern West Africa and comparison to climate models. J. Geophys. Res. Atmos., 121, 10 85710 879, https://doi.org/10.1002/2016JD025246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347370, https://doi.org/10.1175/BAMS-D-11-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko, 2008: Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol., 47, 544561, https://doi.org/10.1175/2007JAMC1559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 2001: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12 06712 097, https://doi.org/10.1029/2001JD900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R., S. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson, M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improvement to the high spectral resolution CO2-slicing cloud-top altitude retrieval. J. Atmos. Oceanic Technol., 23, 653670, https://doi.org/10.1175/JTECH1877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., and Coauthors, 2016: Resolving cirrus optical depth biases between CALIOP and MODIS using IR retrievals. Atmos. Chem. Phys., 16, 50752016, https://doi.org/10.5194/acp-16-5075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, G., G. Heygster, J. Miao, and K. Kunzi, 2005: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res., 110, D05205, https://doi.org/10.1029/2004JD004949.

    • Search Google Scholar
    • Export Citation
  • Horváth, Á., and R. Davies, 2007: Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR. J. Geophys. Res., 112, D01202, https://doi.org/10.1029/2006JD007101.

    • Search Google Scholar
    • Export Citation
  • Horváth, Á., and C. Gentemann, 2007: Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, non-precipitating marine clouds. Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurements Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • House, F. B., A. Gruber, G. E. Hunt, and A. T. Mecherikunnel, 1986: History of satellite missions and measurements of the Earth Radiation Budget (1957–1984). Rev. Geophys., 24, 357377, https://doi.org/10.1029/RG024i002p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Hsu, N. C., J. R. Herman, J. F. Gleason, O. Torres, and C. J. Seftor, 1999: Satellite detection of smoke aerosols over a snow/ice surface by TOMS. Geophys. Res. Lett., 26, 11651168, https://doi.org/10.1029/1999GL900155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben, 2012: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys., 12, 80378053, https://doi.org/10.5194/acp-12-8037-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., M.-J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S.-C. Tsay, 2013: Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos., 118, 92969315, https://doi.org/10.1002/jgrd.50712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthos, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, B. Chen, Z. Huang, Z. Liu, Q. Zhao, Y. Yi, and J. K. Ayers, 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, L23212, https://doi.org/10.1029/2008JD010620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., J. Liu, B. Chen, and S. L. Nasiri, 2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11 65311 665, https://doi.org/10.5194/acp-15-11653-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, L. F., and L. F. Whitney Jr., 1971: Wind estimation from geostationary-satellite pictures. Mon. Wea. Rev., 99, 665672, https://doi.org/10.1175/1520-0493(1971)099<0665:WEFGP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2017: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.6, 28 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.6.pdf.

  • Husar, R. B., J. M. Prospero, and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J. Geophys. Res., 102, 16 88916 909, https://doi.org/10.1029/96JD04009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2014: WRF–SBM simulations of melting-layer structure in mixed-phase: Precipitation events observed during LPVEx. J. Appl. Meteor. Climatol., 53, 27102731, https://doi.org/10.1175/JAMC-D-13-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iturbide-Sanchez, F., S. R. S. da Silva, Q. Liu, K. L. Pryor, M. E. Pettey, and N. R. Nalli, 2018: Toward the operational weather forecasting application of atmospheric stability products derived from NUCAPS CrIS/ATMS Soundings. IEEE Trans. Geosci. Remote Sens., 56, 45224545, https://doi.org/10.1109/TGRS.2018.2824829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, https://doi.org/10.1175/2008MWR2525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli, 2003: The advanced very high resolution radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84, 785793, https://doi.org/10.1175/BAMS-84-6-785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, P. Xie, M. L. Morrissey, and D. R. Legates, 1995: An examination of the east Pacific ITCZ rainfall distribution. J. Climate, 8, 28102823, https://doi.org/10.1175/1520-0442(1995)008<2810:AEOTEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jethva, H. T., O. Torres, L. Remer, and P. K. Bhartia, 2013: A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: Application to MODIS measurements. IEEE Trans. Geosci. Remote Sens., 51, 38623870, https://doi.org/10.1109/TGRS.2012.2230008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., J. M. Lyman, and N. G. Loeb, 2016: Improving estimates of Earth’s energy imbalance. Nat. Climate Change, 6, 639640, https://doi.org/10.1038/nclimate3043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, https://doi.org/10.1175/WAF-D-11-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn- on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, L. D., 1959: Inferences of atmospheric structures from satellite remote radiation measurements. J. Opt. Soc. Amer., 49, 10041014, https://doi.org/10.1364/JOSA.49.001004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, K.-G., 1989: Development of an operational cloud classification model. Int. J. Remote Sens., 10, 687693, https://doi.org/10.1080/01431168908903910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, https://doi.org/10.1016/S0022-4073(98)00075-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, https://doi.org/10.1175/JTECH-1694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, https://doi.org/10.1007/s10712-012-9179-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, https://doi.org/10.1175/JCLI-D-12-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 45014527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102, 17 05117 067, https://doi.org/10.1029/96JD03988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaye, J. A., and T. L. Miller, 1996: The ATLAS series of Shuttle missions. Geophys. Res. Lett., 23, 22852288, https://doi.org/10.1029/96GL02228.

  • Khan, R., R. Anwar, S. Akanda, M. D. McDonald, A. Huq, A. Jutla, and R. Colwell, 2017: Assessment of risk of cholera in Haiti following Hurricane Matthew. Amer. J. Trop. Med. Hyg., 97, 896903, https://doi.org/10.4269/ajtmh.17-0048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1990: On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes. J. Atmos. Oceanic Technol., 7, 517522, https://doi.org/10.1175/1520-0426(1990)007<0517:OTUOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., W. M. Gray, and T. H. Vonder Haar, 1978: Estimating tropical cyclone central pressure and outer winds from satellite microwave data. Mon. Wea. Rev., 106, 14581464, https://doi.org/10.1175/1520-0493(1978)106<1458:ETCCPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., W. M. Gray, and T. H. Vonder Haar, 1980: Tropical cyclone outer surface winds derived from satellite microwave sounder data. Mon. Wea. Rev., 108, 144152, https://doi.org/10.1175/1520-0493(1980)108<0144:TCOSWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., and M. J. Brennan, 2011: Eastern North Pacific hurricane season of 2009. Mon. Wea. Rev., 139, 16571672, https://doi.org/10.1175/2010MWR3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. I. F., 1958: The radiative heat transfer of planet earth. Scientific Uses of Earth Satellites, J. A. van Allen, Ed., University of Michigan Press, 133–136.

