100 Years of Progress in Tropical Cyclone Research

Kerry Emanuel Lorenz Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Kerry Emanuel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A century ago, meteorologists regarded tropical cyclones as shallow vortices, extending upward only a few kilometers into the troposphere, and nothing was known about their physics save that convection was somehow involved. As recently as 1938, a major hurricane struck the densely populated northeastern United States with no warning whatsoever, killing hundreds. In the time since the American Meteorological Society was founded, however, tropical cyclone research blossomed into an endeavor of great breadth and depth, encompassing fields ranging from atmospheric and oceanic dynamics to biogeochemistry, and the precision and scope of forecasts and warnings have achieved a level of success that would have been regarded as impossible only a few decades ago. This chapter attempts to document the extraordinary progress in tropical cyclone research over the last century and to suggest some avenues for productive research over the next one.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kerry Emanuel, emanuel@mit.edu

Abstract

A century ago, meteorologists regarded tropical cyclones as shallow vortices, extending upward only a few kilometers into the troposphere, and nothing was known about their physics save that convection was somehow involved. As recently as 1938, a major hurricane struck the densely populated northeastern United States with no warning whatsoever, killing hundreds. In the time since the American Meteorological Society was founded, however, tropical cyclone research blossomed into an endeavor of great breadth and depth, encompassing fields ranging from atmospheric and oceanic dynamics to biogeochemistry, and the precision and scope of forecasts and warnings have achieved a level of success that would have been regarded as impossible only a few decades ago. This chapter attempts to document the extraordinary progress in tropical cyclone research over the last century and to suggest some avenues for productive research over the next one.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kerry Emanuel, emanuel@mit.edu
Save
  • Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, https://doi.org/10.1029/2011GL047015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230, https://doi.org/10.1175/JAS-D-12-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abdullah, A. J., 1966: The spiral bands of a hurricane: A possible dynamic explanation. J. Atmos. Sci., 23, 367375, https://doi.org/10.1175/1520-0469(1966)023<0367:TSBOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abraham, J., J. W. Strapp, C. Fogarty, and M. Wolde, 2004: Extratropical transition of Hurricane Michael: An aircraft investigation. Bull. Amer. Meteor. Soc., 85, 13231340, https://doi.org/10.1175/BAMS-85-9-1323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.

    • Crossref
    • Export Citation
  • Adem, J., 1956: A series solution for the barotropic vorticity equation and its application to the study of atmospheric vortices. Tellus, 8, 364376, https://doi.org/10.3402/tellusa.v8i3.9010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agusti-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, https://doi.org/10.1256/qj.02.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704, https://doi.org/10.1175/2007JAS2348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, P., and B. U. Neeman, 1992: Cold small-scale cyclones over the eastern Mediterranean. Tellus, 44A, 173179, https://doi.org/10.3402/tellusa.v44i2.14952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608619, https://doi.org/10.1175/2009JPO4232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and K. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and J. Decosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103, 303333, https://doi.org/10.1023/A:1014564513650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596, https://doi.org/10.1175/2007JPO3813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, https://doi.org/10.1002/qj.2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Ed., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 298 pp.

  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, https://doi.org/10.1175/2008MWR2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, https://doi.org/10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., V. Tallapragada, and S. Gopalakrishnan, 2015: Advances in tropical cyclone intensity forecasts. Mar. Technol. Soc. J., 49, 149160, https://doi.org/10.4031/MTSJ.49.6.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldini, L. M., and Coauthors, 2016: Persistent northward North Atlantic tropical cyclone track migration over the past five centuries. Sci. Rep., 6, 37522, https://doi.org/10.1038/srep37522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballenzweig, E. M., 1959: Relation of long-period circulation anomalies to tropical storm formation and motion. J. Meteor., 16, 121139, https://doi.org/10.1175/1520-0469(1959)016<0121:ROLPCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, https://doi.org/10.1175/MWR-D-11-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 17821794, https://doi.org/10.1175/1520-0493(1984)112<1782:TEOFAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, https://doi.org/10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and L. M. Leslie, 2009: Links between tropical cyclone activity and Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727744, https://doi.org/10.1175/2008MWR2602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoseale convective systems. Mon. Wea. Rev., 119, 104118, https://doi.org/10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612, https://doi.org/10.1175/JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, https://doi.org/10.1175/2007MWR1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993a: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, https://doi.org/10.1029/93JD02370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993b: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 20462061, https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, https://doi.org/10.1002/qj.49710544615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., D. Keyser, and L. F. Bosart, 2016: A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 144, 20492068, https://doi.org/10.1175/MWR-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1954: The problem of tropical hurricanes. Quart. J. Roy. Meteor. Soc., 80, 131164, https://doi.org/10.1002/qj.49708034402.

  • Bernaret, L., and Coauthors, 2015: Community support and transition of research to operations for the Hurricane Research and Forecast (HWRF) Model. Bull. Amer. Meteor. Soc., 96, 953960, https://doi.org/10.1175/BAMS-D-13-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656, https://doi.org/10.1175/MWR3087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Beven, J., Jr., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173, https://doi.org/10.1175/2007MWR2074.1.

  • Bishop, C. H., and A. J. Thorpe, 1994: Frontal wave stability during moist deformation frontogensis. Part I: Linear wave dynamics. J. Atmos. Sci., 51, 852873, https://doi.org/10.1175/1520-0469(1994)051<0852:FWSDMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadel variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64, 325330.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effects of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 13481366, https://doi.org/10.1175/1520-0469(1971)028<1348:OTASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and F. Marks, 1991: The structure of an eyewall meso-vortex in Hurricane Hugo. Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 579–582.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, A., I. Ginis, T. Hara, and E. Ulhorn, 2017: Impact of Langmuir turbulence on upper ocean response to Hurricane Edouard: Model and observations. J. Geophys. Res. Oceans, 122, 97129724, https://doi.org/10.1002/2017JC012956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741, https://doi.org/10.1002/qj.49712353910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1976: Synoptic-scale deformation and tropical cloud bands. Ph.D. thesis, Dept. of Meteorology, Massachusetts Institute of Technology, 208 pp.

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and F. D. Marks Jr., 1987: On the structure of the eyewall of Hurricane Diana (1984): Comparison of radar and visual characteristics. Mon. Wea. Rev., 115, 25422552, https://doi.org/10.1175/1520-0493(1987)115<2542:OTSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bode, L., and R. K. Smith, 1975: A parameterization of the boundary layer of a tropical cyclone. Bound.-Layer Meteor., 8, 319, https://doi.org/10.1007/BF02579390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogomolov, V. A., 1977: Dynamics of vorticity on a sphere. Fluid Dyn., 12, 863870, https://doi.org/10.1007/BF01090320.

  • Boldt, K. V., P. Lane, J. D. Woodruff, and J. P. Donnelly, 2010: Calibrating a sedimentary record of overwash from southeastern New England using modeled historic hurricane surges. Mar. Geol., 275, 127139, https://doi.org/10.1016/j.margeo.2010.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642, https://doi.org/10.1175/1520-0469(1981)038<1616:TJFOJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013, https://doi.org/10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, https://doi.org/10.1175/JCLI-D-14-00804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandon, C. M., J. D. Woodruff, D. P. Lane, and J. P. Donnelly, 2013: Tropical cyclone wind speed constraints from resultant storm surge deposition: A 2500 year reconstruction of hurricane activity from St. Marks, FL. Geochem. Geophys. Geosyst., 14, 29933008, https://doi.org/10.1002/ggge.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandon, C. M., J. D. Woodruff, J. P. Donnelly, and R. M. Sullivan, 2014: How unique was Hurricane Sandy? Sedimentary reconstructions of extreme flooding from New York harbor. Sci. Rep., 4, 7366, https://doi.org/10.1038/srep07366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, https://doi.org/10.1175/MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, https://doi.org/10.1175/BAMS-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bravo, J., J. P. Donnelly, and J. Dowling, 1997: Sedimentary evidence for the 1938 hurricane in southern New England. Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 395–396.

