Abbe, C., 1901: The physical basis of long-range weather forecasts. Mon. Wea. Rev., 29, 551–561, https://doi.org/10.1175/1520-0493(1901)29[551c:TPBOLW]2.0.CO;2.
Abdi, D. S., L. C. Wilcox, T. C. Warburton, and F. X. Giraldo, 2017: A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model. Int. J. High Perform. Comput. Appl., 33, 81–109, https://doi.org/10.1177/1094342017694427.
Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174.
Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003.
Adcroft, A., and R. Hallberg, 2006: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modell., 11, 224–233, https://doi.org/10.1016/j.ocemod.2004.12.007.
Ambartsumian, V., 1936: The effect of absorption lines on the radiative equillibrium of the outer layers of stars. Publ. Astron. Obs. Univ. Leningrad, 6, 7–18.
André, J., G. De Moor, P. Lacarrere, and R. Du Vachat, 1976: Turbulence approximation for inhomogeneous flows: Part II. The numerical simulation of a penetrative convection experiment. J. Atmos. Sci., 33, 482–491, https://doi.org/10.1175/1520-0469(1976)033<0482:TAFIFP>2.0.CO;2.
Andrejczuk, M., W. Grabowski, J. Reisner, and A. Gadian, 2010: Cloud–aerosol interactions for boundary layer stratocumulus in the Lagrangian cloud model. J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248.
Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270–286, https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2.
Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Climate Appl. Meteor., 23, 541–554, https://doi.org/10.1175/1520-0450(1984)023<0541:EOCPBM>2.0.CO;2.
Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119–143, https://doi.org/10.1016/0021-9991(66)90015-5.
Arakawa, A., 1969: Parameterization of cumulus convection. Proc. WMO/IUGG Symp. on Numerical Weather Prediction, Tokyo, Japan, Japan Meteorological Agency, Vol. IV, 1–6.
Arakawa, A., 1972: Design of the UCLA general circulation model. Vol. 7, Department of Meteorology, University of California, Los Angeles, 116 pp.
Arakawa, A., 2000: A personal perspective on the early years of general circulation modeling. General Circulation Model Development, D. A. Randall, Ed., Academic Press, 1–65.
Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 2493–2525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.
Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics, Vol. 17, Academic Press, 173–265.
Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 18–36, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.
Arakawa, A., and S. Moorthi, 1988: Baroclinic instability in vertically discrete systems. J. Atmos. Sci., 45, 1688–1708, https://doi.org/10.1175/1520-0469(1988)045<1688:BIIVDS>2.0.CO;2.
Arakawa, A., and C. S. Konor, 2009: Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Wea. Rev., 137, 710–726, https://doi.org/10.1175/2008MWR2520.1.
Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 1977–1992, https://doi.org/10.1175/JAS-D-12-0330.1.
Arakawa, A., Y. Mintz, and A. Katayama, 1968: Numerical Simulation of the General Circulation of the Atmosphere. Department of Meteorology, University of California, 40 pp.
Arora, V. K., and G. J. Boer, 2005: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biol., 11, 39–59, https://doi.org/10.1111/j.1365-2486.2004.00890.x.
Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J. Climate, 26, 5289–5314, https://doi.org/10.1175/JCLI-D-12-00494.1.
Ashford, O. M., 1985: Prophet–or Professor?: The Life and Work of Lewis Fry Richardson. Taylor & Francis, 320 pp.
Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 2113–2136, https://doi.org/10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2.
Bacon, D. P., and Coauthors, 2000: A dynamically adapting weather and dispersion model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA). Mon. Wea. Rev., 128, 2044–2076, https://doi.org/10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2.
Baer, F., 1972: An alternate scale representation of atmospheric energy spectra. J. Atmos. Sci., 29, 649–664, https://doi.org/10.1175/1520-0469(1972)029<0649:AASROA>2.0.CO;2.
Baker, I., L. Prihodko, A. Denning, M. Goulden, S. Miller, and H. Da Rocha, 2008: Seasonal drought stress in the Amazon: Reconciling models and observations. J. Geophys. Res., 113, G00B01, https://doi.org/10.1029/2007JG000644.