  • King, M. D., and S. Platnick, 2018: The Earth Observing System (EOS). Comprehensive Remote Sensing, Vol. 1, Elsevier, 7–26, https://doi.org/10.1016/B978-0-12-409548-9.10312-4.

    • Crossref
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity. IEEE Trans. Geosci. Remote Sens., 41, 442458, https://doi.org/10.1109/TGRS.2002.808226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, https://doi.org/10.1109/TGRS.2012.2227333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., and Coauthors, 2017: NASA’s remotely-sensed precipitation: A reservoir for applications users. Bull. Amer. Meteor. Soc., 98, 11691184, https://doi.org/10.1175/BAMS-D-15-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, M. Schwaller, W. Petersen, and Q. Cao, 2015: Impact of sub-pixel rainfall variability on spaceborne precipitation estimation: Evaluating the TRMM 2A25 product. Quart. J. Roy. Meteor. Soc., 141, 953966, https://doi.org/10.1002/qj.2416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., A. S. Bachmeier, W. M. Carter, J. E. Tarantino, L. C. Paulik, E. N. Wilson, G. S. Bechdol, and M. J. Mays, 2010: Transverse cirrus bands in weather systems: A grand tour of an enduring enigma. Weather, 65, 3541, https://doi.org/10.1002/wea.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2001: A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment. J. Geophys. Res., 106, 34753490, https://doi.org/10.1029/2000JD900657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., V. V. Rozanov, J. P. Burrows, K.-U. Eichmann, W. Lotz, and M. Vountas, 2005: The SCIAMACHY cloud products: Algorithms and examples from ENVISAT. Adv. Space Res., 36, 789799, https://doi.org/10.1016/j.asr.2005.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopia, L. P., 1986: Earth Radiation Budget Experiment scanner instrument. Rev. Geophys., 24, 400406, https://doi.org/10.1029/RG024i002p00400.

  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395, https://doi.org/10.1016/S0022-4073(97)00203-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriebel, K. T., R. W. Saunders, and G. Gesell, 1989: Optical properties of clouds derived from fully cloudy AVHRR pixels. Beitr. Phys. Atmos., 62, 165171.

    • Search Google Scholar
    • Export Citation
  • Kubota, I., and H. Imai, 1986: Land-sea contrast in the earth radiation budget. J. Meteor. Soc. Japan, 64, 871879, https://doi.org/10.2151/jmsj1965.64.6_871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land Information System: An interoperable framework for high resolution land surface modelling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Ocean. Sci., 11, 53114, https://doi.org/10.3319/TAO.2000.11.1.53(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., 2017: Earth’s energy balance. International Encyclopedia of Geography: People, the Earth, Environment, and Technology, D. Richardson et al., Eds., John Wiley and Sons, 1–7, https://doi.org/10.1002/9781118786352.wbieg1132.

    • Crossref
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, https://doi.org/10.1063/1.3463626.

  • L’Ecuyer, T. S., H. Masunaga, and C. D. Kummerow, 2006: Variability in the characteristics of precipitation systems in the tropical pacific. Part II: Implications for atmospheric heating. J. Climate, 19, 13881406, https://doi.org/10.1175/JCLI3698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, https://doi.org/10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labonnote, L. C., G. Brogniez, J.-C. Buriez, M. Doutriaux-Boucher, J. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106, 12 13912 154, https://doi.org/10.1029/2000JD900642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2003: Identification of CO plumes from MOPITT data: Application to the August 2000 Idaho-Montana forest fires. Geophys. Res. Lett., 30, 1688, https://doi.org/10.1029/2003GL017503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K., and H. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518, https://doi.org/10.1175/2009JCLI2920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2006: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87, 891895, https://doi.org/10.1175/BAMS-87-7-891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenz, A., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2009: Convectively induced transverse band signatures in satellite images. Wea. Forecasting, 24, 13621373, https://doi.org/10.1175/2009WAF2222285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., J. Phillips, W. P. Menzel, T. H. Vonder Haar, H. Moosmuller, F. B. House, and M. G. Fearon, 2018: Verner Suomi: The Life and Work of the Founder of Satellite Meteorology. Amer Meteor. Soc., 168 pp.

  • Li, J.-L., and Coauthors, 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32, L18710, https://doi.org/10.1029/2005GL023788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libertino, A., A. Sharma, V. Kalshmi, and P. Claps, 2016: A global assessment of the timing of extreme rainfall from TRMM and GPM for improving hydrologic design. Environ. Res. Lett., 11, 054003, https://doi.org/10.1088/1748-9326/11/5/054003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and Coauthors, 2014: Investigation of aerosol indirect effects using a cumulus microphysics parameterization in a regional climate model. J. Geophys. Res. Atmos., 119, 906926, https://doi.org/10.1002/2013JD020958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L. F., A. M. Ebtehaj, R. L. Bras, A. N. Flores, and J. Wang, 2015: Dynamical precipitation downscaling for hydrologic applications using WRF 4D-Var data assimilation: Implications for GPM era. J. Hydrometeor., 16, 811829, https://doi.org/10.1175/JHM-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, https://doi.org/10.1175/2010JHM1320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, https://doi.org/10.1175/JCLI4023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., and J. A. Curry, 1993: Determination of characteristic features of cloud liquid water from satellite microwave measurements. J. Geophys. Res., 98, 50695092, https://doi.org/10.1029/92JD02888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2016: Global distribution of deep convection reaching tropopause in 1 year GPM observations. J. Geophys. Res. Atmos., 121, 38243842, https://doi.org/10.1002/2015JD024430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., J. K. Willis, F. W. Landerer, and I. Fukumori, 2014: Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Climate Change, 4, 10311035, https://doi.org/10.1038/nclimate2387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003a: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265, https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. Loukachine, N. Manalo-Smith, B. A. Wielicki, and D. F. Young, 2003b: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation. J. Appl. Meteor., 42, 17481769, https://doi.org/10.1175/1520-0450(2003)042<1748:ADMFTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351, https://doi.org/10.1175/JTECH1712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, https://doi.org/10.1038/ngeo1375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016a: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., 46, 32393257, https://doi.org/10.1007/s00382-015-2766-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, W. Su, M. Shankar, and S. Thomas, 2016b: CERES top-of-atmosphere Earth radiation budget climate data record: Accounting for in-orbit changes in instrument calibration. Remote Sens., 8, 182, https://doi.org/10.3390/rs8030182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., W. Su, D. R. Doelling, T. Wong, P. Minnis, S. Thomas, and W. F. Miller, 2018: Earth's top-of-atmosphere radiation budget. Comprehensive Remote Sensing, Vol. 5, Elsevier, 67–84, https://doi.org/10.1016/B978-0-12-409548-9.10367-7.