  • Bretherton, C. S., and M. F. Khairoutdinov, 2004: Convective self-aggregation in large cloud-resolving model simulations of radiative convective equilibrium. 26th Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 12B.4, https://ams.confex.com/ams/26HURR/techprogram/paper_76059.htm.

  • Bretherton, C. S., P. N. Blossey, and M. F. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 86118626, https://doi.org/10.1175/JCLI-D-11-00619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, S., 1985: The synoptic climatology of polar low outbreaks. Tellus, 37A, 419432, https://doi.org/10.3402/tellusa.v37i5.11686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.

  • Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Meteor., 5, 7186, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and S. M. Hsiang, 2016: Tropical cyclones: From the influence of climate to their socioeconomic impacts. Extreme Events: Observations, Modeling, and Economics, M. Chavez, M. Ghil, and J. Urrutia-Fucugauchi, Eds., Wiley-Blackwell, 438 pp.

    • Crossref
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007d: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, https://doi.org/10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, L. P., M. Boudreault, and C. L. Bruyere, 2015: Changes in large-scale controls of Atlantic tropical cyclone activity with the phases of the Atlantic multidecadal oscillation. Climate Dyn., 44, 18011821, https://doi.org/10.1007/s00382-014-2186-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavicchia, L., H. von Storch, and S. Gualdi, 2014: A long-term climatology of medicanes. Climate Dyn., 43, 11831195, https://doi.org/10.1007/s00382-013-1893-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 16031618, https://doi.org/10.1175/1520-0469(1980)037<1603:EOEFOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005a: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005b: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128, https://doi.org/10.1146/annurev.fluid.37.061903.175702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868886, https://doi.org/10.1175/2009JCLI3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2011: Influence of ENSO on tropical cyclone intensity in the Fiji region. J. Climate, 24, 40964108, https://doi.org/10.1175/2011JCLI4178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chane Ming, F., C. Ibrahim, C. Barthe, S. Jolivet, P. Keckhut, Y. A. Liou, and Y. Kuleshov, 2014: Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008). Atmos. Chem. Phys., 14, 641658, https://doi.org/10.5194/acp-14-641-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W., and R. A. Anthes, 1979: Mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128135, https://doi.org/10.1175/1520-0485(1979)009<0128:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charabi, Y., Ed., 2010: Indian Ocean Tropical Cyclones and Climate Change. Springer, 373 pp.

    • Crossref
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., R. Fjørtoft, and J. Von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237254, https://doi.org/10.3402/tellusa.v2i4.8607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuickSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2014: Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci., 71, 16631680, https://doi.org/10.1175/JAS-D-13-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., 2011: A comparison of precipitation distribution of two landfalling tropical cyclones during the extratropical transition. Adv. Atmos. Sci., 28, 1390, https://doi.org/10.1007/s00376-011-0148-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426, https://doi.org/10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646666, https://doi.org/10.1175/2008WAF2222186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 12391256, https://doi.org/10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, K. F., L. Tang, J. P. Donnelly, E. M. Scileppi, K.-B. Liu, X.-Z. Mao, S. H. Houston, and R. J. Murnane, 2007: Numerical modeling and field evidence of coastal overwash in southern New England from Hurricane Bob and implications for paleotempestology. J. Geophys. Res., 112, F03024, https://doi.org/10.1029/2006JF000612.

    • Search Google Scholar
    • Export Citation
  • Christophersen, H., A. Aksoy, J. Dunion, and K. Sellwood, 2017: The impact of NASA Global Hawk unmanned aircraft dropwindsonde observations on tropical cyclone track, intensity, and structure: Case studies. Mon. Wea. Rev., 145, 18171830, https://doi.org/10.1175/MWR-D-16-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and J. Wang, 1997: Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño and non–El Niño years significant? J. Climate, 10, 26832689, https://doi.org/10.1175/1520-0442(1997)010<2683:TCOITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., and G. Lesins, 2008: Multidecadal variability of Atlantic hurricane activity: 1851-2007. J. Geophys. Res., 113, D22106, https://doi.org/10.1029/2008JD010036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, E. W. Uhlhorn, A. M. Farber, and B. Damiano, 2016: Coyote unmanned aircraft system observations in Hurricane Edouard (2014). Earth Space Sci., 3, 370380, https://doi.org/10.1002/2016EA000187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claud, C., B. Alhammoud, B. M. Funatsu, and J.-P. Chaboureau, 2010: Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazards Earth Syst. Sci., 10, 21992213, https://doi.org/10.5194/nhess-10-2199-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochran, D. R., 1976: Unusual tropical development from a mid-Pacific cold low. Mon. Wea. Rev., 104, 804808, https://doi.org/10.1175/1520-0493(1976)104<0804:UTDFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 29052926, https://doi.org/10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. M., and K. Walsh, Eds., 2017: Hurricanes and Climate Change. Vol. 3, Springer, 255 pp.

    • Crossref
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091, https://doi.org/10.1175/MWR3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daingerfield, L. H., 1921: Kona storms. Mon. Wea. Rev., 49, 327329, https://doi.org/10.1175/1520-0493(1921)49<327:KS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, https://doi.org/10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., G. J. Holland, J. L. McBride, and T. D. Keenan, 1990: On the formation of AMEX tropical cyclones Irma and Jason. Mon. Wea. Rev., 118, 19812000, https://doi.org/10.1175/1520-0493(1990)118<1981:OTFOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. Bosart, 2004: The TT problem. Bull. Amer. Meteor. Soc., 85, 16571662, https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, https://doi.org/10.1175/2007JAS2488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dean, L., K. Emanuel, and D. R. Chavas, 2009: On the size distribution of Atlantic tropical cyclones. Geophys. Res. Lett., 36, L14803, https://doi.org/10.1029/2009GL039051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, https://doi.org/10.1029/95JC03796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, https://doi.org/10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1997: An operational evaluation of a Statistical Hurricane Intensity Prediction Scheme (SHIPS). Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 280–281.

  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. Kaplan, and J.-J. Baik, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dengler, K., and M. J. Reeder, 1997: The effects of convection and baroclinicity on the motion of tropical-cyclone-like vortices. Quart. J. Roy. Meteor. Soc., 123, 699725, https://doi.org/10.1002/qj.49712353909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and R. S. Pulwarty, Eds., 2012: Climate and Socioeconomic Impacts. Springer, 292 pp.

  • Didlake, A. C., Jr., and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, https://doi.org/10.1175/JAS-D-12-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diercks, J. W., and R. A. Anthes, 1976: Diagnostic studies of spiral rainbands in a nonlinear hurricane model. J. Atmos. Sci., 33, 959975, https://doi.org/10.1175/1520-0469(1976)033<0959:DSOSRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., 2005: Evidence of past intense tropical cyclones from backbarrier salt pond sediments: A case study from Isla de Culebrita, Puerto Rico, USA. J. Coastal Res., SI42, 201210, https://www.jstor.org/stable/25736985.

    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000 years controlled by El Niño and the west African monsoon. Nature, 447, 465468, https://doi.org/10.1038/nature05834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and Coauthors, 2001a: 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geol. Soc. Amer. Bull., 113, 714727, https://doi.org/10.1130/0016-7606(2001)113<0714:YSROIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., S. Roll, M. Wengren, J. Butler, R. Lederer, and T. Webb III, 2001b: Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29, 615618, https://doi.org/10.1130/0091-7613(2001)029<0615:SEOIHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., J. Butler, S. Roll, M. Wengren, and T. Webb, 2004: A backbarrier overwash record of intense storms from Brigantine, New Jersey. Mar. Geol., 210, 107121, https://doi.org/10.1016/j.margeo.2004.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The tropical cyclone intensity experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duke, W. L., 1985a: Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32, 167194, https://doi.org/10.1111/j.1365-3091.1985.tb00502.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duke, W. L., 1985b: The paleogeography of Paleozoic and Mesozoic storm depositional systems: A discussion. J. Geol., 93, 8890, https://doi.org/10.1086/628923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duke, W. L., R. W. C. Arnott, and R. J. Cheel, 1991: Shelf sandstones and hummocky cross-stratification: New insights on a stormy debate. Geology, 19, 625628, https://doi.org/10.1130/0091-7613(1991)019<0625:SSAHCS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, G. E., 1940: Cyclogenesis in the tropical Atlantic. Bull. Amer. Meteor. Soc., 21, 215229, https://doi.org/10.1175/1520-0477-21.6.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, G. E., 1951: Tropical cyclones. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 887–901.

