Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, https://doi.org/10.1029/2011GL047015.
Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230, https://doi.org/10.1175/JAS-D-12-0318.1.
Abdullah, A. J., 1966: The spiral bands of a hurricane: A possible dynamic explanation. J. Atmos. Sci., 23, 367–375, https://doi.org/10.1175/1520-0469(1966)023<0367:TSBOAH>2.0.CO;2.
Abraham, J., J. W. Strapp, C. Fogarty, and M. Wolde, 2004: Extratropical transition of Hurricane Michael: An aircraft investigation. Bull. Amer. Meteor. Soc., 85, 1323–1340, https://doi.org/10.1175/BAMS-85-9-1323.
Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.
Adem, J., 1956: A series solution for the barotropic vorticity equation and its application to the study of atmospheric vortices. Tellus, 8, 364–376, https://doi.org/10.3402/tellusa.v8i3.9010.
Agusti-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 1047–1074, https://doi.org/10.1256/qj.02.140.
Aiyyer, A., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 2691–2704, https://doi.org/10.1175/2007JAS2348.1.
Alpert, P., and B. U. Neeman, 1992: Cold small-scale cyclones over the eastern Mediterranean. Tellus, 44A, 173–179, https://doi.org/10.3402/tellusa.v44i2.14952.
Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 1429–1440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.
Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608–619, https://doi.org/10.1175/2009JPO4232.1.
Andreas, E. L, and K. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 3741–3751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.
Andreas, E. L, and J. Decosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103, 303–333, https://doi.org/10.1023/A:1014564513650.
Andreas, E. L, P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 1581–1596, https://doi.org/10.1175/2007JPO3813.1.
Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642–654, https://doi.org/10.1002/qj.2424.
Anthes, R. A., Ed., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 298 pp.
Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 3226–3247, https://doi.org/10.1175/2008MWR2249.1.
Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 1063–1081, https://doi.org/10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.
Atlas, R., V. Tallapragada, and S. Gopalakrishnan, 2015: Advances in tropical cyclone intensity forecasts. Mar. Technol. Soc. J., 49, 149–160, https://doi.org/10.4031/MTSJ.49.6.2.
Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 343–14 347, https://doi.org/10.1073/pnas.1201364109.
Baldini, L. M., and Coauthors, 2016: Persistent northward North Atlantic tropical cyclone track migration over the past five centuries. Sci. Rep., 6, 37522, https://doi.org/10.1038/srep37522.
Ballenzweig, E. M., 1959: Relation of long-period circulation anomalies to tropical storm formation and motion. J. Meteor., 16, 121–139, https://doi.org/10.1175/1520-0469(1959)016<0121:ROLPCA>2.0.CO;2.
Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 3781–3797, https://doi.org/10.1175/MWR-D-11-00007.1.
Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782–1794, https://doi.org/10.1175/1520-0493(1984)112<1782:TEOFAS>2.0.CO;2.
Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137, https://doi.org/10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.
Barrett, B. S., and L. M. Leslie, 2009: Links between tropical cyclone activity and Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727–744, https://doi.org/10.1175/2008MWR2602.1.
Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoseale convective systems. Mon. Wea. Rev., 119, 104–118, https://doi.org/10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47, https://doi.org/10.1038/nature14956.
Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590–612, https://doi.org/10.1175/JCLI3659.1.
Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 2023–2046, https://doi.org/10.1175/2007MWR1858.1.
Bell, M. M., M. T. Montgomery, and K. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 3197–3222, https://doi.org/10.1175/JAS-D-11-0276.1.
Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.
Bender, M. A., I. Ginis, and Y. Kurihara, 1993a: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 245–23 263, https://doi.org/10.1029/93JD02370.
Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993b: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046–2061, https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2.
Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965–3989, https://doi.org/10.1175/2007MWR2032.1.
Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945–962, https://doi.org/10.1002/qj.49710544615.
Bentley, A. M., D. Keyser, and L. F. Bosart, 2016: A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 144, 2049–2068, https://doi.org/10.1175/MWR-D-15-0251.1.
Bergeron, T., 1954: The problem of tropical hurricanes. Quart. J. Roy. Meteor. Soc., 80, 131–164, https://doi.org/10.1002/qj.49708034402.
