100 Years of Progress in Understanding the General Circulation of the Atmosphere

Isaac M. Held NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Isaac M. Held in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Some of the advances of the past century in our understanding of the general circulation of the atmosphere are described, starting with a brief summary of some of the key developments from the first half of the twentieth century, but with a primary focus on the period beginning with the midcentury breakthrough in baroclinic instability and quasigeostrophic dynamics. In addition to baroclinic instability, topics touched upon include the following: stationary wave theory, the role played by the two-layer model, scaling arguments for the eddy heat flux, the subtlety of large-scale eddy momentum fluxes, the Eliassen–Palm flux and the transformed Eulerian mean formulation, the structure of storm tracks, and the controls on the Hadley cell.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isaac M. Held, isaac.held@noaa.gov

Abstract

Some of the advances of the past century in our understanding of the general circulation of the atmosphere are described, starting with a brief summary of some of the key developments from the first half of the twentieth century, but with a primary focus on the period beginning with the midcentury breakthrough in baroclinic instability and quasigeostrophic dynamics. In addition to baroclinic instability, topics touched upon include the following: stationary wave theory, the role played by the two-layer model, scaling arguments for the eddy heat flux, the subtlety of large-scale eddy momentum fluxes, the Eliassen–Palm flux and the transformed Eulerian mean formulation, the structure of storm tracks, and the controls on the Hadley cell.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isaac M. Held, isaac.held@noaa.gov
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, L., G. C. Craig, and J. Thuburn, 2002: Poleward heat transport by the atmospheric heat engine. Nature, 415, 774777, https://doi.org/10.1038/415774a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1969: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids, 12, II–233, https://doi.org/10.1063/1.1692443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47, 9599, https://doi.org/10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3 (1), 118.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, V., J. Bjerknes, H. Solberg, and T. Bergeron, 1933: Physikalische Hydrodynamik: Mit Anwendung auf die Dynamische Meteorologie. J. Springer, 797 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolin, B., 1950: On the influence of the earth’s orography on the general character of the westerlies. Tellus, 2, 184195, https://doi.org/10.3402/tellusa.v2i3.8547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41, 11321142, https://doi.org/10.1175/1520-0469(1984)041<1132:TIOTPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, https://doi.org/10.1002/qj.49709239302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., 2006: An idealized nonlinear model of the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 63, 18181839, https://doi.org/10.1175/JAS3726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1948: On the scale of atmospheric motions. Geofys. Publ., 17, 117.

  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 3854, https://doi.org/10.3402/tellusa.v1i2.8500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic Intertropical Convergence Zone to last glacial maximum boundary conditions. Paleoceanography, 18, 1094, https://doi.org/10.1029/2003PA000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, A., 1921: Die zirkulation der atmosphäre in den gemässigten breiten der erde: Grundzüge einer theorie der klimaschwankungen (The circulation of the atmosphere in temperate regions of the earth: The main features of a theory of climate fluctuations). Geogr. Ann., 3 (3), 209266.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 9841002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1969: Theory of planetary wave-zonal flow interaction. J. Atmos. Sci., 26, 7381, https://doi.org/10.1175/1520-0469(1969)026<0073:TOPWZF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eady, E., 1950: The cause of the general circulation of the atmosphere. Centen. Proc. Roy. Meteor. Soc, 76, 156172.

  • Edmon, H., B. Hoskins, and M. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 15291534, https://doi.org/10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50, 40444057, https://doi.org/10.1175/1520-0469(1993)050<4044:SDOBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus, 5, 225230, https://doi.org/10.3402/tellusa.v5i3.8647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J., 1983: Disturbances and eddy fluxes in Northern Hemisphere flows: Instability of three-dimensional January and July flows. J. Atmos. Sci., 40, 836855, https://doi.org/10.1175/1520-0469(1983)040<0836:DAEFIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., M. L. Blackmon, G. T. Bates, and S. Munoz, 1985: Sensitivity of January climate response to the magnitude and position of equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 42, 10371049, https://doi.org/10.1175/1520-0469(1985)042<1037:SOJCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-analysis Project Rep. Series, Rep. 1, ECMWF, 72 pp., https://www.ecmwf.int/en/elibrary/9584-era-description.

  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. Thompson, 2003: Simulation of recent southern hemisphere climate change. Science, 302, 273275, https://doi.org/10.1126/science.1087440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golitsyn, G., 1970: A similarity approach to the general circulation of planetary atmospheres. Icarus, 13, 124, https://doi.org/10.1016/0019-1035(70)90112-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185, https://doi.org/10.1002/qj.49709640802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and P. Zuercher, 1998: Response of baroclinic life cycles to barotropic shear. J. Atmos. Sci., 55, 297313, https://doi.org/10.1175/1520-0469(1998)055<0297:ROBLCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497, https://doi.org/10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412417, https://doi.org/10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. 2000 WHOI GFD Program, Woods Hole Oceanographic Institution, Woods Hole, MA, 54 pp., https://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. L. Panetta, and R. T. Pierrehumbert, 1985: Stationary external Rossby waves in vertical shear. J. Atmos. Sci., 42, 865883, https://doi.org/10.1175/1520-0469(1985)042<0865:SERWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841853, https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hide, R., and W. Fowlis, 1965: Thermal convection in a rotating annulus of liquid: Effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci., 22, 541558, https://doi.org/10.1175/1520-0469(1965)022<0541:TCIARA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation. Tellus, 43A, 2736, https://doi.org/10.3402/tellusa.v43i4.11936.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1999: Sutcliffe and his development theory. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Gronas, Eds., Amer. Meteor. Soc., 81–86.

    • Crossref
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows-cold and warm fronts. J. Atmos. Sci., 36, 16631680, https://doi.org/10.1175/1520-0469(1979)036<1663:BWAFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1, 6266, https://doi.org/10.3402/tellusa.v1i2.8498.

  • Iga, S., and Y. Matsuda, 2005: Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci., 62, 25142527, https://doi.org/10.1175/JAS3484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720, https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I., and L. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112, 12311250, https://doi.org/10.1002/qj.49711247417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1926: On the dynamics of geostrophic winds. Quart. J. Roy. Meteor. Soc., 52, 85104, https://doi.org/10.1002/qj.49705221708.

  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43–316.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and A. P. Showman, 2015: Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. Astrophys. J., 804, https://doi.org/10.1088/0004-637X/804/1/60.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and M. E. Mcintyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449492, https://doi.org/10.1017/S0022112085003019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, I., G. L. Stenchikov, H.-F. Graf, A. Robock, and J. C. Antuña, 1999: Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 104, 19 03919 055, https://doi.org/10.1029/1999JD900213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Kraucunas, I., and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62, 371389, https://doi.org/10.1175/JAS-3365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1949: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor., 6, 105122, https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1951: Vorticity transfer as related to the development of the general circulation. J. Meteor., 8, 307315, https://doi.org/10.1175/1520-0469(1951)008<0307:VTARTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laraia, A. L., and T. Schneider, 2015: Superrotation in terrestrial atmospheres. J. Atmos. Sci., 72, 42814296, https://doi.org/10.1175/JAS-D-15-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1978: On the three-dimensional structure of the observed transient eddy statistics of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 35, 19001923, https://doi.org/10.1175/1520-0469(1978)035<1900:OTTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and J. M. Wallace, 1979: On the distribution of horizontal transports by transient eddies in the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 36, 18441861, https://doi.org/10.1175/1520-0469(1979)036<1844:OTDOHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 14131428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.

    • Crossref