    • Crossref
    • Export Citation
  • Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci., 6, 534539, https://doi.org/10.1038/ngeo1854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 45 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Ellis, R., and S. Businger, 2010: Helical circulations in the typhoon boundary layer. J. Geophys. Res., 115, D06205, https://doi.org/10.1029/2009JD011819.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. S. Fraim, and R. N. Trapnell, 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 11531162, https://doi.org/10.1029/JC081i006p01153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., B. C. Diehl, J. C.-L. Chan, P. A. Harr, G. J. Holland, M. Lander, T. Neta, and D. Thom, 1990: ONR tropical cyclone motion research initiative: Field experiment summary. Tech. Rep. NPS-MR-91-001, 107 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a231152.pdf.

    • Crossref
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, Eds., 2009: Hurricanes and Climate Change. Vol. 1, Springer, 419 pp.

    • Crossref
    • Export Citation
  • Elsner, J. B., B. H. Bossak, and X. F. Niu, 2001: Secular changes to the ENSO-U.S. Hurricane relationship. Geophys. Res. Lett., 28, 41234126, https://doi.org/10.1029/2001GL013669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., R. E. Hodges, J. C. Malmstadt, and K. N. Scheitlin, Eds., 2014: Hurricanes and Climate Change. Vol. 2, Springer, 255 pp.

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, https://doi.org/10.1038/326483a0.

  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2001: The contribution of tropical cyclones to the oceans’ meridional heat transport. J. Geophys. Res., 106, 14 77114 781, https://doi.org/10.1029/2000JD900641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: A similarity hypothesis for air-sea exchange at extreme wind speeds. J. Atmos. Sci., 60, 14201428, https://doi.org/10.1175/1520-0469(2003)060<1420:ASHFAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Federovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–192, https://doi.org/10.1017/CBO9780511735035.010.

    • Crossref
    • Export Citation
  • Emanuel, K. A., 2005a: Divine Wind: The History and Science of Hurricanes. Oxford University Press, 304 pp.

  • Emanuel, K. A., 2005b: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217220, https://doi.org/10.5194/adgeo-2-217-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, https://doi.org/10.3894/JAMES.2010.2.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow: Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1; Corrigendum, 75, 21552156, https://doi.org/10.1175/JAS-D-18-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 117, https://doi.org/10.1111/j.1600-0870.1989.tb00362.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. Nolan, 2004: Tropical cyclone activity and global climate. 26th Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and A. H. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst., 5, 447458, https://doi.org/10.1002/jame.20032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and F. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 23152324, https://doi.org/10.1175/JAS-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Rotunno, and D. K. Lilly, 1985: An air-sea interaction theory for tropical cyclones. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 27–28.

  • Emanuel, K. A., K. Speer, R. Rotunno, R. Srivastava, and M. Molina, 1995: Hypercanes: A possible link in global extinction scenarios. J. Geophys. Res., 100, 13 75513 765, https://doi.org/10.1029/95JD01368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. Callaghan, and P. Otto, 2008a: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872, https://doi.org/10.1175/2008MWR2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008b: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, https://doi.org/10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and L. Cid-Serrano, 2010: Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30, 174184, https://doi.org/10.1002/joc.1881.

    • Search Google Scholar
    • Export Citation
  • Ernst, J. A., and M. Matson, 1983: A Mediterranean tropical storm? Weather, 38, 332337, https://doi.org/10.1002/j.1477-8696.1983.tb04818.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espy, J. P., 1841: The Philosophy of Storms. Little and Brown, 552 pp.

    • Crossref
    • Export Citation
  • Evans, C., and R. E. Hart, 2008: Analysis of the wind field evolution associated with the extratropical transition of Bonnie (1998). Mon. Wea. Rev., 136, 20472065, https://doi.org/10.1175/2007MWR2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., R. S. Schumacher, and T. J. Galarneau Jr., 2011: Sensitivity in the overland reintensification of tropical cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 38483870, https://doi.org/10.1175/2011MWR3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. J. Allan, 1992: El Niño/Southern Oscillation modification to the structure of the monsoon and tropical cyclone activity in the Australasian region. Int. J. Climatol., 12, 611623, https://doi.org/10.1002/joc.3370120607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, https://doi.org/10.1175/2009MWR2468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 73287340, https://doi.org/10.1175/JCLI-D-11-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faller, A., 1963: An experimental study of the instability of the laminar Ekman boundary layer. J. Fluid Mech., 15, 560576, https://doi.org/10.1017/S0022112063000458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, D. D., and K. B. Liu, 2008: Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology. Chin. Sci. Bull., 53, 29072922, https://doi.org/10.1007/s11434-008-0341-2.

    • Search Google Scholar
    • Export Citation
  • Federov, K. N., A. Varfolomeev, A. I. Ginzburg, A. G. Zatsepin, A. Krasnopevtsev, A. G. Ostrovsky, and V. E. Skylarov, 1979: Thermal reaction of the ocean on the passage of Hurricane Ella. Okeanologiya, 19, 9921001.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070, https://doi.org/10.1038/nature08831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 28912907, https://doi.org/10.1175/1520-0469(1999)056<2891:TROTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., W. H. Schubert, and J. J. Hack, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. J. Atmos. Sci., 53, 929945, https://doi.org/10.1175/1520-0469(1996)053<0929:DAOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., and R. C. Beardsley, 1976: The behavior of a barotropic eddy on a β-plane. J. Phys. Oceanogr., 6, 5765, https://doi.org/10.1175/1520-0485(1976)006<0057:TBOABE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fita, L., R. Romero, A. Luque, K. Emanuel, and C. Ramis, 2007: Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci., 7, 4156, https://doi.org/10.5194/nhess-7-41-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1950: Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ., 17, 152.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., S. Raveh-Rubin, H. Wernli, P. Drobinski, and S. Bastin, 2015: The dynamical structure of intense Mediterranean cyclones. Climate Dyn., 44, 24112427, https://doi.org/10.1007/s00382-014-2330-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flatau, M., W. H. Schubert, and D. E. Stevens, 1994: The role of baroclinic processes in tropical cyclone motion: The influence of vertical tilt. J. Atmos. Sci., 51, 25892601, https://doi.org/10.1175/1520-0469(1994)051<2589:TROBPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303334, https://doi.org/10.1017/S0022112094002946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsyth, A. J., J. Nott, and M. D. Bateman, 2010: Beach ridge plain evidence of a variable late-Holocene tropical cyclone climate, north Queensland, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 707716, https://doi.org/10.1016/j.palaeo.2010.09.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortner, L. E., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39, 633639, https://doi.org/10.1175/1520-0477-39.12.633.

  • Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321344, https://doi.org/10.1007/s10546-009-9379-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977a: Structure and energetics of the tropical cyclone: I. Storm structure. Mon. Wea. Rev., 105, 11191135, https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977b: Structure and energetics of the tropical cyclone: II. Dynamics and energetics. Mon. Wea. Rev., 105, 11361150, https://doi.org/10.1175/1520-0493(1977)105<1136:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., and M. DeMaria, 1992: The impact of omega dropwinsonde observations on barotropic hurricane track forecasts. Mon. Wea. Rev., 120, 381391, https://doi.org/10.1175/1520-0493(1992)120<0381:TIOODO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, and F. D. Marks Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116, 12371244, https://doi.org/10.1175/1520-0493(1988)116<1237:DAROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frappier, A. B., T. R. Knutson, K.-B. Liu, and K. Emanuel, 2007a: Perspective: Coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modelling. Tellus, 59A, 529527, https://doi.org/10.1111/j.1600-0870.2007.00250.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frappier, A. B., D. Sahagian, S. J. Carpenter, L. A. Gonzaìlez, and B. R. Frappier, 2007b: Stalagmite stable isotope record of recent tropical cyclone events. Geology, 35, 111114, https://doi.org/10.1130/G23145A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frappier, A. B., J. Pyburn, A. D. Pinkey-Drobnis, X. F. Wang, D. R. Corbett, and B. H. Dahlin, 2014: Two millennia of tropical cyclone-induced mud layers in a northern Yucatan stalagmite: Multiple overlapping climatic hazards during the Maya terminal classic “megadroughts.” Geophys. Res. Lett., 41, 51485157, https://doi.org/10.1002/2014GL059882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisius, T., and D. Schönemann, 2012: An extended model for the potential intensity of tropical cyclones. J. Atmos. Sci., 69, 641661, https://doi.org/10.1175/JAS-D-11-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., T. Lee, W. T. Liu, and R. Kwok, 2019: 50 years of satellite remote sensing of the ocean. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0010.

    • Crossref
    • Export Citation
  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fung, I. Y.-S., 1977: The organization of spiral rainbands in a hurricane. Sc.D. thesis, Dept. of Meteorology, Massachusetts Institute of Technology, 140 pp., http://hdl.handle.net/1721.1/16337.

  • Galarneau, T. J., Jr., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 42964321, https://doi.org/10.1175/MWR-D-13-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, J. S., W. M. Frank, and Y. Kwon, 2008: Effects of sea spray on tropical cyclones simulated under idealized conditions. Mon. Wea. Rev., 136, 16861705, https://doi.org/10.1175/2007MWR2183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Tuttle, and P. Hildebrand, 1998: Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev., 126, 17491766, https://doi.org/10.1175/1520-0493(1998)126<1749:SSSBOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., R. A. Houze Jr., and F. D. Marks Jr., 1993: Dual aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50, 32213243, https://doi.org/10.1175/1520-0469(1993)050<3221:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrological data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., and J. R. Lawrence, 2000: Stable isotope ratios and the extratropical transition of tropical cyclones. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, Amer. Meteor. Soc., 288289.

  • Geisler, J. E., 1970: Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249272, https://doi.org/10.1080/03091927009365774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, R. C., 1970: Hurricane Debbie modification experiments, August 1969. Science, 168, 473475, https://doi.org/10.1126/science.168.3930.473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, R. C., 1983: Genesis of tornadoes associated with hurricanes. Mon. Wea. Rev., 111, 17931805, https://doi.org/10.1175/1520-0493(1983)111<1793:GOTAWH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gifford, J., 2004: Hurricane Hazel: Canada's Storm of the Century. Dundurn, 104 pp.

  • Ginis, I., 2002: Tropical cyclone–ocean interactions. Atmosphere–Ocean Interactions, Vol. 1, Advances in Fluid Mechanics Series, No. 33, WIT Press, 83–114.

  • Ginis, I., K. Z. Dikinov, and A. P. Khain, 1989: Three dimensional coupled model of the atmosphere and the ocean in the zone of typhoon. Dokl. Akad. Sci., 307, 333337.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., 1994: Theory of mature tropical cyclones: A comparison between Kleinschmidt (1951) and Emanuel (1986). Joint Centre for Mesoscale Meteorology Internal Rep. 40, 50 pp.

  • Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Perdersen, 2004: A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 A.D. Geophys. Res. Lett., 31, L12205, https://doi.org/10.1029/2004GL019932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Colorado State University Dept. of Atmospheric Science Paper 234, 121 pp., https://mountainscholar.org/bitstream/handle/10217/247/0234_Bluebook.pdf?sequence=1&isAllowed=y.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and D. J. Shea, 1973: The hurricane’s inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 15651576, https://doi.org/10.1175/1520-0469(1973)030<1565:THICRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., J. D. Sheaffer, and C. W. Landsea, 1997: Climate trends associated with multidecadal variability of Atlantic hurricane activity. Hurricanes: Climate and Socioeconomic Impacts, H. F. Diaz, and R. S. Pulwarty, Eds., Springer, 15–53.

    • Crossref
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guadalupe, L. E. R., 2014: Father Benito Viñes: The 19th-Century Life and Contributions of a Cuban Hurricane Observer and Scientist. Amer. Meteor. Soc., 184 pp.

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, https://doi.org/10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., E. A. Nelson, J. L. Evans, R. E. Hart, and D. G. O’Connell, 2007: Bermuda subtropical storms. Meteor. Atmos. Phys., 97, 239253, https://doi.org/10.1007/s00703-006-0255-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, https://doi.org/10.1175/2008JCLI2346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haig, J., J. Nott, and G. J. Reichart, 2014: Australian tropical cyclone activity lower than at any time over the past 550–1,500 years. Nature, 505, 667671, https://doi.org/10.1038/nature12882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2011: The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 68, 13641376, https://doi.org/10.1175/2010JAS3644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., and T. Rabenhorst, 2013: Hurricane Sandy: The science and impacts of a superstorm. Weatherwise, 66, 1423, https://doi.org/10.1080/00431672.2013.762838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, https://doi.org/10.1175/JAS3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes experiment: Investigating tropical cyclogenesis and hurricane intensity change. Bull. Amer. Meteor. Soc., 88, 867882, https://doi.org/10.1175/BAMS-88-6-867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., 2012: The extratropical transition of tropical cyclones: Structural characteristics, downstream impacts, and forecast challenges. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 149–174, https://doi.org/10.1142/9789814293488_0005.

    • Crossref
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633, https://doi.org/10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, https://doi.org/10.1175/2008MWR2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 26342653, https://doi.org/10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, https://doi.org/10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., and K. A. Browning, 1969: The polar low as a baroclinic disturbance. Quart. J. Roy. Meteor. Soc., 95, 710723, https://doi.org/10.1002/qj.49709540605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2011: An inverse relationship between aggregate Northern Hemisphere tropical cyclone activity and subsequent winter climate. Geophys. Res. Lett., 38, L01705, https://doi.org/10.1029/2010GL045612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. H. Cossuth, 2013: A family tree of tropical meteorology’s academic community and its proposed expansion. Bull. Amer. Meteor. Soc., 94, 18371848, https://doi.org/10.1175/BAMS-D-12-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553578, https://doi.org/10.1175/MWR3082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and E. D. Maloney, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58, 25592570, https://doi.org/10.1175/1520-0469(2001)058<2559:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastings, P. A., 1990: Southern Oscillation influences on tropical cyclone activity in the Australian/south-west Pacific region. Int. J. Climatol., 10, 291298, https://doi.org/10.1002/joc.3370100306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1935: The height of tropical cyclones and of the “eye” of the storm. Mon. Wea. Rev., 63, 4549, https://doi.org/10.1175/1520-0493(1935)63<45:THOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, https://doi.org/10.1029/2009GL042206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, https://doi.org/10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. 26th Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., P1.7, https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.

  • Henderson-Sellers, A., and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 1938, https://doi.org/10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hetzinger, S., M. Pfeiffer, W. C. Dullo, N. Keenlyside, M. Latif, and J. Zinke, 2008: Caribbean coral tracks Atlantic multidecadal oscillation and past hurricane activity. Geology, 36, 1114, https://doi.org/10.1130/G24321A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. H., J. H. Kim, J. H. Jeong, H. S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian ocean: El Niño–Southern Oscillation and Madden-Julian Oscillation effects. J. Geophys. Res., 111, D22101, https://doi.org/10.1029/2006JD007289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., 2002: Controlling the global weather. Bull. Amer. Meteor. Soc., 83, 241248, https://doi.org/10.1175/1520-0477(2002)083<0241:CTGW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: Analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1982: Tropical cyclone motion: Environmental interaction plus a beta effect. Colorado State University Dept. of Atmospheric Science Paper 348, 47 pp., https://tropical.colostate.edu/media/sites/111/2016/10/348_Holland.pdf.