Bernaret, L., and Coauthors, 2015: Community support and transition of research to operations for the Hurricane Research and Forecast (HWRF) Model. Bull. Amer. Meteor. Soc., 96, 953–960, https://doi.org/10.1175/BAMS-D-13-00093.1.
Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656, https://doi.org/10.1175/MWR3087.1.
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691, https://doi.org/10.1002/qj.49711247307.
Beven, J., Jr., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 1109–1173, https://doi.org/10.1175/2007MWR2074.1.
Bishop, C. H., and A. J. Thorpe, 1994: Frontal wave stability during moist deformation frontogensis. Part I: Linear wave dynamics. J. Atmos. Sci., 51, 852–873, https://doi.org/10.1175/1520-0469(1994)051<0852:FWSDMD>2.0.CO;2.
Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 2662–2682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.
Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233–240, https://doi.org/10.1007/BF01030791.
Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadel variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.
Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64, 325–330.
Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effects of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.
Black, P. G., and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 1348–1366, https://doi.org/10.1175/1520-0469(1971)028<1348:OTASOT>2.0.CO;2.
Black, P. G., and F. Marks, 1991: The structure of an eyewall meso-vortex in Hurricane Hugo. Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 579–582.
Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357–374, https://doi.org/10.1175/BAMS-88-3-357.
Blair, A., I. Ginis, T. Hara, and E. Ulhorn, 2017: Impact of Langmuir turbulence on upper ocean response to Hurricane Edouard: Model and observations. J. Geophys. Res. Oceans, 122, 9712–9724, https://doi.org/10.1002/2017JC012956.
Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727–741, https://doi.org/10.1002/qj.49712353910.
Bluestein, H. B., 1976: Synoptic-scale deformation and tropical cloud bands. Ph.D. thesis, Dept. of Meteorology, Massachusetts Institute of Technology, 208 pp.
Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.
Bluestein, H. B., and F. D. Marks Jr., 1987: On the structure of the eyewall of Hurricane Diana (1984): Comparison of radar and visual characteristics. Mon. Wea. Rev., 115, 2542–2552, https://doi.org/10.1175/1520-0493(1987)115<2542:OTSOTE>2.0.CO;2.
Bode, L., and R. K. Smith, 1975: A parameterization of the boundary layer of a tropical cyclone. Bound.-Layer Meteor., 8, 3–19, https://doi.org/10.1007/BF02579390.
Bogomolov, V. A., 1977: Dynamics of vorticity on a sphere. Fluid Dyn., 12, 863–870, https://doi.org/10.1007/BF01090320.
Boldt, K. V., P. Lane, J. D. Woodruff, and J. P. Donnelly, 2010: Calibrating a sedimentary record of overwash from southeastern New England using modeled historic hurricane surges. Mar. Geol., 275, 127–139, https://doi.org/10.1016/j.margeo.2010.05.002.
Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, https://doi.org/10.1038/nature10946.
Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 1616–1642, https://doi.org/10.1175/1520-0469(1981)038<1616:TJFOJA>2.0.CO;2.
Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 1979–2013, https://doi.org/10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2.
Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322–352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.
Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 2477–2482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.
Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 5325–5334, https://doi.org/10.1175/JCLI-D-14-00804.1.
Brandon, C. M., J. D. Woodruff, D. P. Lane, and J. P. Donnelly, 2013: Tropical cyclone wind speed constraints from resultant storm surge deposition: A 2500 year reconstruction of hurricane activity from St. Marks, FL. Geochem. Geophys. Geosyst., 14, 2993–3008, https://doi.org/10.1002/ggge.20217.
Brandon, C. M., J. D. Woodruff, J. P. Donnelly, and R. M. Sullivan, 2014: How unique was Hurricane Sandy? Sedimentary reconstructions of extreme flooding from New York harbor. Sci. Rep., 4, 7366, https://doi.org/10.1038/srep07366.
Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.
Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 1179–1194, https://doi.org/10.1175/MWR3336.1.
Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345–363, https://doi.org/10.1175/BAMS-D-11-00232.1.
Bravo, J., J. P. Donnelly, and J. Dowling, 1997: Sedimentary evidence for the 1938 hurricane in southern New England. Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 395–396.