    • Crossref
    • Export Citation
  • Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luntama, J.-P., and Coauthors, 2008: Prospects of the EPS GRAS mission for operational atmospheric applications. Bull. Amer. Meteor. Soc., 89, 18631875, https://doi.org/10.1175/2008BAMS2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, M. R., J. E. Cooper, and G. R. Taylor, 1986: The Earth Radiation Budget Experiment non-scanning instrument. Rev. Geophys., 24, 391399, https://doi.org/10.1029/RG024i002p00391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Y. Zhang, S. Platnick, M. D. King, and P. Yang, 2005: Evaluation of cirrus cloud properties derived from MODIS radiances using cloud properties derived from ground-based data collected at the ARM SGP site. J. Appl. Meteor., 44, 221240, https://doi.org/10.1175/JAM2193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., M. R. P. Sapiano, R. F. Adler, Y. Tian, and G. J. Huffman, 2014: An error model for uncertainty quantification in high-time-resolution precipitation products. J. Hydrometeor., 15, 12741292, https://doi.org/10.1175/JHM-D-13-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchant, B., S. Platnick, K. Meyer, G. T. Arnold, and J. Riedi, 2016: MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. Atmos. Meas. Tech., 9, 15871599, https://doi.org/10.5194/amt-9-1587-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., and Coauthors, 2018: Earth Observations from DSCOVR EPIC Instrument. Bull. Amer. Meteor. Soc., 99, 18291850, https://doi.org/10.1175/BAMS-D-17-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, R. V., A. M. Fiore, and A. Van Donkelaar, 2004: Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophys. Res. Lett., 31, L06120, https://doi.org/10.1029/2004GL019416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2015: External influences on modeled and observed cloud trends. J. Climate, 28, 48204840, https://doi.org/10.1175/JCLI-D-14-00734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masaki, T., and Coauthors, 2015: Current status of GPM/DPR level 1 algorithm development and DPR calibration. 2015 IEEE Int. Geoscience and Remote Sensing Symp., Milan, Italy, IEEE, 26152618, https://doi.org/10.1109/IGARSS.2015.7326348.

    • Crossref
    • Export Citation
  • Mateer, C. L., D. F. Heath, and A. J. Krueger, 1971: Estimation of total ozone from satellite measurements of backscattered ultraviolet earth radiance. J. Atmos. Sci., 28, 13071311, https://doi.org/10.1175/1520-0469(1971)028<1307:EOTOFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matus, A., T. S. L’Ecuyer, J. E. Kay, J.-F. Lamarque, and C. Hannay, 2015: The role of clouds in modulating global aerosol direct radiative effects in spaceborne active observations and the Community Earth System Model. J. Climate, 28, 29863003, https://doi.org/10.1175/JCLI-D-14-00426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., 1987: SAGE II: An overview. Adv. Space Res., 7, 219226, https://doi.org/10.1016/0273-1177(87)90151-7.

  • McCormick, M. P., 1993: Scientific investigations planned for the Lidar In-space Technology Experiment (LITE). Bull. Amer. Meteor. Soc., 74, 205214, https://doi.org/10.1175/1520-0477(1993)074<0205:SIPFTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., and R. E. Veiga, 1992: SAGE II measurements of early Pinatubo aerosols. Geophys. Res. Lett., 19, 155158, https://doi.org/10.1029/91GL02790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., R. E. Veiga, and W. P. Chu, 1992: Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data. Geophys. Res. Lett., 19, 269272, https://doi.org/10.1029/92GL00187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A. P., and M. Vesperini, 1996: Variational analysis of humidity information from TOVS. Quart. J. Roy. Meteor. Soc., 122, 15211544, https://doi.org/10.1002/qj.49712253504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convective initiation, in-flight icing, turbulence and volcanic ash. Bull. Amer. Meteor. Soc., 88, 15891607, https://doi.org/10.1175/BAMS-88-10-1589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757781, https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22, 377384, https://doi.org/10.1175/1520-0450(1983)022<0377:ICMWVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, K., S. Platnick, and Z. Zhang, 2015: Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS. J. Geophys. Res. Atmos., 120, 55245547, https://doi.org/10.1002/2015JD023128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. J., Z. Zhang, A. S. Ackerman, S. Platnick, and B. A. Baum, 2016: The impact of cloud vertical structure on cloud liquid water path retrieval based on the bispectral solar reflection method: A theoretical study based on large-eddy simulations of shallow marine boundary-layer clouds. J. Geophys. Res. Atmos., 121, 41224141, https://doi.org/10.1002/2015JD024322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984a: Diurnal variability of the regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Climate Appl. Meteor., 23, 9931011, https://doi.org/10.1175/1520-0450(1984)023<0993:DVORCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984b: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: November 1978 radiative parameters. J. Climate Appl. Meteor., 23, 10321052, https://doi.org/10.1175/1520-0450(1984)023<1032:DVORCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, and W. L. Smith Jr., 1993: Radiative climate forcing by the Mt. Pinatubo eruption. Science, 259, 14111415, https://doi.org/10.1126/science.259.5100.1411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008: Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884, https://doi.org/10.1109/TGRS.2008.2001351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, https://doi.org/10.1109/TGRS.2011.2158492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minzner, R. A., W. E. Shenk, J. Steranka, and R. D. Teagle, 1976: Cloud heights determined stereographically from imagery recorded simultaneously by two synchronous meteorological satellites, SMS-1 and SMS-2. Eos, Trans. Amer. Geophys. Union, 57, 593.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, https://doi.org/10.1016/j.atmosres.2012.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determinations of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2013: Validation of satellite sounder environmental data records: Application to the Cross-track Infrared Microwave Sounder Suite. J. Geophys. Res. Atmos., 118, 13 62813 643, https://doi.org/10.1002/2013JD020436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2016: Satellite sounder observations of contrasting tropospheric moisture transport regimes: Saharan air layers, Hadley cells, and atmospheric rivers. J. Hydrometeor., 17, 29973006, https://doi.org/10.1175/JHM-D-16-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2018a: Validation of atmospheric profile retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 1: Temperature and moisture. IEEE Trans. Geosci. Remote Sens., 56, 180190, https://doi.org/10.1109/TGRS.2017.2744558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2018b: Validation of atmospheric profile retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 2: Ozone. IEEE Trans. Geosci. Remote Sens., 56, 598607, https://doi.org/10.1109/TGRS.2017.2762600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2014: The Nimbus Program History. Doc. NP-2004-10-188-GSFC, 34 pp., https://atmospheres.gsfc.nasa.gov/uploads/files/Nimbus_History.pdf.