  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and G. S. Dietachmayer, 1993: On the interaction of tropical-cyclone-scale vortices. III: Continuous barotropic vortices. Quart. J. Roy. Meteor. Soc., 119, 13811398, https://doi.org/10.1002/qj.49711951408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 43934406, https://doi.org/10.1175/2010MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Homar, V., R. Romero, D. J. Stensrud, C. Ramis, and S. Alonso, 2003: Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. Boundary factors. Quart. J. Roy. Meteor. Soc., 129, 14691490, https://doi.org/10.1256/qj.01.91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., Y. H. Li, T. Li, and M. Y. Lee, 2011: Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys. Res. Lett., 38, L16712, https://doi.org/10.1029/2011GL048821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, I., and Coauthors, 2018: Sedimentological characteristics of the 2015 Tropical Cyclone Pam overwash sediments from Vanuatu, South Pacific. Mar. Geol., 396, 205214, https://doi.org/10.1016/j.margeo.2017.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Houze, R. A., Jr., F. D. Marks Jr., and R. A. Black, 1992: Dual aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943962, https://doi.org/10.1175/1520-0469(1992)049<0943:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031522, https://doi.org/10.1175/BAMS-87-11-1503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, F., and S. Xu, 2010: Super typhoon activity over the western North Pacific and its relationship with ENSO. J. Ocean Univ. China, 9, 123128, https://doi.org/10.1007/s11802-010-0123-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., C. Chou, and R. Huang, 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 63396352, https://doi.org/10.1175/2011JCLI4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y. J., M. T. Montgomery, and C. C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichiye, T., 1977: Response of a two-layer ocean with a baroclinic current to a moving storm, part II. J. Oceanogr. Soc. Japan, 33, 169182, https://doi.org/10.1007/BF02109689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iizuka, S., and T. Matsuura, 2009: Relationship between ENSO and North Atlantic tropical cyclone frequency simulated in a coupled general circulation model. Hurricanes and Climate Change, J. B. Elsner and T. H. Jagger, Eds., Springer, 323–338, https://doi.org/10.1007/978-0-387-09410-6_17.

    • Crossref
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36, L06604, https://doi.org/10.1029/2008GL036796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, https://doi.org/10.1029/2009GL041808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748, https://doi.org/10.1175/JAS-D-11-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, https://doi.org/10.1175/JCLI-D-11-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jien, J. Y., W. A. Gough, and K. Butler, 2015: The influence of El Niño–Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J. Climate, 28, 24592474, https://doi.org/10.1175/JCLI-D-14-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., J. Boucharel, and I. I. Lin, 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 8285, https://doi.org/10.1038/nature13958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. G., and C. D. Thorncroft, 1998: The rôle of El Niño in Atlantic tropical cyclone activity. Weather, 53, 324336, https://doi.org/10.1002/j.1477-8696.1998.tb06409.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc., 126, 31373159, https://doi.org/10.1002/qj.49712657008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, https://doi.org/10.1002/qj.49712657009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1961: Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. J. Meteor., 18, 779789, https://doi.org/10.1175/1520-0469(1961)018<0779:MCITCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., O. M. Phillips, and R. S. Azad, 1977: On turbulent entrainment at a stable density interface. J. Fluid Mech., 79, 753768, https://doi.org/10.1017/S0022112077000433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1957: The numerical prediction of hurricane movement with the barotropic model. J. Meteor., 14, 386402, https://doi.org/10.1175/1520-0469(1957)014<0386:TNPOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1961: A numerical experiment on the developmet of a tropical cyclone. J. Meteor., 18, 259282, https://doi.org/10.1175/1520-0469(1961)018<0259:ANEOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, H., and O. M. Phillips, 1969: On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech., 37, 643655, https://doi.org/10.1017/S0022112069000784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., P. W. Vachon, P. G. Black, P. P. Dodge, and E. W. Uhlhorn, 2000: Wind fields from SAR: Could they improve our understanding of storm dynamics? Johns Hopkins APL Tech. Dig., 21, 8693.

    • Search Google Scholar
    • Export Citation
  • Ke, F., 2009: Linkage between the Atlantic tropical hurricane frequency and the Antarctic oscillation in the Western Hemisphere. Atmos. Ocean. Sci. Lett., 2, 159164, https://doi.org/10.1080/16742834.2009.11446796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 16861699, https://doi.org/10.1002/qj.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, https://doi.org/10.1175/JAS-D-13-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and I. Ginis, 1991: The mutual response of a moving tropical cyclone and the ocean. Beitr. Phys. Atmos., 64, 125141.

  • Khairoutdinov, M. F., and K. Emanuel, 2010: Aggregated convection and the regulation of tropical climate. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., P2.69, https://ams.confex.com/ams/29Hurricanes/techprogram/paper_168418.htm.

  • Khairoutdinov, M. F., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, https://doi.org/10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88, 475496, https://doi.org/10.2151/jmsj.2010-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, M. T. Montgomery, B. Lynch, and C. Earl-Spurr, 2016: A case-study of a monsoon low that formed over the sea and intensified over land as seen in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 142, 22442255, https://doi.org/10.1002/qj.2814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017: A unified view of tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 450462, https://doi.org/10.1002/qj.2934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849, https://doi.org/10.1175/2010JCLI3939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, https://doi.org/10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and J. L. Evans, 2002: Idealized numerical simulations of hurricane–trough interaction. Mon. Wea. Rev., 130, 22102227, https://doi.org/10.1175/1520-0493(2002)130<2210:INSOHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259, https://doi.org/10.1175/1520-0493(2002)130<2240:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinschmidt, E., Jr., 1951: Grundlagen einer theorie der tropischen zyklonen. Arch. Meteor. Geophys. Bioklimatol., 4A, 5372, https://doi.org/10.1007/BF02246793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293, https://doi.org/10.1175/2009JCLI2978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011a: El Niño–Southern Oscillation’s impact on Atlantic basin hurricanes and U.S. landfalls. J. Climate, 24, 12521263, https://doi.org/10.1175/2010JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011b: The influence of El Niño–Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Climate, 24, 721731, https://doi.org/10.1175/2010JCLI3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2014: The Madden–Julian Oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330, https://doi.org/10.1175/JCLI-D-13-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935, https://doi.org/10.1175/2008JCLI2162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Korolev, V. S., S. A. Petrichenko, and V. D. V. D. Pudov, 1990: Heat and moisture exchange between the ocean and atmosphere in tropical storms Tess and Skip. Sov. Meteor. Hydrol., 3, 92–94.

  • Korty, R. L., 2002: Processes affecting the ocean’s feedback on the intensity of a hurricane. 25th Conf. on Hurricane and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 14D.2, https://ams.confex.com/ams/25HURR/webprogram/Paper35849.html.