Balaji, V., R. Benson, B. Wyman, and I. Held, 2016: Coarse-grained component concurrency in earth system modeling: Parallelizing atmospheric radiative transfer in the GFDL AM3 model using the flexible modeling system coupling framework. Geosci. Model Dev., 9, 3605, https://doi.org/10.5194/gmd-9-3605-2016.
Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x.
Baldocchi, D. D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.
Ball, J. T., 1988: An analysis of stomatal conductance. Ph.D. thesis, Stanford University, 89 pp.
Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF Ocean Reanalysis System ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063.
Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. 1. Methodology and homogeneous biases. J. Atmos. Sci., 53, 2289–2303, https://doi.org/10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2.
Barker, H. W., and Coauthors, 2003: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699, https://doi.org/10.1175/1520-0442(2003)016<2676:ADASRT>2.0.CO;2.
Barker, H. W., J. N. S. Cole, J.-J. Morcrette, R. Pincus, P. Raeisaenen, K. von Salzen, and P. A. Vaillancourt, 2008: The Monte Carlo Independent Column Approximation: An assessment using several global atmospheric models. Quart. J. Roy. Meteor. Soc., 134, 1463–1478, https://doi.org/10.1002/qj.303.
Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 1170–1185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.
Bates, J., F. Semazzi, R. Higgins, and S. R. Barros, 1990: Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev., 118, 1615–1627, https://doi.org/10.1175/1520-0493(1990)118<1615:IOTSWE>2.0.CO;2.
Bauer, W., M. Baumann, L. Scheck, A. Gassmann, V. Heuveline, and S. C. Jones, 2014: Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity. Theor. Comput. Fluid Dyn., 28, 107–128, https://doi.org/10.1007/s00162-013-0303-4.
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.
Beckwith, I. E., and D. M. Bushnell, 1968: Detailed description and results of a method for computing mean and fluctuating quantities in turbulent boundary layers. NASA Tech Note NCAR/TN-D-4815, 119 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680026599.pdf.
Beljaars, A. C., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362–383, https://doi.org/10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.
Bengtsson, L., M. Kanamitsu, P. Kållberg, and S. Uppala, 1982: FGGE research activities at ECMWF. Bull. Amer. Meteor. Soc., 63, 277–303, https://doi.org/10.1175/1520-0477-63.3.277.
Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132, 473–494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.
Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013.
Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 1814–1824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691, https://doi.org/10.1002/qj.49711247307.
Betts, A. K., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709, https://doi.org/10.1002/qj.49711247308.
Betts, A. K., J. H. Ball, A. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 7209–7225, https://doi.org/10.1029/95JD02135.
Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 669–15 677, https://doi.org/10.1029/1999JC900100.
Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 2441–2464, https://doi.org/10.1029/1999JC000113.
Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 2903–2921, https://doi.org/10.1175/JCLI3428.1.
Bjerknes, J., 1955: Investigations of the General Circulation of the Atmosphere. Department of Meteorology, University of California, Los Angeles, 350 pp.
Bjerknes, V., 1904: Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik und der physik. Meteor. Z, 21, 1–7.
Bleck, R., 1970: A fast, approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 5165–5171, https://doi.org/10.1029/JC075i027p05165.
Bleck, R., 1973: Numerical forecasting experiments based on the conservation of potential vorticity on isentropic surfaces. J. Appl. Meteor., 12, 737–752, https://doi.org/10.1175/1520-0450(1973)012<0737:NFEBOT>2.0.CO;2.
Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic–cartesian coordinates. Ocean Modell., 4, 55–88, https://doi.org/10.1016/S1463-5003(01)00012-9.
Bleck, R., and S. G. Benjamin, 1993: Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description. Mon. Wea. Rev., 121, 1770–1785, https://doi.org/10.1175/1520-0493(1993)121<1770:RWPWAM>2.0.CO;2.
Bleck, R., and D. Boudra, 1986: Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates. J. Geophys. Res., 91, 7611–7621, https://doi.org/10.1029/JC091iC06p07611.