Bretherton, C. S., and M. F. Khairoutdinov, 2004: Convective self-aggregation in large cloud-resolving model simulations of radiative convective equilibrium. 26th Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 12B.4, https://ams.confex.com/ams/26HURR/techprogram/paper_76059.htm.
Bretherton, C. S., P. N. Blossey, and M. F. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 4273–4292, https://doi.org/10.1175/JAS3614.1.
Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 8611–8626, https://doi.org/10.1175/JCLI-D-11-00619.1.
Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 1125–1143, https://doi.org/10.1175/MWR-D-11-00231.1.
Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 3042–3060, https://doi.org/10.1175/2009JAS3038.1.
Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 1770–1789, https://doi.org/10.1175/2008MWR2709.1.
Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925–933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.
Businger, S., 1985: The synoptic climatology of polar low outbreaks. Tellus, 37A, 419–432, https://doi.org/10.3402/tellusa.v37i5.11686.
Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.
Byers, H. R., and R. R. Braham Jr., 1948: Thunderstorm structure and circulation. J. Meteor., 5, 71–86, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.
Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902, https://doi.org/10.1175/JCLI-D-12-00549.1.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006, https://doi.org/10.1175/JCLI3457.1.
Camargo, S. J., and S. M. Hsiang, 2016: Tropical cyclones: From the influence of climate to their socioeconomic impacts. Extreme Events: Observations, Modeling, and Economics, M. Chavez, M. Ghil, and J. Urrutia-Fucugauchi, Eds., Wiley-Blackwell, 438 pp.
Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834, https://doi.org/10.1175/JCLI4282.1.
Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 3635–3653, https://doi.org/10.1175/JCLI4188.1.
Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 3654–3676, https://doi.org/10.1175/JCLI4203.1.
Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007d: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428–443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.
Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061–3074, https://doi.org/10.1175/2009JAS3101.1.
Caron, L. P., M. Boudreault, and C. L. Bruyere, 2015: Changes in large-scale controls of Atlantic tropical cyclone activity with the phases of the Atlantic multidecadal oscillation. Climate Dyn., 44, 1801–1821, https://doi.org/10.1007/s00382-014-2186-5.
Cavicchia, L., H. von Storch, and S. Gualdi, 2014: A long-term climatology of medicanes. Climate Dyn., 43, 1183–1195, https://doi.org/10.1007/s00382-013-1893-7.
Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 1603–1618, https://doi.org/10.1175/1520-0469(1980)037<1603:EOEFOA>2.0.CO;2.
Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.
Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960–2972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
Chan, J. C. L., 2005a: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143–152, https://doi.org/10.1007/s00703-005-0126-y.
Chan, J. C. L., 2005b: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99–128, https://doi.org/10.1146/annurev.fluid.37.061903.175702.
Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 1257–1265, https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.
Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868–886, https://doi.org/10.1175/2009JCLI3316.1.
Chand, S. S., and K. J. E. Walsh, 2011: Influence of ENSO on tropical cyclone intensity in the Fiji region. J. Climate, 24, 4096–4108, https://doi.org/10.1175/2011JCLI4178.1.
Chane Ming, F., C. Ibrahim, C. Barthe, S. Jolivet, P. Keckhut, Y. A. Liou, and Y. Kuleshov, 2014: Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008). Atmos. Chem. Phys., 14, 641–658, https://doi.org/10.5194/acp-14-641-2014.
Chang, S. W., and R. A. Anthes, 1979: Mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128–135, https://doi.org/10.1175/1520-0485(1979)009<0128:TMROTT>2.0.CO;2.
Charabi, Y., Ed., 2010: Indian Ocean Tropical Cyclones and Climate Change. Springer, 373 pp.
Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.
Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.
Charney, J. G., R. Fjørtoft, and J. Von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254, https://doi.org/10.3402/tellusa.v2i4.8607.
Chavas, D. R., and K. A. Emanuel, 2010: A QuickSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.
Chavas, D. R., and K. A. Emanuel, 2014: Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci., 71, 1663–1680, https://doi.org/10.1175/JAS-D-13-0155.1.
Chen, G., 2011: A comparison of precipitation distribution of two landfalling tropical cyclones during the extratropical transition. Adv. Atmos. Sci., 28, 1390, https://doi.org/10.1007/s00376-011-0148-y.
Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 2401–2426, https://doi.org/10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2.
Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646–666, https://doi.org/10.1175/2008WAF2222186.1.
Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 1239–1256, https://doi.org/10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.
Cheung, K. F., L. Tang, J. P. Donnelly, E. M. Scileppi, K.-B. Liu, X.-Z. Mao, S. H. Houston, and R. J. Murnane, 2007: Numerical modeling and field evidence of coastal overwash in southern New England from Hurricane Bob and implications for paleotempestology. J. Geophys. Res., 112, F03024, https://doi.org/10.1029/2006JF000612.
Christophersen, H., A. Aksoy, J. Dunion, and K. Sellwood, 2017: The impact of NASA Global Hawk unmanned aircraft dropwindsonde observations on tropical cyclone track, intensity, and structure: Case studies. Mon. Wea. Rev., 145, 1817–1830, https://doi.org/10.1175/MWR-D-16-0332.1.
Chu, P.-S., and J. Wang, 1997: Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño and non–El Niño years significant? J. Climate, 10, 2683–2689, https://doi.org/10.1175/1520-0442(1997)010<2683:TCOITV>2.0.CO;2.
Chylek, P., and G. Lesins, 2008: Multidecadal variability of Atlantic hurricane activity: 1851-2007. J. Geophys. Res., 113, D22106, https://doi.org/10.1029/2008JD010036.
Cione, J. J., E. A. Kalina, E. W. Uhlhorn, A. M. Farber, and B. Damiano, 2016: Coyote unmanned aircraft system observations in Hurricane Edouard (2014). Earth Space Sci., 3, 370–380, https://doi.org/10.1002/2016EA000187.
Claud, C., B. Alhammoud, B. M. Funatsu, and J.-P. Chaboureau, 2010: Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazards Earth Syst. Sci., 10, 2199–2213, https://doi.org/10.5194/nhess-10-2199-2010.
Cochran, D. R., 1976: Unusual tropical development from a mid-Pacific cold low. Mon. Wea. Rev., 104, 804–808, https://doi.org/10.1175/1520-0493(1976)104<0804:UTDFAM>2.0.CO;2.
Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 2905–2926, https://doi.org/10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.
Collins, J. M., and K. Walsh, Eds., 2017: Hurricanes and Climate Change. Vol. 3, Springer, 255 pp.
Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.
Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.
Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 3073–3091, https://doi.org/10.1175/MWR3250.1.
Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 3528–3540, https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.
Daingerfield, L. H., 1921: Kona storms. Mon. Wea. Rev., 49, 327–329, https://doi.org/10.1175/1520-0493(1921)49<327:KS>2.0.CO;2.
D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561–579, https://doi.org/10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.
Davidson, N. E., G. J. Holland, J. L. McBride, and T. D. Keenan, 1990: On the formation of AMEX tropical cyclones Irma and Jason. Mon. Wea. Rev., 118, 1981–2000, https://doi.org/10.1175/1520-0493(1990)118<1981:OTFOAT>2.0.CO;2.
Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 2730–2747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.
Davis, C. A., and L. Bosart, 2004: The TT problem. Bull. Amer. Meteor. Soc., 85, 1657–1662, https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-85-11-1657.
Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714–736, https://doi.org/10.1175/2007JAS2488.1.
Dean, L., K. Emanuel, and D. R. Chavas, 2009: On the size distribution of Atlantic tropical cyclones. Geophys. Res. Lett., 36, L14803, https://doi.org/10.1029/2009GL039051.
DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 001–12 016, https://doi.org/10.1029/95JC03796.
Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676, https://doi.org/10.1007/s003820000075.
DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.
DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209–220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.
DeMaria, M., and J. Kaplan, 1997: An operational evaluation of a Statistical Hurricane Intensity Prediction Scheme (SHIPS). Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 280–281.
DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326–337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.
DeMaria, M., J. Kaplan, and J.-J. Baik, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133–1147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.
DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387–398, https://doi.org/10.1175/BAMS-D-12-00240.1.
Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 1573–1581, https://doi.org/10.1175/JAM2429.1.
Dengler, K., and M. J. Reeder, 1997: The effects of convection and baroclinicity on the motion of tropical-cyclone-like vortices. Quart. J. Roy. Meteor. Soc., 123, 699–725, https://doi.org/10.1002/qj.49712353909.