  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone-induced upper ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654, https://doi.org/10.1175/2007JCLI1659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012a: Tropical cyclone genesis factors in simulations of the last glacial maximum. J. Climate, 25, 43484365, https://doi.org/10.1175/JCLI-D-11-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012b: Variations in tropical cyclone genesis factors in simulations of the Holocene epoch. J. Climate, 25, 81968211, https://doi.org/10.1175/JCLI-D-12-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2017: Hurricane intensification along United States coast suppressed during active hurricane periods. Nature, 541, 390393, https://doi.org/10.1038/nature20783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slowdown of tropical cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, https://doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2003: Diffusion versus advective rearrangement of a circular vortex sheet. J. Atmos. Sci., 60, 586589, https://doi.org/10.1175/1520-0469(2003)060<0586:DVAROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671782, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, https://doi.org/10.1175/WAF985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowch, R., and K. Emanuel, 2015: Are special processes at work in the rapid intensification of tropical cyclones? Mon. Wea. Rev., 143, 878882, https://doi.org/10.1175/MWR-D-14-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamohan, K. S., K. Mohanakumar, and P. V. Joseph, 2012: The influence of Madden–Julian oscillation in the genesis of north Indian Ocean tropical cyclones. Theor. Appl. Climatol., 109, 271282, https://doi.org/10.1007/s00704-011-0582-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., F. Chane-Ming, L. Qi, I. Chouaibou, C. Hoareau, and F. Roux, 2009: Tropical cyclone genesis in the southern hemisphere and its relationship with the ENSO. Ann. Geophys., 27, 25232538, https://doi.org/10.5194/angeo-27-2523-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734, https://doi.org/10.1175/JAS3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198, https://doi.org/10.1175/2008MWR2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33, 940958, https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 13061322, https://doi.org/10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, G., 1979: The Thermal Theory of Cyclones. Amer. Meteor. Soc., 255 pp.

    • Crossref
    • Export Citation
  • Kwon, Y. C., and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122, https://doi.org/10.1175/2007JAS2132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993: Mesoscale convective complexes in Africa. Mon. Wea. Rev., 121, 22542263, https://doi.org/10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, https://doi.org/10.1002/qj.49711951406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. P. Cangialosi, 2018: Have we reached the limits of predictability for tropical cyclone track forecasting? Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-17-0136.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, C. S., B. Hildebrandt, L. M. Kennedy, A. LeBlanc, K. B. Liu, A. J. Wagner, and A. D. Hawkes, 2017: Verification of tropical cyclone deposits with oxygen isotope analyses of coeval ostracod valves. J. Paleolimnol., 57, 245255, https://doi.org/10.1007/s10933-017-9943-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, E., 1999: Isaac’s Storm: A Man, a Time, and the Deadliest Hurricane in History. Crown Publishers, 336 pp.

  • Lawrence, J. R., and S. D. Gedzelman, 1996: Low stable isotope ratios of tropical cyclone rains. Geophys. Res. Lett., 23, 527530, https://doi.org/10.1029/96GL00425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Dizes, S., M. Rossi, and H. K. Moffat, 1996: On the three-dimensional instability of elliptical vortex subjected to stretching. Phys. Fluids, 8, 20842090, https://doi.org/10.1063/1.868982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H. S., T. Yamashita, and T. Mishima, 2012: Multi-decadal variations of ENSO, the Pacific decadal oscillation and tropical cyclones in the western North Pacific. Progress Oceanogr., 105, 67–80, https://doi.org/10.1016/j.pocean.2012.04.009.

    • Crossref
    • Export Citation
  • Leibovich, S., and K. Stewartson, 1983: A sufficient condition for the instability of columnar vortices. J. Fluid Mech., 126, 335356, https://doi.org/10.1017/S0022112083000191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182196, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, and D. J. Cecil, 2016: Tropical cyclone diurnal cycle as observed by TRMM. Mon. Wea. Rev., 144, 27932808, https://doi.org/10.1175/MWR-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., and R. K. Smith, 1970: The surface boundary layer of a hurricane. II. Tellus, 22, 288297, https://doi.org/10.3402/tellusa.v22i3.10222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63, 12941300, https://doi.org/10.1175/1520-0477(1982)063<1294:PEWARI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., M. G. Fearon, and H. E. Klieforth, 2012: Herbert Riehl: Intrepid and enigmatic scholar. Bull. Amer. Meteor. Soc., 93, 963985, https://doi.org/10.1175/BAMS-D-11-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878, https://doi.org/10.1175/JCLI-D-11-00430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2018: Revisiting the intraseasonal, interannual and interdecadal variability of tropical cyclones in the western North Pacific. Atmos. Ocean. Sci. Lett., 11, 198208, https://doi.org/10.1080/16742834.2018.1459460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401412, https://doi.org/10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., G. Holland, W. Gray, C. Landsea, G. Craig, J. Evans, Y. Kurihara, and C. Guard, 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 21472157, https://doi.org/10.1175/1520-0477-75.11.2147.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142, https://doi.org/10.1023/A:1004383430896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1960: On the theory of disturbances in a conditionally unstable atmosphere. Mon. Wea. Rev., 88, 117, https://doi.org/10.1175/1520-0493(1960)088<0001:OTTODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23, 481494, https://doi.org/10.1175/1520-0469(1966)023<0481:OTIOEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and K. Emanuel, 1985: A steady-state hurricane model. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 142–143.

  • Lin, I.-I., and Coauthors, 2003: New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett., 30, 1718, https://doi.org/10.1029/2003GL017141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, https://doi.org/10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., P. Lane, K. A. Emanuel, R. Sullivan, and J. P. Donnelly, 2014: Heightened hurricane surge risk in northwest Florida revealed from climatological-hydrodynamic modeling and paleorecord reconstruction. J. Geophys. Res. Atmos., 119, 86068623, https://doi.org/10.1002/2014JD021584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Coauthors, 2006: Cyclones in the Mediterranean region: Climatology and effects on the environment. Developments in Earth and Environmental Sciences, Vol. 4, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Elsevier, 325–372, https://doi.org/10.1016/S1571-9197(06)80009-1.

    • Crossref
    • Export Citation
  • Liu, K.-B., 2007: Paleotempestology. Encyclopedia of Quaternary Science, S. Elias, Ed., Elsevier, 1978–1986.

    • Crossref
    • Export Citation
  • Liu, K.-B., and M. L. Fearn, 1993: Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21, 793796, https://doi.org/10.1130/0091-7613(1993)021<0793:LSROLH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quat. Res., 54, 238245, https://doi.org/10.1006/qres.2000.2166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., H. Y. Lu, and C. M. Shen, 2009: Some fundamental misconceptions about paleotempestology. Quat. Res., 71, 253254, https://doi.org/10.1016/j.yqres.2008.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., C. Li, T. A. Bianchette, T. A. McCloskey, Q. Yao, and E. Weeks, 2011: Storm deposition in a coastal backbarrier lake in Louisiana caused by hurricanes Gustav and Ike. J. Coastal Res., 64, 18661870.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476, https://doi.org/10.1175/2008JCLI2207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., 1997: The motion of a non-isolated vortex on the beta-plane. J. Fluid Mech., 346, 149179, https://doi.org/10.1017/S0022112097006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., E. Scherer, M. Dixon, E. Bellone, and S. Khare, 2014: Cyclone wind field asymmetries during extratropical transition in the western North Pacific. J. Appl. Meteor. Climatol., 53, 421428, https://doi.org/10.1175/JAMC-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lotliker, A. A., T. S. Kumar, V. S. Reddem, and S. Nayak, 2014: Cyclone Phailin enhanced the productivity following its passage: Evidence from satellite data. Curr Sci India, 106, 360361.

    • Search Google Scholar
    • Export Citation
  • Lul, H.-Y., and K.-B. Liu, 2005: Phytolith assemblages as indicators of coastal environmental changes and hurricane overwash deposition. Holocene, 15, 965972, https://doi.org/10.1191/0959683605hl870ra.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20, 138150, https://doi.org/10.3402/tellusa.v20i1.9993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madala, R. V., and S. A. Piacsek, 1975: Numerical simulation of asymmetric hurricanes on a β-plane with vertical shear. Tellus, 27, 453468, https://doi.org/10.3402/tellusa.v27i5.10172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316, https://doi.org/10.1175/2007WAF2006111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, A. V. Nefiodov, A. V. Chikunov, D. Sheil, A. D. Nobre, and B.-L. Li, 2018: Hurricane's maximum potential intensity and the gravitational power of precipitation. ArXiv, 15 pp., https://arxiv.org/abs/1801.06833.