  • NASEM, 2015: Continuity of NASA Earth Observations from Space: A Value Framework. National Academies Press, 118 pp., https://doi.org/10.17226/21789.

    • Crossref
    • Export Citation
  • NASEM, 2016: Achieving Science with CubeSats: Thinking Inside the Box. National Academies Press, 130 pp., https://doi.org/10.17226/23503.

    • Crossref
    • Export Citation
  • NASEM, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 716 pp., https://doi.org/10.17226/24938.

    • Crossref
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 11511159, https://doi.org/10.1175/1520-0477-63.10.1151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229, https://doi.org/10.1109/TGRS.2002.808243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and A. T. Evan, 2015: Empirical removal of artifacts from the ISCCP and PATMOS-x satellite cloud records. J. Atmos. Oceanic Technol., 32, 691702, https://doi.org/10.1175/JTECH-D-14-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739, https://doi.org/10.1175/2007JCLI1958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohring, G., B. A. Wielicki, R. Spencer, B. Emery, and R. Datla, 2005: Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Amer. Meteor. Soc., 86, 13031313, https://doi.org/10.1175/BAMS-86-9-1303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The Advanced Dvorak Technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite data. Wea. Forecasting, 22, 287298, https://doi.org/10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45, 702720, https://doi.org/10.1175/JAM2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part II: Initial testing using radar, radiometer and in situ observations. J. Appl. Meteor. Climatol., 55, 709722, https://doi.org/10.1175/JAMC-D-15-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017: New insights about cloud vertical structure from CloudSat and CALIPSO observations. J. Geophys. Res. Atmos., 122, 92809300, https://doi.org/10.1002/2017JD026629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, J. K. Ayers, and L. O’Neill, 2012: GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument validation and daytime cycle over the southeast Pacific. J. Geophys. Res., 117, D19212, https://doi.org/10.1029/2012JD017822.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and S. Sun-Mack, 2013: The impact of horizontal heterogeneities, cloud fraction, and cloud dynamics on warm cloud effective radii and liquid water path from CERES-like Aqua MODIS retrievals. Atmos. Chem. Phys., 13, 999710 003, https://doi.org/10.5194/acp-13-9997-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., S. Kato, and P. Minnis, 2014: Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation. J. Geophys. Res. Atmos., 119, 11 28811 302, https://doi.org/10.1002/2014JD022182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., T. Greenwald, M. Cadeddu, and P. Minnis, 2016: First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds. Geophys. Res. Lett., 43, 65636570, https://doi.org/10.1002/2016GL069061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, W., O. Branch, and B. Zaitchik, 2014: Impact of climate change on vector-borne disease in the Amazon. Global Climate Change and Public Health, K. Pinkerton and W. Rom, Eds., Respiratory Medicine, Vol. 7, Humana Press, 193–210, https://doi.org/10.1007/978-1-4614-8417-2_11.

    • Crossref
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., A. K. Heidinger, and J. Sieglaff, 2013: Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J. Geophys. Res. Atmos., 118, 14361458, https://doi.org/10.1002/jgrd.50173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., F. Hossain, L. R. Leung, N. McDowell, M. Rodell, F. J. Tapiador, F. J. Turk, and A. Wood, 2019: 100 years of progress in hydrology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1.

    • Crossref
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, https://doi.org/10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Fu, M. Chen, and R. Blakeslee, 2006: Intraseasonal forcing of convection and lightning activity in the southern Amazon as a function of cross-equatorial flow. J. Climate, 19, 31803196, https://doi.org/10.1175/JCLI3788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. A. Houze, L. McMurdie, J. Zagrodnik, S. Tanelli, J. Lundquist, and J. Wurmann, 2016: The Olympic Mountains Experiment: From ocean to summit. Meteorological Technology International, September issue, UKi Media and Events, Dorking, United Kingdom, 22—26, https://www.ukimediaevents.com/pub-meteorological.php.

  • Petkovic, V., and C. D. Kummerow, 2015: Performance of the GPM passive microwave retrieval in the Balkan flood event of 2014. J. Hydrometeor., 16, 25012518, https://doi.org/10.1175/JHM-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phulpin, T., M. Derrien, and A. Brard, 1983: A two-dimensional histogram procedure to analyze cloud cover from NOAA satellite high-resolution imagery. J. Climate Appl. Meteor., 22, 13321345, https://doi.org/10.1175/1520-0450(1983)022<1332:ATDHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2003: Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over east Asia. J. Geophys. Res., 108, 8825, https://doi.org/10.1029/2002JD003176.

    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2007: Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. J. Geophys. Res., 112, D12S21, https://doi.org/10.1029/2006JD007722.