Bleck, R., S. Benjamin, J. Lee, and A. E. MacDonald, 2010: On the use of an adaptive, hybrid-isentropic vertical coordinate in global atmospheric modeling. Mon. Wea. Rev., 138, 2188–2210, https://doi.org/10.1175/2009MWR3103.1.
Bleck, R., and Coauthors, 2015: A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: Model description. Mon. Wea. Rev., 143, 2386–2403, https://doi.org/10.1175/MWR-D-14-00300.1.
Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195–211, https://doi.org/10.1002/jame.20018.
Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the community atmosphere model. J. Climate, 26, 9655–9676, https://doi.org/10.1175/JCLI-D-13-00075.1.
Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235, https://doi.org/10.5194/gmd-11-235-2018.
Bolin, B., 1955: Numerical forecasting with the barotropic model 1. Tellus, 7, 27–49, https://doi.org/10.3402/tellusa.v7i1.8770.
Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 155 pp., https://doi.org/10.5065/D6DF6P5X.
Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. J. Climate, 11, 1307–1326, https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2.
Bonan, G. B., 2015: Ecological Climatology: Concepts and Applications. Cambridge University Press, 563 pp.
Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biol., 9, 1543–1566, https://doi.org/10.1046/j.1365-2486.2003.00681.x.
Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect. Tellus, 47B, 281–300, https://doi.org/10.3402/tellusb.v47i3.16048.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.
Bourke, W., 1974: A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687–701, https://doi.org/10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2.
Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11, 1115–1130, https://doi.org/10.1175/1520-0442(1998)011<1115:TNCSMV>2.0.CO;2.
Bradley, B. A., R. W. Jacob, J. F. Hermance, and J. F. Mustard, 2007: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ., 106, 137–145, https://doi.org/10.1016/j.rse.2006.08.002.
Bradshaw, P., D. Ferriss, and N. Atwell, 1967: Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech., 28, 593–616, https://doi.org/10.1017/S0022112067002319.
Brenowitz, N. D., and C. S. Bretherton, 2018: Prognostic validation of a neural network unified physics parameterization. Geophys. Res. Lett., 45, 6289–6298, https://doi.org/10.1029/2018GL078510.
Briegleb, B. P., and B. Light, 2007: A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Tech. Note 472+STR, 100 pp.
Brubaker, K. L., and D. Entekhabi, 1996: Analysis of feedback mechanisms in land-atmosphere interaction. Water Resour. Res., 32, 1343–1357, https://doi.org/10.1029/96WR00005.
Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.
Bryan, K., 1966: A scheme for numerical integration of the equations of motion on an irregular grid free of nonlinear instability. Mon. Wea. Rev., 94, 39–40, https://doi.org/10.1175/1520-0493(1966)094<0039:ASFNIO>2.3.CO;2.
Bryan, K., 1969a: Climate and the ocean circulation III. The Ocean Model. Mon. Wea. Rev., 97, 806–827, https://doi.org/10.1175/1520-0493(1969)097<0806:CATOC>2.3.CO;2.
Bryan, K., 1969b: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347–376, https://doi.org/10.1016/0021-9991(69)90004-7.
Bryan, K., 1991: Michael Cox (1941–1989): His pioneering contributions to ocean circulation modeling. J. Phys. Oceanogr., 21, 1259–1270, https://doi.org/10.1175/1520-0485(1991)021<1259:MCHPCT>2.0.CO;2.
Bryan, K., and M. D. Cox, 1967: A numerical investigation of the oceanic general circulation. Tellus, 19, 54–80, https://doi.org/10.3402/tellusa.v19i1.9761.
Bryan, K., and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 2503–2517, https://doi.org/10.1029/JC084iC05p02503.
Budyko, M. I., 1969: The effect of solar radiatin variations on the climate of the earth. Tellus, 21, 611–619, https://doi.org/10.3402/tellusa.v21i5.10109.
Budyko, M. I., and L. Zubenok, 1961: The determination of evaporation from the land surface. Izv. Akad. Nauk SSSR Ser. Geogr., 6, 3–17.
Bunker, A. F., B. Haurwitz, J. S. Malkus, and H. M. Stommel, 1949: Vertical Distribution of Temperature and Humidity over the Caribbean Sea. Vol. 11, Papers in Physical Oceanography and Meteorology, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 85 pp.