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120, https://doi.org/10.3402/tellusa.v12i1.9351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malmquist, D. L., 1997: Oxygen isotopes in cave stalagmites as a proxy record of past tropical cyclone activity. Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 393–394.

  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233244, https://doi.org/10.1029/2006EO240001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and R. A. Houze Jr., 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582, https://doi.org/10.1175/1520-0477(1984)065<0569:ADROIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., R. A. Houze Jr., and J. F. Gamache, 1992: Dual aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, https://doi.org/10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayengon, R., 1984: Warm core cyclones in the Mediterranean. Mariners Weather Log, Vol. 28, National Weather Service, Silver Spring, MD, 6–9.

  • Mazza, E., U. Ulbrich, and R. Klein, 2017: The tropical transition of the October 1996 medicane in the western Mediterranean Sea: A warm seclusion event. Mon. Wea. Rev., 145, 25752595, https://doi.org/10.1175/MWR-D-16-0474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part III: Budget analysis. J. Atmos. Sci., 38, 11521166, https://doi.org/10.1175/1520-0469(1981)038<1152:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. M. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119, 19541978, https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2012: Restratification of the upper ocean after the passage of a tropical cyclone: A numerical study. J. Phys. Oceanogr., 42, 13771401, https://doi.org/10.1175/JPO-D-11-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, https://doi.org/10.1175/JCLI-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., F. Primeau, J. C. McWilliams, and C. Pasquero, 2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc. Natl. Acad. Sci. USA, 110, 15 20715 210, https://doi.org/10.1073/pnas.1306753110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988a: Characteristics of the upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 16651677, https://doi.org/10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988b: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, https://doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., S. Davolio, A. Moscatello, F. Pacifico, and R. Rotunno, 2008: The role of surface fluxes in the development of a tropical-like cyclone in southern Italy. Adv. Sci. Res., 2, 3539, https://doi.org/10.5194/asr-2-35-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., S. Laviola, A. Malvaldi, D. Conte, V. Levizzani, and C. Price, 2013: Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res. Lett., 40, 24002405, https://doi.org/10.1002/grl.50432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, https://doi.org/10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B. I., and P. P. Chase, 1966: Prediction of hurricane motion by statistical methods. Mon. Wea. Rev., 94, 399405, https://doi.org/10.1175/1520-0493(1966)094<0399:POHMBS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. L., C. I. Mora, H. D. Grissino-Mayer, C. J. Mock, M. E. Uhle, and Z. Sharp, 2006: Tree-ring isotope records of tropical cyclone activity. Proc. Natl. Acad. Sci. USA, 103, 14 29414 297, https://doi.org/10.1073/pnas.0606549103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, https://doi.org/10.1175/JAS-D-11-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128, 40974107, https://doi.org/10.1175/1520-0493(2000)129<4097:TABIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918, https://doi.org/10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, https://doi.org/10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, https://doi.org/10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, D. Vollaro, F. Alsheimer, and H. E. Willoughby, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55, 26322644, https://doi.org/10.1175/1520-0469(1998)055<2632:PVAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, https://doi.org/10.1175/JAS3291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 33663387, https://doi.org/10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52, 18291833, https://doi.org/10.1175/1520-0469(1995)052<1829:GCAFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. Kallenback, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207, https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the tropical cyclone structure 2008 (TCS08) field experiment. Part 2: Observations of the convective environment. Atmos. Chem. Phys., 12, 40014009, https://doi.org/10.5194/acp-12-4001-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Ocean J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58, 421435, https://doi.org/10.1175/1520-0469(2001)058<0421:ASDOHL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., R. Smith, and N. van Sang, 2010: Sensitivity of tropical cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953, https://doi.org/10.1002/qj.702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61, 23342348, https://doi.org/10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2015a: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part I: Structures and comparisons to observations. J. Atmos. Sci., 72, 164190, https://doi.org/10.1175/JAS-D-14-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2015b: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part II: Propagation of inner rainbands. J. Atmos. Sci., 72, 191215, https://doi.org/10.1175/JAS-D-14-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C. I., D. L. Miller, and H. D. Grissino-Mayer, 2007: Oxygen isotope proxies in tree-ring cellulose: Tropical cyclones, drought, and climate oscillations. Terr. Ecol., 1, 6375, https://doi.org/10.1016/S1936-7961(07)01005-6.

    • Search Google Scholar
    • Export Citation
  • Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn., 56, 594606, https://doi.org/10.1007/s10236-006-0085-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, https://doi.org/10.1175/JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moscatello, A., M. M. Miglietta, and R. Rotunno, 2008: Observational analysis of a Mediterranean ‘hurricane’ over south-eastern Italy. Weather, 63, 306311, https://doi.org/10.1002/wea.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moskaitis, J. R., 2009: Toward improved tropical cyclone intensity forecasts: Probabilistic prediction, predictability, and the role of verification. Ph.D. thesis, Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 214 pp., http://hdl.handle.net/1721.1/47846.

  • Mrowiec, A. A., S. T. Garner, and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68, 16071619, https://doi.org/10.1175/2011JAS3639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munksgaard, N. C., C. Zwart, N. Kurita, A. Bass, J. Nott, and M. I. Bird, 2015: Stable isotope anatomy of Tropical Cyclone Ita, north-eastern Australia, April 2014. PLOS ONE, 10, https://doi.org/10.1371/journal.pone.0119728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913921, https://doi.org/10.2151/jmsj1965.64.6_913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murnane, R., and K.-B. Liu, Eds., 2004: Hurricanes and Typhoons: Past, Present, and Future. Columbia University Press, 464 pp.

  • Nakamura, J., U. Lall, Y. Kushnir, and S. J. Camargo, 2009: Classifying North Atlantic tropical cyclone tracks by mass moments. J. Climate, 22, 54815494, https://doi.org/10.1175/2009JCLI2828.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1955: Tropical cyclones related to the atmosphere’s general circulation. Trans. N. Y. Acad. Sci. Ser. II, 17, 346349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, 2018: National Hurricane Center forecast verification: Official error trends. https://www.nhc.noaa.gov/verification/verify5.shtml.

  • Navarro, E. L., and G. J. Hakim, 2016: Idealized numerical modeling of the diurnal cycle of tropical cyclones. J. Atmos. Sci., 73, 41894201, https://doi.org/10.1175/JAS-D-15-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., and D. A. Schecter, 2014: Evaluation of the impact of moist convection on the development of asymmetric inner core instabilities in simulated tropical cyclones. J. Adv. Model. Earth Syst., 6, 10271048, https://doi.org/10.1002/2014MS000366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2001: The stabilizing effects of axial stretching on turbulent vortex dynamics. Phys. Fluids, 13, 17241738, https://doi.org/10.1063/1.1370390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266, http://www.bom.gov.au/jshess/docs/2007/nolan.pdf.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 12821307, https://doi.org/10.1175/1520-0469(1999)056<1282:GSAOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, https://doi.org/10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, https://doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers, and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–36.

  • Nolan, D. S., and J. A. Zhang, 2017: Spiral gravity waves radiating from tropical cyclones. Geophys. Res. Lett., 44, 39243931, https://doi.org/10.1002/2017GL073572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007a: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007b: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, https://doi.org/10.1002/qj.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nong, S., and K. Emanuel, 2003: Concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338, https://doi.org/10.1256/qj.01.132.