    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and S. Twomey, 1987: Discrimination of ice from water in clouds by optical remote sensing. Atmos. Res., 21, 113122, https://doi.org/10.1016/0169-8095(87)90002-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, https://doi.org/10.1175/JCLI-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pistone, K., I. Eisenman, and V. Ramanathan, 2014: Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA, 111, 33223326, https://doi.org/10.1073/pnas.1318201111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and S. Twomey, 1994: Determining the susceptibility of cloud albedo to changes in droplet concentrations with the Advanced Very High Resolution Radiometer. J. Appl. Meteor., 33, 334347, https://doi.org/10.1175/1520-0450(1994)033<0334:DTSOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poole, L. R., and M. P. McCormick, 1990: Major results from SAGE II. The Role of the Stratosphere in Global Change, M. L. Chanin, Ed., NATO ASI Series, Vol. 8, Springer, 377–386, https://doi.org/10.1007/978-3-642-78306-7_18.

    • Crossref
    • Export Citation
  • Poulsen, C. A., and Coauthors, 2012: Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR. Atmos. Meas. Tech., 5, 18891910, https://doi.org/10.5194/amt-5-1889-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Bonatti, C. Schubert, and T. N. Carlson, 1970: Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet. Sci. Lett., 9, 287293, https://doi.org/10.1016/0012-821X(70)90039-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, https://doi.org/10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., and W. P. Menzel, 1996: Evolution of satellite observations in the United States and their use in meteorology. Historical Essays on Meteorology 1919–1995, J. R. Fleming, Ed., Amer. Meteor. Soc., 99–155, https://doi.org/10.1007/978-1-940033-84-6_5.

    • Crossref
    • Export Citation
  • Rajapakshe, C., Z. Zhang, J. E. Yorks, H. Yu, Q. Tan, K. Meyer, S. Platnick, and D. M. Winker, 2017: Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported. Geophys. Res. Lett., 44, 58185825, https://doi.org/10.1002/2017GL073559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmed, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth radiation Budget Experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, https://doi.org/10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschke, E., and W. R. Bandeen, 1970: The radiation balance of the planet earth from radiations measurements of the satellite Nimbus II. J. Climate Appl. Meteor., 9, 215238, https://doi.org/10.1175/1520-0450(1970)009<0215:TRBOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschke, E., T. H. Vonder Haar, W. R. Bandeen, and M. Pasternak, 1973: The annual radiation budget of the Earth-atmosphere system during 1969–70 from Nimbus 3 measurements. J. Atmos. Sci., 30, 341364, https://doi.org/10.1175/1520-0469(1973)030<0341:TARBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rausch, J., A. Heidinger, and R. Bennartz, 2010: Regional assessment of microphysical properties of marine boundary layer cloud using the PATMOS-x dataset. J. Geophys. Res., 115, D23212, https://doi.org/10.1029/2010JD014468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawlins, F., and J. S. Foot, 1990: Remotely sensed measurements of stratocumulus properties during FIRE using the C130 aircraft multichannel radiometer. J. Atmos. Sci., 47, 24882503, https://doi.org/10.1175/1520-0469(1990)047<2488:RSMOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reber, C. A., 1993: The Upper Atmosphere Research Satellite (UARS). Geophys. Res. Lett., 20, 12151218, https://doi.org/10.1029/93GL01103.

  • Reitebuch, O., 2012: The spaceborne wind lidar mission ADM-Aeolus. Atmospheric Physics: Background, Methods, Trends, U. Schumann, Ed., Research Topics in Aerospace, Springer, 815–827, https://doi.org/10.1007/978-3-642-30183-4_49.

    • Crossref
    • Export Citation
  • Remer, L. A., and Coauthors, 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 113, D14S07, https://doi.org/10.1029/2007JD009661.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., and Coauthors, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865, https://doi.org/10.5194/acp-10-11851-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

    • Crossref
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2011: Characteristics of precipitating convective systems in the south Asian monsoon. J. Hydrometeor., 12, 326, https://doi.org/10.1175/2010JHM1289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A., R. E. Holz, and S. A. Ackerman, 2017: Correlations of oriented ice and precipitation in marine midlatitude low clouds using collocated, CloudSat, CALIOP, and MODIS observations. J. Geophys. Res. Atmos., 122, 80568070, https://doi.org/10.1002/2016JD026407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., 1989: Measuring cloud properties from space: A review. J. Climate, 2, 201213, https://doi.org/10.1175/1520-0442(1989)002<0201:MCPFSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 23412369, https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., L. C. Garder, and A. A. Lacis, 1989: Global, seasonal cloud variations from satellite radiance measurements. Part I: Sensitivity of analysis. J. Climate, 2, 419458, https://doi.org/10.1175/1520-0442(1989)002<0419:GSCVFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. R., A. Lyons, M. Unwin, J. Dickinson, R. Rose, D. Rose, and M. Vincent, 2013: CYGNSS: Enabling the future of hurricane prediction. IEEE Geosci. Remote Sens. Mag., 1, 5267, https://doi.org/10.1109/MGRS.2013.2260911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. R., C. Chew, T. Lang, M. G. Morris, K. Nave, A. Ridley, and R. Balasubramaniam, 2018: A new paradigm in Earth environmental monitoring with the CYGNSS small satellite constellation. Sci. Rep., 8, 8782, https://doi.org/10.1038/s41598-018-27127-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES Synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, https://doi.org/10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahany, S., V. Venugopal, and R. S. Nanjundiah, 2010: Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. J. Geophys. Res., 115, D02103, https://doi.org/10.1029/2009JD012644.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P.W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., and K. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123150, https://doi.org/10.1080/01431168808954841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M.-J. Jeong, 2014: MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos., 119, 13 96513 989, https://doi.org/10.1002/2014JD022453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., S. S. Lindstrom, J. J. Gerth, and M. M. Gunshor, 2018: Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J. Oper. Meteor., 6, 3346, https://doi.org/10.15191/nwajom.2018.0604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R., and V. J. Oliver, 1977: A scheme for estimating convective rainfall from satellite imagery. NOAA Tech. Memo NESS 86, 47 pp., https://repository.library.noaa.gov/view/noaa/18514.

  • Seto, S., and T. Iguchi, 2015: Intercomparison of attenuation correction methods for the GPM Dual-Frequency Precipitation Radar. J. Atmos. Oceanic Technol., 32, 915926, https://doi.org/10.1175/JTECH-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., S. Burian, C. Liu, and S. Bernardes, 2016: Satellite precipitation metrics to study the energy-water-food nexus within the backdrop of an urbanized globe. Earthzine, 31 May, https://earthzine.org/satellite-precipitation-metrics-to-study-the-energy-water-food-nexus-within-the-backdrop-of-an-urbanized-globe/.

  • Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124, https://doi.org/10.1175/JAM2510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N., K. D. White, E. Berndt, B. T. Zavodsky, A. Wheeler, M. A. Bowlan, and C. D. Barnet, 2018: NUCAPS in AWIPS—Rethinking information compression and distribution for fast decision making. 22nd Conf. on Satellite Meteorology and Oceanography, Austin, TX, Amer. Meteor. Soc., 6A.6, https://ams.confex.com/ams/98Annual/webprogram/Paper336846.html.

  • Smith, W. L., 1968: An improved method for calculating tropospheric temperature and moisture from satellite radiometer measurements. Mon. Wea. Rev., 96, 387396, https://doi.org/10.1175/1520-0493(1968)096<0387:AIMFCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., 1991: Atmospheric soundings from satellites—False expectation or the key to improved weather prediction? Quart. J. Roy. Meteor. Soc., 117, 267297, https://doi.org/10.1002/qj.49711749802.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and Coauthors, 1986: The meteorological satellite: Overview of 25 years of operation. Science, 231, 455462, https://doi.org/10.1126/science.231.4737.455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and Coauthors, 2009: Technical note: Evolution, current capabilities, and future advances in satellite ultra-spectral IR sounding of the lower atmosphere. Atmos. Chem. Phys., 9, 55635574, https://doi.org/10.5194/acp-9-5563-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, and N. Grody, 1974: Nimbus-5 sounder data processing system—Part I: Measurement characteristics and data reduction procedures. NOAA Tech. Memo. NESS 57, 99 pp., https://repository.library.noaa.gov/view/noaa/18552.

  • Smith, W. L., E. Weisz, S. Kirev, D. K. Zhou, Z. Li, and E. E. Borbas, 2012: Dual-regression retrieval algorithm for real-time processing of satellite ultraspectral radiances. J. Appl. Meteor. Climatol., 51, 14551476, https://doi.org/10.1175/JAMC-D-11-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1997: Variations in the tropical greenhouse effect during El Niño. J. Climate, 10, 10501055, https://doi.org/10.1175/1520-0442(1997)010<1050:VITTGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, T., and D. B. Kirschbaum, 2017: A heuristic approach to global landslide susceptibility mapping. Nat. Hazards, 87, 145164, https://doi.org/10.1007/s11069-017-2757-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stano, G. T., C. J. Schultz, L. D. Carey, D. R. MacGorman, and K. M. Calhoun, 2014: Total lightning observations and tools for the 20 May 2013 Moore, Oklahoma, tornadic supercell. J. Oper. Meteor, 2, 7188, https://doi.org/10.15191/nwajom.2014.0207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., G. G. Campbell, and T. H. V. Haar, 1981: Earth radiation budgets. J. Geophys. Res., 86, 97399760, https://doi.org/10.1029/JC086iC10p09739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat Mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat Mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, https://doi.org/10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Wild, J. P. W. Stackhouse, T. L’Ecuyer, S. Kato, and D. S. Henderson, 2012a: An update on the Earth’s energy balance in light of new surface energy flux estimates. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Wild, P. W. Stackhouse Jr., T. L’Ecuyer, S. Kato, and D. S. Henderson, 2012b: The global character of the flux of downward longwave radiation. J. Climate, 25, 23292340, https://doi.org/10.1175/JCLI-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L’Ecuyer, and M. Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/BAMS-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., E. P. McClain, R. Carey, P. Pellegrino, G. Gutman, P. Davis, C. Long, and S. Hart, 1991: Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Adv. Space Res., 11, 5154, https://doi.org/10.1016/0273-1177(91)90402-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., H. Jacobowitz, G. Ohring, K. R. Knapp, and N. R. Nalli, 2002: The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15, 12431260, https://doi.org/10.1175/1520-0442(2002)015<1243:TAVHRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12 μm data. J. Appl. Meteor., 33, 212229, https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, W., J. Corbett, Z. Eitzen, and L. Liang, 2015: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, https://doi.org/10.5194/amt-8-611-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, W., 1985: Low level ozone found above Antarctica. New York Times, 7 November, B21, https://www.nytimes.com/1985/11/07/us/low-ozone-level-found-above-antarctica.html.

  • Sun, B., A. Reale, F. H. Tilley, M. E. Pettey, N. R. Nalli, and C. D. Barnet, 2017: Assessment of NUCAPS S-NPP CrIS/ATMS sounding products using reference and conventional radiosonde observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 24992509, https://doi.org/10.1109/JSTARS.2017.2670504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suomi, V. E., and R. Parent, 1968: A color view of planet Earth. Bull. Amer. Meteor. Soc., 49, 7475, https://doi.org/10.1175/1520-0477-49.2.74.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, https://doi.org/10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, L. Iredell, and F. Keita, 2011: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS science team version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907, https://doi.org/10.1109/TGRS.2010.2070508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., and Coauthors, 1988: Angular radiation models for Earth–atmosphere systems: Volume I—Shortwave radiation. NASA Reference Publ. 1184, Vol. I, 144 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880018293.pdf.

  • Suttles, J. T., R. N. Green, G. L. Smith, B. A. Wielicki, I. J. Walker, V. R. Taylor, and L. L. Stowe, 1989: Angular radiation models for earth–atmosphere systems: Volume II—Longwave radiation. NASA Reference Publ. 1184, Vol. II, 84 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890011216.pdf.

  • Takahashi, H. G., H. Fujinami, T. Yasunari, and J. Matsumoto, 2010: Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina peninsula. J. Geophys. Res., 115, D07109, https://doi.org/10.1029/2009JA015243.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2006: Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys. Res. Lett., 33, L18705, https://doi.org/10.1029/2006GL027531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, B. Z., W. A. Petersen, and A. Tokay, 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, https://doi.org/10.1175/JHM-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893, https://doi.org/10.1175/2009JCLI3278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2013: Precipitation intensity and variation during MC3E: A numerical modeling study. J. Geophys. Res. Atmos., 118, 71997218, https://doi.org/10.1002/jgrd.50410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2017: Global precipitation measurements for validating climate models. Atmos. Res., 197, 120, https://doi.org/10.1016/j.atmosres.2017.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res., 103, 17 09917 110, https://doi.org/10.1029/98JD00900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2017: Atlantic meridional heat transports computed from balancing Earth’s energy locally. Geophys. Res. Lett., 44, 19191927, https://doi.org/10.1002/2016GL072475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trepte, Q. Z., and Coauthors, 2019: Global cloud detection for CERES Edition 4 using Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., in press.