Burridge, D. M., and J. Haseler, 1977: A model for medium-range weather forecasts: Adiabatic formation. ECMWF Tech. Rep. 4, 46 pp.
Bushby, F., and M. S. Timpson, 1967: A 10-level atmospheric model and frontal rain. Quart. J. Roy. Meteor. Soc., 93, 1–17, https://doi.org/10.1002/qj.49709339502.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.
Cairns, B., A. A. Lacis, and B. E. Carlson, 2000: Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714, https://doi.org/10.1175/1520-0469(2000)057<0700:AWICAI>2.0.CO;2.
Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223–240, https://doi.org/10.1002/qj.49706427503.
Campin, J.-M., C. Hill, H. Jones, and J. Marshall, 2011: Super-parameterization in ocean modeling: Application to deep convection. Ocean Modell., 36, 90–101, https://doi.org/10.1016/j.ocemod.2010.10.003.
Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–516, https://doi.org/10.1126/science.245.4917.513.
Charney, J. G., 1962: Integration of the primitive and balance equations. Proc. Int. Symp. on Numerical Weather Prediction in Tokyo. Tokyo, Japan, Meteorological Society of Japan, 131–152.
Charney, J. G., 1966: The feasibility of a global observation and analysis experiment. Bull. Amer. Meteor. Soc., 47, 200–230, https://doi.org/10.1175/1520-0477-47.3.200.
Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193–202, https://doi.org/10.1002/qj.49710142802.
Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flow. J. Meteor., 10, 71–99, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.
Charney, J. G., R. Fjörtoft, and J. V. Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254, https://doi.org/10.3402/tellusa.v2i4.8607.
Charney, J. G., M. Halem, and R. Jastrow, 1969: Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci., 26, 1160–1163, https://doi.org/10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2.
Charney, J. G., and Coauthors, 1979: Carbon dioxide and climate: A scientific assessment. National Academies Press, 34 pp., https://doi.org/10.17226/12181.
Chen, J.-M., 1991: Turbulence-scale condensation parameterization. J. Atmos. Sci., 48, 1510–1512, https://doi.org/10.1175/1520-0469(1991)048<1510:TSCP>2.0.CO;2.
Cheng, M.-D., and A. Arakawa, 1997: Inclusion of rainwater budget and convective downdrafts in the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci., 54, 1359–1378, https://doi.org/10.1175/1520-0469(1997)054<1359:IORBAC>2.0.CO;2.
Chevallier, F., F. Chéruy, N. Scott, and A. Chédin, 1998: A neural network approach for a fast and accurate computation of a longwave radiative budget. J. Appl. Meteor., 37, 1385–1397, https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2.
Clement, V., S. Ferrachat, O. Fuhrer, X. Lapillonne, C. E. Osuna, R. Pincus, J. Rood, and W. Sawyer, 2018: The CLAW DSL: Abstractions for performance portable weather and climate models. Proc. Platform for Advanced Scientific Computing Conf., New York, NY, ACM, 2:1–2:10, https://doi.org/10.1145/3218176.3218226.
Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 761–15 785, https://doi.org/10.1029/92JD01419.
Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815–1842, https://doi.org/10.1256/smsqj.56613.
Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8.
Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci., 58, 3224–3242, https://doi.org/10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2.
Collins, W. D., and Coauthors, 2006a: The Community Climate System Model Version 3, CCSM3. J. Climate, 19, 2122–2143, https://doi.org/10.1175/JCLI3761.1.
Collins, W. D., and Coauthors, 2006b: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.
Coon, M. D., G. A. Maykut, R. S. Pritchard, D. A. Rothrock, and A. S. Thorndike, 1974: Modeling the pack ice as an elastic-plastic material. AIDJEX Bull., 24, 1–105.
Corby, G., A. Gilchrist, and P. Rowntree, 1977: United Kingdom Meteorological Office five-level general circulation model. Methods in Computational Physics: Advances in Research and Applications, Vol. 17, Elsevier, 67–110.