  • Nordeng, T. E., 1990: A model-based diagnostic study of the development and maintenance mechanism of two polar lows. Tellus, 42A, 92108, https://doi.org/10.3402/tellusa.v42i1.11863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., and E. A. Rasmussen, 1992: A most beautiful polar low. A case study of a polar low development in the Bear Island region. Tellus, 44A, 8199, https://doi.org/10.3402/tellusa.v44i2.14947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nott, J., 2004: Palaeotempestology: The study of and implications review article prehistoric tropical cyclones—A review for hazard assessment. Environ. Int., 30, 433447, https://doi.org/10.1016/j.envint.2003.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nott, J., 2011a: A 6000 year tropical cyclone record from Western Australia. Quat. Sci. Rev., 30, 713722, https://doi.org/10.1016/j.quascirev.2010.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nott, J., 2011b: Tropical cyclones, global climate change and the role of Quaternary studies. J. Quat. Sci., 26, 468473, https://doi.org/10.1002/jqs.1524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nott, J., and T. H. Jagger, 2013: Deriving robust return periods for tropical cyclone inundations from sediments. Geophys. Res. Lett., 40, 370373, https://doi.org/10.1029/2012GL054455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nott, J., S. Smithers, K. Walsh, and E. Rhodes, 2009: Sand beach ridges record 6000 year history of extreme tropical cyclone activity in northeastern Australia. Quat. Sci. Rev., 28, 15111520, https://doi.org/10.1016/j.quascirev.2009.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nott, J., C. Chague-Goff, J. Goff, C. Sloss, and N. Riggs, 2013: Anatomy of sand beach ridges: Evidence from severe Tropical Cyclone Yasi and its predecessors, northeast Queensland, Australia. J. Geophys. Res. Earth Surf., 118, 17101719, https://doi.org/10.1002/jgrf.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1967: The non-linear response of a two-layer, baroclinic ocean to a stationary, axially-symmetric hurricane. Part II. Upwelling and mixing induced by momentum transfer. J. Atmos. Sci., 24, 208214, https://doi.org/10.1175/1520-0469(1967)024<0208:TNLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., and R. O. Reid, 1967: The non-linear response of a two-layer, baroclinic ocean to a stationary, axially-symmetric hurricane: Part I. Upwelling induced by momentum transfer. J. Atmos. Sci., 24, 197207, https://doi.org/10.1175/1520-0469(1967)024<0197:TNLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, https://doi.org/10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and H. E. Fuelberg, 2014: A parameter for forecasting tornadoes associated with landfalling tropical cyclones. Wea. Forecasting, 29, 12381255, https://doi.org/10.1175/WAF-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., K. A. Emanuel, and G. R. Flierl, 2015: Polar vortex formation in giant-planet atmospheres due to moist convection. Nat. Geosci., 8, 523526, https://doi.org/10.1038/ngeo2459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., D. Perez-Betancourt, and A. A. Wing, 2017: Accessible environments for diurnal-period waves in simulated tropical cyclones. J. Atmos. Sci., 74, 24892502, https://doi.org/10.1175/JAS-D-16-0294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int., 4, 187198.

  • Ooyama, K., 1969: Numerical simulation of the life-cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz, F., 1947: El Huracán: Su Mitología y Sus Símbolos. Fondo de Cultera Economica, 686 pp.

  • Palmén, E., 1948: On the formation and structure of tropical hurricanes. Geophysica, 3, 2639.

  • Palmén, E., 1985: In my opinion…. Geophysica, 21, 518.

  • Pasquero, C., and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming. J. Climate, 21, 149162, https://doi.org/10.1175/2007JCLI1550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2014: The impact of the El Niño–Southern Oscillation and Atlantic Meridional Mode on seasonal Atlantic tropical cyclone activity. J. Climate, 27, 53115328, https://doi.org/10.1175/JCLI-D-13-00687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018a: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 53955416, https://doi.org/10.1175/JCLI-D-17-0678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2018b: The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys. Res. Lett., 45, 471479, https://doi.org/10.1002/2017GL076081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, M. C. L., D. Osbrink, A. Brescia, D. Downer, J. Etro, and J. Cione, 2014: Atmospheric and ocean boundary layer profiling with unmanned air platforms. Oceans 2014, St. Johns, NL, Canada, IEEE, 7 pp., https://doi.org/10.1109/OCEANS.2014.7002978.

    • Crossref
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 2125–2138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B.-F. Jeng, and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56, 14041423, https://doi.org/10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 23932398, https://doi.org/10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piddington, H., 1848: The Sailor's Horn-Book for the Law of Storms. 1st ed., Smith, Elder and Co., 292 pp.

  • Pielke, R. A., Jr., and C. N. Landsea, 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc., 80, 20272034, https://doi.org/10.1175/1520-0477(1999)080<2027:LNAENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficients for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pudov, V. D., and A. A. V. K. N. Federov, 1979: Vertical structure of the wake of a typhoon in the upper ocean. Okeanologiya, 21, 142146.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., G. C. Craig, and S. P. Ballard, 2000: The hurricane-like Mediterranean cyclone of January 1995. Meteor. Appl., 7, 261279, https://doi.org/10.1017/S1350482700001511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., I. T. Matsangouras, I. Tegoulias, S. Kotsopoulos, T. S. Karacostas, and P. T. Nastos, 2017: Numerical study of the medicane of November 2014. Perspectives on Atmospheric Sciences, T. Karacostas, A. Bais, and P Nastos, Eds., Springer, 115–121, https://doi.org/10.1007/978-3-319-35095-0_17.

    • Crossref
    • Export Citation
  • Ramage, C. S., 1959: Hurricane development. J. Meteor., 16, 227237, https://doi.org/10.1175/1520-0469(1959)016<0227:HD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1962: The subtropical cyclone. J. Geophys. Res., 67, 14011411, https://doi.org/10.1029/JZ067i004p01401.

  • Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the southern hemisphere. Climate Dyn., 39, 897917, https://doi.org/10.1007/s00382-011-1225-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971, https://doi.org/10.1002/qj.706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, https://doi.org/10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc., 105, 531549, https://doi.org/10.1002/qj.49710544504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 1981: An investigation of a polar low with a spiral cloud structure. J. Atmos. Sci., 38, 17851792, https://doi.org/10.1175/1520-0469(1981)038<1785:AIOAPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 1985: A case study of a polar low development over the Barents Sea. Tellus, 37A, 407418, https://doi.org/10.1111/j.1600-0870.1985.tb00440.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 2003: Polar lows. A Half Century of Progress in Meteorology: A Tribute to Richard Reed, Meteor. Monogr., No. 53, Amer. Meteor. Soc., 61–78.

    • Crossref
    • Export Citation
  • Rasmussen, E., and M. Lystad, 1987: The Norwegian polar lows project: A summary of the international conference on polar lows, 20–23 May 1986, Oslo, Norway. Bull. Amer. Meteor. Soc., 68, 801816, https://doi.org/10.1175/1520-0477-68.7.783.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., and C. Zick, 1987: A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus, 39A, 408425, https://doi.org/10.1111/j.1600-0870.1987.tb00318.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., T. B. Pedersen, L. T. Pedersen, and J. Turner, 1992: Polar lows and arctic instability lows in the Bear Island region. Tellus, 44A, 133154, https://doi.org/10.3402/tellusa.v44i2.14950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 9871015, https://doi.org/10.1002/qj.49711850708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, https://doi.org/10.1029/2006GL028607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. L. Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, https://doi.org/10.1029/2011JD015624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Gjorgjievska, S. Sessions, and Z. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Mag., 64, 1125, http://www.bom.gov.au/jshess/docs/2014/raymond.pdf.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 17651782, https://doi.org/10.1175/JAS-D-14-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and C. N. Duncan, 1987: Baroclinic instability as a mechanism for the serial development of polar lows: A case study. Tellus, 39A, 376384, https://doi.org/10.3402/tellusa.v39i4.11766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reznik, G. M., and W. K. Dewar, 1994: An analytical theory of distributed axisymmetric barotropic vortices on the beta-plane. J. Fluid Mech., 269, 301321, https://doi.org/10.1017/S0022112094001576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D. H., and D. P. Stern, 2014: Evidence of spray-mediated air-sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41, 29973003, https://doi.org/10.1002/2014GL059746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948a: On the formation of typhoons