    • Crossref
    • Export Citation
  • Trishchenko, A. P., L. Garand, L. D. Trichtchenko, and L. V. Nikitina, 2016: Multiple-apogee highly elliptical orbits for continuous meteorological imaging of polar regions: challenging the classical 12-h Molniya orbit concept. Bull. Amer. Meteor. Soc., 97, 1924, https://doi.org/10.1175/BAMS-D-14-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., and T. Cocks, 1989: Remote sensing of cloud parameters from spectral reflectance measurements in near-infrared. Beitr. Phys. Atmos., 62, 172179.

    • Search Google Scholar
    • Export Citation
  • Uhlenbrock, N. L., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2007: Mountain waves signatures in MODIS 6.7-μm imagery and their relation to pilot reports of turbulence. Wea. Forecasting, 22, 662670, https://doi.org/10.1175/WAF1007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanbauce, C., J. Buriez, F. Parol, B. Bonnel, G. Seze, and P. Couvert, 1998: Apparent pressure derived from ADEOS- POLDER observations in the oxygen A-band over ocean. Geophys. Res. Lett., 25, 31593162, https://doi.org/10.1029/98GL02324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. Fridlind, A. Ackerman, and B. Cairns, 2012: Evaluation of hydro- meteor phase and ice properties in cloud-resolving model simulations of tropical deep convection using radiance and polarization measurements. J. Atmos. Sci., 69, 32903314, https://doi.org/10.1175/JAS-D-11-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, https://doi.org/10.1038/ncomms10266.

  • Velden, C. S., 1987: Satellite observations of hurricane Elena (1985) using the VAS 6.7-μm “water vapor” channel. Bull. Amer. Meteor. Soc., 68, 210215, https://doi.org/10.1175/1520-0477(1987)068<0210:SOOHEU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and W. L. Smith, 1983: Monitoring tropical cyclone evolution with NOAA satellite microwave observations. J. Climate Appl. Meteor., 22, 714724, https://doi.org/10.1175/1520-0450(1983)022<0714:MTCEWN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., W. L. Smith, and M. Mayfield, 1984: Applications of VAS and TOVS to tropical cyclones. Bull. Amer. Meteor. Soc., 65, 10591067, https://doi.org/10.1175/1520-0477(1984)065<1059:AOVATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172186, https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernier, J.-P., and Coauthors, 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vianna, M. L., V. V. Menezes, A. B. Pezza, and I. Simmonds, 2010: Interactions between Hurricane Catarina (2004) and warm core rings in the South Atlantic Ocean. J. Geophys. Res. Oceans, 115, C07002, https://doi.org/10.1029/2009JC005974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, https://doi.org/10.1038/nclimate2876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., 1994: The global energy budget and satellite observations. Adv. Space Res., 14, 131144, https://doi.org/10.1016/0273-1177(94)90362-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and V. E. Suomi, 1969: Satellite observations of the Earth’s radiation budget. Science, 163, 667669, https://doi.org/10.1126/science.163.3868.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., V. E. Suomi, E. Raschke, M. Pasternak, and W. Bandeen, 1972: The radiation budget of the Earth-atmosphere system as measured from the Nimbus 3 satellite (1969–1970). Space Res., 12, 491498.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, https://doi.org/10.1175/2008JCLI2731.1.

  • Wang, C., S. Platnick, Z. Zhang, K. Meyer, G. Wind, and P. Yang, 2016: Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation. J. Geophys. Res. Atmos., 121, 58275845, https://doi.org/10.1002/2015JD024528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and S. A. Christopher, 2003: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waquet, F., and Coauthors, 2013: Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements. Atmos. Meas. Tech., 6, 9911016, https://doi.org/10.5194/amt-6-991-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, A., 2015: Nimbus celebrates fifty years. The Earth Observer, Vol. 27 (2), NASA Science Communications Support Office, Greenbelt MD, 18–31, https://eospso.nasa.gov/earthobserver/mar-apr-2015.

  • Ware, R., and Coauthors, 1996: GPS Sounding of the atmosphere from low Earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 1940, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinstein, M., and V. E. Suomi, 1961: Analysis of satellite infrared radiation measurements on a synoptic scale. Mon. Wea. Rev., 89, 419428, https://doi.org/10.1175/1520-0493-89.11.419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., H.-L. Huang, J. Li, E. Borbas, and K. Baggett, 2007: International MODIS and AIRS processing package: AIRS products and applications. J. Appl. Remote Sens., 1, 013519, https://doi.org/10.1117/1.2766867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., W. L. Smith, and N. Smith, 2013: Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements. J. Geophys. Res. Atmos., 118, 64336443, https://doi.org/10.1002/jgrd.50521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., N. Smith, and W. L. Smith, 2015: The use of hyperspectral sounding information to monitor atmospheric tendencies leading to severe local storms. Earth Space Sci., 2, 369377, https://doi.org/10.1002/2015EA000122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weldon, R. B., and S. J. Holmes, 1991: Water vapor imagery: Interpretation and applications to weather analysis and forecasting. NOAA Tech. Rep. NESDIS 57, 213 pp.

  • Wen, Y., P. Kirstetter, Y. Hong, J. J. Gourley, Q. Cao, J. Zhang, Z. Flamig, and X. Xue, 2016: Evaluation of a method to enhance real-time, ground radar based rainfall estimates using climatological profiles of reflectivity from space. J. Hydrometeor., 17, 761775, https://doi.org/10.1175/JHM-D-15-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well calibrated ocean algorithm for special sensor microwave / imager. J. Geophys. Res., 102, 87038718, https://doi.org/10.1029/96JC01751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and D. Draper, 2016: On-orbit absolute calibration of the Global Precipitation Measurement Microwave Imager. J. Atmos. Oceanic Technol., 33, 13931412, https://doi.org/10.1175/JTECH-D-15-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, F., G. Wind, Z. Zhang, S. Platnick, L. Di Girolamo, G. Zhao, N. Amarasinghe, and K. Meyer, 2016: Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS. Atmos. Meas. Tech., 9, 58695894, https://doi.org/10.5194/amt-9-5869-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1954: Observing the weather from a satellite vehicle. J. Br. Interplanet. Soc., 13, 269276.