Côté, J., and A. Staniforth, 1988: A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon. Wea. Rev., 116, 2003–2012, https://doi.org/10.1175/1520-0493(1988)116<2003:ATTLSL>2.0.CO;2.
Courant, R., K. Friedrichs, and H. Lewy, 1928: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann., 100, 32–74, https://doi.org/10.1007/BF01448839.
Courant, R., K. Friedrichs, and H. Lewy, 1967: On the partial difference equations of mathematical physics. IBM J. Res. Dev., 11, 215–234, https://doi.org/10.1147/rd.112.0215.
Courtier, P., and M. Naughton, 1994: A pole problem in the reduced Gaussian grid. Quart. J. Roy. Meteor. Soc., 120, 1389–1407, https://doi.org/10.1002/qj.49712051913.
Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the coupled model intercomparison project. Global Planet. Change, 37, 103–133, https://doi.org/10.1016/S0921-8181(02)00193-5.
Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, GFDL, Princeton University, 163 pp.
Cox, M. D., 1987: Isopycnal diffusion in a z-coordinate ocean model. Ocean Modell., 74, 1–5.
Cox, P. M., 2001: Description of the triffid dynamic global vegetation model. Hadley Centre Tech. Note 24, 16 pp.
Cox, P. M., C. Huntingford, and R. J. Harding, 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 212, 79–94, https://doi.org/10.1016/S0022-1694(98)00203-0.
Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184, https://doi.org/10.1038/35041539.
Cox, P. M., R. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137–156, https://doi.org/10.1007/s00704-004-0049-4.
Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341, https://doi.org/10.1038/nature11882.
Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The first ISCCP regional experiment. Bull. Amer. Meteor. Soc., 68, 114–118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 31–42, https://doi.org/10.1177/1094342011428141.
Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357–373, https://doi.org/10.1046/j.1365-2486.2001.00383.x.
Cubasch, U., K. Hasselmann, H. Höck, E. Maier-Reimer, U. Mikolajewicz, B. D. Santer, and R. Sausen, 1992: Time-dependent greenhouse warming computations with a coupled ocean–atmosphere model. Climate Dyn., 8, 55–69, https://doi.org/10.1007/BF00209163.
Cullen, M., 1993: The unified forecast/climate model. Meteor. Mag., 122, 81–94.
Cullen, M., T. Davies, M. Mawson, J. James, S. Coulter, and A. Malcolm, 1997: An overview of numerical methods for the next generation U.K. NWP and climate model. Atmos.–Ocean, 35 (Suppl. 1), 425–444, https://doi.org/10.1080/07055900.1997.9687359.
Curtis, A. R., 1956: The computation of radiative heating rates in the atmosphere. Proc. Roy. Soc. London, 236A, 156–159.
Curtis, A. R., and R. M. Goody, 1954: Spectral line shape and its effect on atmospheric transmissions. Quart. J. Roy. Meteor. Soc., 80, 58–67, https://doi.org/10.1002/qj.49708034307.
Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.
Danabasoglu, G., J. C. McWilliams, and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264, 1123–1126, https://doi.org/10.1126/science.264.5162.1123.
Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 2347–2365, https://doi.org/10.1175/JCLI3739.1.
Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1.
Danilov, S., 2013: Ocean modeling on unstructured meshes. Ocean Modell., 69, 195–210, https://doi.org/10.1016/j.ocemod.2013.05.005.
Davies, T., M. Cullen, M. Mawson, and A. Malcolm, 1998: A new dynamical formulation for the UK Meteorological Office Unified Model. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, Shinfield Park, Reading, ECMWF, 7–11.
Deardorff, J. W., 1964: A numerical study of two-dimensional parallel-plate convection. J. Atmos. Sci., 21, 419–438, https://doi.org/10.1175/1520-0469(1964)021<0419:ANSOTP>2.0.CO;2.
Deardorff, J. W., 1972a: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93–106, https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.
Deardorff, J. W., 1972b: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91–115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.
Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81–106, https://doi.org/10.1007/BF00224974.
Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889–1903, https://doi.org/10.1029/JC083iC04p01889.
Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527, https://doi.org/10.1007/BF00119502.
Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci., 107, 11 217–11 222, https://doi.org/10.1073/pnas.0910818107.
Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 74–89, https://doi.org/10.1177/1094342011428142.
Dickinson, R. E., and A. Henderson-Sellers, 1988: Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. Roy. Meteor. Soc., 114, 439–462, https://doi.org/10.1002/qj.49711448009.
Dickinson, R. E., A. Henderson-Sellers, P. Kennedy, and M. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp., https://doi.org/10.5065/D6668B58.
Dickinson, R. E., Y. Tian, Q. Liu, and L. Zhou, 2008: Dynamics of leaf area for climate and weather models. J. Geophys. Res., 113, D16115, https://doi.org/10.1029/2007JD008934.
Diedhiou, A., and J.-F. Mahfouf, 1996: Comparative influence of land and sea surfaces on the sahelian drought: A numerical study. Ann. Geophys., 14, 115–130, https://doi.org/10.1007/s00585-996-0115-6.
Dietachmayer, G. S., and K. K. Droegemeier, 1992: Application of continuous dynamic grid adaption techniques to meteorological modeling. Part I: Basic formulation and accuracy. Mon. Wea. Rev., 120, 1675–1706, https://doi.org/10.1175/1520-0493(1992)120<1675:AOCDGA>2.0.CO;2.
Dirmeyer, P. A., 1994: Vegetation stress as a feedback mechanism in midlatitude drought. J. Climate, 7, 1463–1483, https://doi.org/10.1175/1520-0442(1994)007<1463:VSAAFM>2.0.CO;2.
Donaldson, C. P., 1973: Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants. Workshop on Micrometeorology, Boston, MA, Amer. Meteor. Soc, 313–392.
Donaldson, C. P., and H. Rosenbaum, 1969: Calculation of turbulent, shear flows through closure of the Reynolds equations by invariant modeling. NASA Spec. Publ., 216, 231.
Donea, J., A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran, 2004: Arbitrary Lagrangian–Eulerian methods. Fundamentals, Vol. 1, Encyclopedia of Computational Mechanics, E. Stein, R. Borst, and T. J. Hughes, Eds., Wiley & Sons, https://doi.org/10.1002/0470091355.ecm009.
Donner, L., W. Schubert, and R. Somerville, 2011: The Development of Atmospheric General Circulation Models: Complexity, Synthesis and Computation. Cambridge University Press, 272 pp.
Douville, H., F. Chauvin, and H. Broqua, 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14, 2381–2403, https://doi.org/10.1175/1520-0442(2001)014<2381:IOSMOT>2.0.CO;2.
Dubos, T., and N. Kevlahan, 2013: A conservative adaptive wavelet method for the shallow-water equations on staggered grids. Quart. J. Roy. Meteor. Soc., 139, 1997–2020, https://doi.org/10.1002/qj.2097.
Dufresne, J.-L., L. Fairhead, H. Le Treut, M. Berthelot, L. Bopp, P. Ciais, P. Friedlingstein, and P. Monfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29, 1405, https://doi.org/10.1029/2001GL013777.
Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J. Geophys. Res., 99, 7991–8014, https://doi.org/10.1029/93JC03455.
Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1.
Eddington, A. S., 1916: On the radiative equilibrium of the stars. Mon. Not. Roy. Astron. Soc., 77, 16–35, https://doi.org/10.1093/mnras/77.1.16.
Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107.
Edwards, P. N., 2010: A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. MIT Press, 528 pp.
Edwards, P. N., 2011: History of climate modeling. Wiley Interdiscip. Rev.: Climate Change, 2, 128–139, https://doi.org/10.1002/wcc.95.
Eliassen, A., 1960: On the transfer of energy in stationary mountain waves. Geophys. Publ., 22, 1–23.
Eliassen, A., and E. Raustein, 1968: A numerical integration experiment with a model atmosphere based on isentropic surfaces. Meteor. Ann., 5, 45–63.
Eliassen, E., B. Machenhauer, and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Institute for Teoretical Meteorology, University of Copenhagen, 74 pp.
Ellingson, R. G., and Y. Fouquart, 1991: The intercomparison of radiation codes in climate models: An overview. J. Geophys. Res., 96, 8925–8927, https://doi.org/10.1029/90JD01618.