Diaz, H. F., and R. S. Pulwarty, Eds., 2012: Climate and Socioeconomic Impacts. Springer, 292 pp.
Didlake, A. C., Jr., and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891–1911, https://doi.org/10.1175/JAS-D-12-0245.1.
Diercks, J. W., and R. A. Anthes, 1976: Diagnostic studies of spiral rainbands in a nonlinear hurricane model. J. Atmos. Sci., 33, 959–975, https://doi.org/10.1175/1520-0469(1976)033<0959:DSOSRI>2.0.CO;2.
Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.
Donnelly, J. P., 2005: Evidence of past intense tropical cyclones from backbarrier salt pond sediments: A case study from Isla de Culebrita, Puerto Rico, USA. J. Coastal Res., SI42, 201–210, https://www.jstor.org/stable/25736985.
Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000 years controlled by El Niño and the west African monsoon. Nature, 447, 465–468, https://doi.org/10.1038/nature05834.
Donnelly, J. P., and Coauthors, 2001a: 700 yr sedimentary record of intense hurricane landfalls in southern New England. Geol. Soc. Amer. Bull., 113, 714–727, https://doi.org/10.1130/0016-7606(2001)113<0714:YSROIH>2.0.CO;2.
Donnelly, J. P., S. Roll, M. Wengren, J. Butler, R. Lederer, and T. Webb III, 2001b: Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29, 615–618, https://doi.org/10.1130/0091-7613(2001)029<0615:SEOIHS>2.0.CO;2.
Donnelly, J. P., J. Butler, S. Roll, M. Wengren, and T. Webb, 2004: A backbarrier overwash record of intense storms from Brigantine, New Jersey. Mar. Geol., 210, 107–121, https://doi.org/10.1016/j.margeo.2004.05.005.
Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The tropical cyclone intensity experiment. Bull. Amer. Meteor. Soc., 98, 2113–2134, https://doi.org/10.1175/BAMS-D-16-0055.1.
Duke, W. L., 1985a: Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32, 167–194, https://doi.org/10.1111/j.1365-3091.1985.tb00502.x.
Duke, W. L., 1985b: The paleogeography of Paleozoic and Mesozoic storm depositional systems: A discussion. J. Geol., 93, 88–90, https://doi.org/10.1086/628923.
Duke, W. L., R. W. C. Arnott, and R. J. Cheel, 1991: Shelf sandstones and hummocky cross-stratification: New insights on a stormy debate. Geology, 19, 625–628, https://doi.org/10.1130/0091-7613(1991)019<0625:SSAHCS>2.3.CO;2.
Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 3900–3919, https://doi.org/10.1175/MWR-D-13-00191.1.
Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587–5646, https://doi.org/10.5194/acp-9-5587-2009.
Dunn, G. E., 1940: Cyclogenesis in the tropical Atlantic. Bull. Amer. Meteor. Soc., 21, 215–229, https://doi.org/10.1175/1520-0477-21.6.215.
Dunn, G. E., 1951: Tropical cyclones. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 887–901.
Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci., 6, 534–539, https://doi.org/10.1038/ngeo1854.
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.
Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 45 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.
Ellis, R., and S. Businger, 2010: Helical circulations in the typhoon boundary layer. J. Geophys. Res., 115, D06205, https://doi.org/10.1029/2009JD011819.
Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209–231.
Elsberry, R. L., T. S. Fraim, and R. N. Trapnell, 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 1153–1162, https://doi.org/10.1029/JC081i006p01153.
Elsberry, R. L., B. C. Diehl, J. C.-L. Chan, P. A. Harr, G. J. Holland, M. Lander, T. Neta, and D. Thom, 1990: ONR tropical cyclone motion research initiative: Field experiment summary. Tech. Rep. NPS-MR-91-001, 107 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a231152.pdf.
Elsner, J. B., and T. H. Jagger, Eds., 2009: Hurricanes and Climate Change. Vol. 1, Springer, 419 pp.
Elsner, J. B., B. H. Bossak, and X. F. Niu, 2001: Secular changes to the ENSO-U.S. Hurricane relationship. Geophys. Res. Lett., 28, 4123–4126, https://doi.org/10.1029/2001GL013669.