  • Wheeler, A., N. Smith, A. Gambacorta, C. D. Barnet, and M. Goldberg, 2018: Evaluation of NUCAPS products in AWIPS-II: results from the 2017 HWT. 14th Annual Symp. on New Generation Operational Environmental Satellite Systems, Austin, TX, Amer. Meteor. Soc., 237, https://ams.confex.com/ams/98Annual/webprogram/Paper337401.html.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2011: Seamless advective blending of total precipitable water retrievals from polar-orbiting satellites. J. Appl. Meteor. Climatol., 50, 10241036, https://doi.org/10.1175/2010JAMC2589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., R. H. Couch, and M. P. McCormick, 1996: An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164180, https://doi.org/10.1109/5.482227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, https://doi.org/10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys., 13, 33453361, https://doi.org/10.5194/acp-13-3345-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, R. E., G. Lin, M. Nishihama, K. P. Mewari, J. C. Tilton, and A. R. Isaacman, 2013: Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization. J. Geophys. Res. Atmos., 118, 11 50811 521, https://doi.org/10.1002/jgrd.50873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low clouds: Part I. Probability distribution and mesoscale cellular scales. J. Climate, 19, 17481764, https://doi.org/10.1175/JCLI3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2018: Ultraclean layers and optically thin clouds in the stratocumulus transition: Part I: Observations. J. Atmos. Sci., 75, https://doi.org/10.1175/JAS-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., D. B. Kirschbaum, and S. Yatheendradas, 2017: Satellite precipitation characterization, error modeling, and error correction using censored shifted gamma distributions. J. Hydrometeor., 18, 28012815, https://doi.org/10.1175/JHM-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Tian, G. J. Huffman, H. Li, and J. Wang, 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, https://doi.org/10.1002/2013WR014710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel, 1989: Two years of cloud cover statistics using VAS. J. Climate, 2, 380392, https://doi.org/10.1175/1520-0442(1989)002<0380:TYOCCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 19721986, https://doi.org/10.1175/1520-0442(1994)007<1972:FYOGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xi, B., X. Dong, P. Minnis, and S. Sun-Mack, 2014:Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF measurements at the Azores. J. Geophys. Res. Atmos., 119, 95099529, https://doi.org/10.1002/2014JD021813.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34, 11431160, https://doi.org/10.1175/1520-0450(1995)034<1143:AIOGOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiong, X., and Coauthors, 2014: VIIRS on-orbit calibration methodology and performance. J. Geophys. Res. Atmos., 119, 50655078, https://doi.org/10.1002/2013JD020423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and A. Cheng, 2013a: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part I: Sensitivity to spatial resolution and climatology. J. Climate, 26, 57175740, https://doi.org/10.1175/JCLI-D-12-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and A. Cheng, 2013b: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part II: Seasonal variations over the Eastern Pacific. J. Climate, 26, 57415760, https://doi.org/10.1175/JCLI-D-12-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H.-L. Huang, M. D. King, and S. Platnick, 2007: Differences between collection 4 and 5 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations. IEEE Trans. Geosci. Remote Sens., 45, 28862899, https://doi.org/10.1109/TGRS.2007.898276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yost, C. R., and Coauthors, 2018: A prototype method for diagnosing high ice water content probability using satellite imager data. Atmos. Meas. Tech., 11, 16151637, https://doi.org/10.5194/amt-11-1615-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., N.-Y. Wang, R. Ferraro, and S. Rudlosky, 2017: Quantifying the snowfall detection performance of the GPM Microwave Imager channels over land. J. Hydrometeor., 18, 729751, https://doi.org/10.1175/JHM-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2015: Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sens. Environ., 159, 232249, https://doi.org/10.1016/j.rse.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yumimoto, K., and T. Takemura, 2015: Long-term inverse modeling of Asian dust: Interannual variations of its emission, transport, deposition and radiative forcing. J. Geophys. Res. Atmos., 120, 15821607, https://doi.org/10.1002/2014JD022390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., T. Matsui, S. Cheung, M. Zupanski, and C. Peters-Lidard, 2017: Impact of assimilated precipitation-sensitive radiances on the NU-WRF simulation of West African monsoon. Mon. Wea. Rev., 145, 38813900, https://doi.org/10.1175/MWR-D-16-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective particle radius for marine water clouds from three MODIS spectral bands. J. Geophys. Res., 116, D20215, https://doi.org/10.1029/2011JD016216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Dong, B. Xi, H. Song, P.-L. Ma, S. Ghan, S. Platnick, and P. Minnis, 2017: Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products. J. Geophys. Res. Atmos., 122, 23512365, https://doi.org/10.1002/2016JD025763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and Coauthors, 2017: Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes. Environ. Res. Lett., 12, 054021, https://doi.org/10.1088/1748-9326/aa6cb2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, A. E. Dessler, and S. A. Klein, 2015: The relationship between interannual and long-term cloud feedbacks. Geophys. Res. Lett., 42, 10 46310 469, https://doi.org/10.1002/2015GL066698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X., A. K. Heidinger, and A. Walther, 2016: Climatology analysis of aerosol effect on marine water cloud from long-term satellite climate data records. Remote Sens., 8, 300, https://doi.org/10.3390/rs8040300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziemke, J. R., S. Chandra, and P. K. Bhartia, 1998: Two new methods for deriving tropospheric column ozone from TOMS measurements: The assimilated UARS MLS/HALOE and convective cloud differential techniques. J. Geophys. Res., 103, 22 11522 127, https://doi.org/10.1029/98JD01567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia, P. F. Levelt, and J. W. Waters, 2006: Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res., 111, D19303, https://doi.org/10.1029/2006JD007089.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5942 2021 184
PDF Downloads 2841 404 29