Ellingson, R. G., J. Ellis, and S. Fels, 1991: The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 96, 8929–8953, https://doi.org/10.1029/90JD01450.
Elsaesser, G. S., A. D. Del Genio, J. H. Jiang, and M. van Lier-Walqui, 2017: An improved convective ice parameterization for the NASA GISS global climate model and impacts on cloud ice simulation. J. Climate, 30, 317–336, https://doi.org/10.1175/JCLI-D-16-0346.1.
Elsasser, W. M., and M. F. Culbertson, 1960: Atmospheric Radiation Tables. Meteor. Monogr., No. 23, Amer. Meteor. Soc., 43 pp.
Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. theory and observations. Water Resour. Res., 34, 765–776, https://doi.org/10.1029/97WR03499.
Emanuel, K. A., 1981: A similarity theory for unsaturated downdrafts within clouds. J. Atmos. Sci., 38, 1541–1557, https://doi.org/10.1175/1520-0469(1981)038<1541:ASTFUD>2.0.CO;2.
Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2329, https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Farquhar, G. V., S. V. von Caemmerer, and J. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90, https://doi.org/10.1007/BF00386231.
Feingold, G., S. M. Kreidenweis, B. Stevens, and W. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision–coalescence. J. Geophys. Res., 101 21 391–21 402, https://doi.org/10.1029/96JD01552.
Fels, S. B., and M. D. Schwarzkopf, 1975: The Simplified Exchange Approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 1475–1488, https://doi.org/10.1175/1520-0469(1975)032<1475:TSEAAN>2.0.CO;2.
Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 3167–3180, https://doi.org/10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.
Fichefet, T., and M. A. Morales-Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 609–12 646, https://doi.org/10.1029/97JC00480.
Fiedler, F., and H. A. Panofsky, 1970: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc., 51, 1114–1120, https://doi.org/10.1175/1520-0477(1970)051<1114:ASASG>2.0.CO;2.
Flato, G. M., and W. D. Hibler III, 1992: Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626–651, https://doi.org/10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2.
Flato, G. M., G. Boer, W. Lee, N. McFarlane, D. Ramsden, M. Reader, and A. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16, 451–467, https://doi.org/10.1007/s003820050339.
Fleming, J. R., 2016: Inventing Atmospheric Science: Bjerknes, Rossby, Wexler, and the Foundations of Modern Meteorology. MIT Press, 306 pp.
Flocco, D., and D. L. Feltham, 2007: A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res., 112, C08016, https://doi.org/10.1029/2006JC003836.
Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431–447, https://doi.org/10.1007/s10546-006-9048-6.
Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603–628, https://doi.org/10.1029/96GB02692.
Folland, C. K., D. J. Griggs, and J. T. Houghton, 2004: History of the Hadley Centre for Climate Prediction and Research. Weather, 59, 317–323, https://doi.org/10.1256/wea.121.04.
Fouquart, Y., B. Bonnel, and V. Ramaswamy, 1991: Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968, https://doi.org/10.1029/90JD00290.
Fovell, R., D. Durran, and J. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 1427–1442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.
Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. J. Climate, 9, 489–529, https://doi.org/10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.
Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1.
Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718–722, https://doi.org/10.1126/science.1094947.
Friedlingstein, P., J.-L. Dufresne, P. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus, 55B, 692–700, https://doi.org/10.1034/j.1600-0889.2003.01461.x.
Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate, 19, 3337–3353, https://doi.org/10.1175/JCLI3800.1.
Friend, A. D., and Coauthors, 2007: FLUXNET and modelling the global carbon cycle. Global Change Biol., 13, 610–633, https://doi.org/10.1111/j.1365-2486.2006.01223.x.
Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
Fultz, D., R. R. Long, G. V. Owens, W. Bohan, R. Kaylor, and J. Weil, 1959: Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions, Springer, 1–104.
Fung, I., C. Tucker, and K. Prentice, 1987: Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of co2. J. Geophys. Res., 92, 2999–3015, https://doi.org/10.1029/JD092iD03p02999.