100 Years of Earth System Model Development

David A. Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
,
Cecilia M. Bitz Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Cecilia M. Bitz in
Current site
Google Scholar
PubMed
Close
,
Gokhan Danabasoglu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
A. Scott Denning Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by A. Scott Denning in
Current site
Google Scholar
PubMed
Close
,
Peter R. Gent National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter R. Gent in
Current site
Google Scholar
PubMed
Close
,
Andrew Gettelman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew Gettelman in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
Peter Lynch University College Dublin, Dublin, Ireland

Search for other papers by Peter Lynch in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
Robert Pincus CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Robert Pincus in
Current site
Google Scholar
PubMed
Close
, and
John Thuburn University of Exeter, Exeter, United Kingdom

Search for other papers by John Thuburn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Today’s global Earth system models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Randall, david.randall@colostate.edu

Abstract

Today’s global Earth system models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Randall, david.randall@colostate.edu
Save
  • Abbe, C., 1901: The physical basis of long-range weather forecasts. Mon. Wea. Rev., 29, 551561, https://doi.org/10.1175/1520-0493(1901)29[551c:TPBOLW]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abdi, D. S., L. C. Wilcox, T. C. Warburton, and F. X. Giraldo, 2017: A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model. Int. J. High Perform. Comput. Appl., 33, 81109, https://doi.org/10.1177/1094342017694427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, https://doi.org/10.1016/j.ocemod.2003.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and R. Hallberg, 2006: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modell., 11, 224233, https://doi.org/10.1016/j.ocemod.2004.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambartsumian, V., 1936: The effect of absorption lines on the radiative equillibrium of the outer layers of stars. Publ. Astron. Obs. Univ. Leningrad, 6, 718.

    • Search Google Scholar
    • Export Citation
  • André, J., G. De Moor, P. Lacarrere, and R. Du Vachat, 1976: Turbulence approximation for inhomogeneous flows: Part II. The numerical simulation of a penetrative convection experiment. J. Atmos. Sci., 33, 482491, https://doi.org/10.1175/1520-0469(1976)033<0482:TAFIFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. Grabowski, J. Reisner, and A. Gadian, 2010: Cloud–aerosol interactions for boundary layer stratocumulus in the Lagrangian cloud model. J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270286, https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Climate Appl. Meteor., 23, 541554, https://doi.org/10.1175/1520-0450(1984)023<0541:EOCPBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119143, https://doi.org/10.1016/0021-9991(66)90015-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1969: Parameterization of cumulus convection. Proc. WMO/IUGG Symp. on Numerical Weather Prediction, Tokyo, Japan, Japan Meteorological Agency, Vol. IV, 1–6.

  • Arakawa, A., 1972: Design of the UCLA general circulation model. Vol. 7, Department of Meteorology, University of California, Los Angeles, 116 pp.

  • Arakawa, A., 2000: A personal perspective on the early years of general circulation modeling. General Circulation Model Development, D. A. Randall, Ed., Academic Press, 1–65.

    • Crossref
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics, Vol. 17, Academic Press, 173–265.

    • Crossref
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and S. Moorthi, 1988: Baroclinic instability in vertically discrete systems. J. Atmos. Sci., 45, 16881708, https://doi.org/10.1175/1520-0469(1988)045<1688:BIIVDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. S. Konor, 2009: Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Wea. Rev., 137, 710726, https://doi.org/10.1175/2008MWR2520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, https://doi.org/10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., Y. Mintz, and A. Katayama, 1968: Numerical Simulation of the General Circulation of the Atmosphere. Department of Meteorology, University of California, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and G. J. Boer, 2005: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biol., 11, 3959, https://doi.org/10.1111/j.1365-2486.2004.00890.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J. Climate, 26, 52895314, https://doi.org/10.1175/JCLI-D-12-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashford, O. M., 1985: Prophet–or Professor?: The Life and Work of Lewis Fry Richardson. Taylor & Francis, 320 pp.

  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 21132136, https://doi.org/10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, D. P., and Coauthors, 2000: A dynamically adapting weather and dispersion model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA). Mon. Wea. Rev., 128, 20442076, https://doi.org/10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baer, F., 1972: An alternate scale representation of atmospheric energy spectra. J. Atmos. Sci., 29, 649664, https://doi.org/10.1175/1520-0469(1972)029<0649:AASROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, I., L. Prihodko, A. Denning, M. Goulden, S. Miller, and H. Da Rocha, 2008: Seasonal drought stress in the Amazon: Reconciling models and observations. J. Geophys. Res., 113, G00B01, https://doi.org/10.1029/2007JG000644.

    • Search Google Scholar
    • Export Citation
  • Balaji, V., R. Benson, B. Wyman, and I. Held, 2016: Coarse-grained component concurrency in earth system modeling: Parallelizing atmospheric radiative transfer in the GFDL AM3 model using the flexible modeling system coupling framework. Geosci. Model Dev., 9, 3605, https://doi.org/10.5194/gmd-9-3605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9, 479492, https://doi.org/10.1046/j.1365-2486.2003.00629.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J. T., 1988: An analysis of stomatal conductance. Ph.D. thesis, Stanford University, 89 pp.