Elsner, J. B., R. E. Hodges, J. C. Malmstadt, and K. N. Scheitlin, Eds., 2014: Hurricanes and Climate Change. Vol. 2, Springer, 255 pp.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485, https://doi.org/10.1038/326483a0.
Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.
Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431–3456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.
Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 3960–3968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.
Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014–1026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.
Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152, https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.
Emanuel, K. A., 2001: The contribution of tropical cyclones to the oceans’ meridional heat transport. J. Geophys. Res., 106, 14 771–14 781, https://doi.org/10.1029/2000JD900641.
Emanuel, K. A., 2003: A similarity hypothesis for air-sea exchange at extreme wind speeds. J. Atmos. Sci., 60, 1420–1428, https://doi.org/10.1175/1520-0469(2003)060<1420:ASHFAE>2.0.CO;2.
Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Federovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–192, https://doi.org/10.1017/CBO9780511735035.010.
Emanuel, K. A., 2005a: Divine Wind: The History and Science of Hurricanes. Oxford University Press, 304 pp.
Emanuel, K. A., 2005b: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217–220, https://doi.org/10.5194/adgeo-2-217-2005.
Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2, https://doi.org/10.3894/JAMES.2010.2.1.
Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow: Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988–996, https://doi.org/10.1175/JAS-D-11-0177.1; Corrigendum, 75, 2155–2156, https://doi.org/10.1175/JAS-D-18-0047.1.
Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 219–12 224, https://doi.org/10.1073/pnas.1301293110.
Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 1–17, https://doi.org/10.1111/j.1600-0870.1989.tb00362.x.
Emanuel, K. A., and D. Nolan, 2004: Tropical cyclone activity and global climate. 26th Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.
Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 2236–2249, https://doi.org/10.1175/JAS-D-10-05024.1.
Emanuel, K. A., and A. H. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst., 5, 447–458, https://doi.org/10.1002/jame.20032.
Emanuel, K. A., and F. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 2315–2324, https://doi.org/10.1175/JAS-D-17-0008.1.
Emanuel, K. A., R. Rotunno, and D. K. Lilly, 1985: An air-sea interaction theory for tropical cyclones. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 27–28.
Emanuel, K. A., K. Speer, R. Rotunno, R. Srivastava, and M. Molina, 1995: Hypercanes: A possible link in global extinction scenarios. J. Geophys. Res., 100, 13 755–13 765, https://doi.org/10.1029/95JD01368.
Emanuel, K. A., J. Callaghan, and P. Otto, 2008a: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 3863–3872, https://doi.org/10.1175/2008MWR2409.1.
Emanuel, K. A., R. Sundararajan, and J. Williams, 2008b: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–367, https://doi.org/10.1175/BAMS-89-3-347.
Enfield, D. B., and L. Cid-Serrano, 2010: Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30, 174–184, https://doi.org/10.1002/joc.1881.
Ernst, J. A., and M. Matson, 1983: A Mediterranean tropical storm? Weather, 38, 332–337, https://doi.org/10.1002/j.1477-8696.1983.tb04818.x.
Espy, J. P., 1841: The Philosophy of Storms. Little and Brown, 552 pp.
Evans, C., and R. E. Hart, 2008: Analysis of the wind field evolution associated with the extratropical transition of Bonnie (1998). Mon. Wea. Rev., 136, 2047–2065, https://doi.org/10.1175/2007MWR2051.1.
Evans, C., R. S. Schumacher, and T. J. Galarneau Jr., 2011: Sensitivity in the overland reintensification of tropical cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 3848–3870, https://doi.org/10.1175/2011MWR3593.1.
Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 4317–4344, https://doi.org/10.1175/MWR-D-17-0027.1.
Evans, J. L., and R. J. Allan, 1992: El Niño/Southern Oscillation modification to the structure of the monsoon and tropical cyclone activity in the Australasian region. Int. J. Climatol., 12, 611–623, https://doi.org/10.1002/joc.3370120607.
Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909–925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.
Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 2065–2080, https://doi.org/10.1175/2009MWR2468.1.
Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate, 25, 7328–7340, https://doi.org/10.1175/JCLI-D-11-00212.1.
Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.
Faller, A., 1963: An experimental study of the instability of the laminar Ekman boundary layer. J. Fluid Mech., 15, 560–576, https://doi.org/10.1017/S0022112063000458.