  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF Ocean Reanalysis System ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. 1. Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303, https://doi.org/10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., and Coauthors, 2003: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 26762699, https://doi.org/10.1175/1520-0442(2003)016<2676:ADASRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J.-J. Morcrette, R. Pincus, P. Raeisaenen, K. von Salzen, and P. A. Vaillancourt, 2008: The Monte Carlo Independent Column Approximation: An assessment using several global atmospheric models. Quart. J. Roy. Meteor. Soc., 134, 14631478, https://doi.org/10.1002/qj.303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, J., F. Semazzi, R. Higgins, and S. R. Barros, 1990: Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev., 118, 16151627, https://doi.org/10.1175/1520-0493(1990)118<1615:IOTSWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, W., M. Baumann, L. Scheck, A. Gassmann, V. Heuveline, and S. C. Jones, 2014: Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity. Theor. Comput. Fluid Dyn., 28, 107128, https://doi.org/10.1007/s00162-013-0303-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckwith, I. E., and D. M. Bushnell, 1968: Detailed description and results of a method for computing mean and fluctuating quantities in turbulent boundary layers. NASA Tech Note NCAR/TN-D-4815, 119 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680026599.pdf.

  • Beljaars, A. C., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383, https://doi.org/10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Kanamitsu, P. Kållberg, and S. Uppala, 1982: FGGE research activities at ECMWF. Bull. Amer. Meteor. Soc., 63, 277303, https://doi.org/10.1175/1520-0477-63.3.277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, https://doi.org/10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, https://doi.org/10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677, https://doi.org/10.1029/1999JC900100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412464, https://doi.org/10.1029/1999JC000113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, https://doi.org/10.1175/JCLI3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1955: Investigations of the General Circulation of the Atmosphere. Department of Meteorology, University of California, Los Angeles, 350 pp.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, V., 1904: Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik und der physik. Meteor. Z, 21, 17.

  • Bleck, R., 1970: A fast, approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 51655171, https://doi.org/10.1029/JC075i027p05165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1973: Numerical forecasting experiments based on the conservation of potential vorticity on isentropic surfaces. J. Appl. Meteor., 12, 737752, https://doi.org/10.1175/1520-0450(1973)012<0737:NFEBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic–cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and S. G. Benjamin, 1993: Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description. Mon. Wea. Rev., 121, 17701785, https://doi.org/10.1175/1520-0493(1993)121<1770:RWPWAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and D. Boudra, 1986: Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates. J. Geophys. Res., 91, 76117621, https://doi.org/10.1029/JC091iC06p07611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., S. Benjamin, J. Lee, and A. E. MacDonald, 2010: On the use of an adaptive, hybrid-isentropic vertical coordinate in global atmospheric modeling. Mon. Wea. Rev., 138, 21882210, https://doi.org/10.1175/2009MWR3103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and Coauthors, 2015: A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: Model description. Mon. Wea. Rev., 143, 23862403, https://doi.org/10.1175/MWR-D-14-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195211, https://doi.org/10.1002/jame.20018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the community atmosphere model. J. Climate, 26, 96559676, https://doi.org/10.1175/JCLI-D-13-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235, https://doi.org/10.5194/gmd-11-235-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolin, B., 1955: Numerical forecasting with the barotropic model 1. Tellus, 7, 2749, https://doi.org/10.3402/tellusa.v7i1.8770.

  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 155 pp., https://doi.org/10.5065/D6DF6P5X.

    • Crossref
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. J. Climate, 11, 13071326, https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2015: Ecological Climatology: Concepts and Applications. Cambridge University Press, 563 pp.

  • Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biol., 9, 15431566, https://doi.org/10.1046/j.1365-2486.2003.00681.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect. Tellus, 47B, 281300, https://doi.org/10.3402/tellusb.v47i3.16048.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Bourke, W., 1974: A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687701, https://doi.org/10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11, 11151130, https://doi.org/10.1175/1520-0442(1998)011<1115:TNCSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, B. A., R. W. Jacob, J. F. Hermance, and J. F. Mustard, 2007: A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ., 106, 137145, https://doi.org/10.1016/j.rse.2006.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradshaw, P., D. Ferriss, and N. Atwell, 1967: Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech., 28, 593616, https://doi.org/10.1017/S0022112067002319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenowitz, N. D., and C. S. Bretherton, 2018: Prognostic validation of a neural network unified physics parameterization. Geophys. Res. Lett., 45, 62896298, https://doi.org/10.1029/2018GL078510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and B. Light, 2007: A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Tech. Note 472+STR, 100 pp.

  • Brubaker, K. L., and D. Entekhabi, 1996: Analysis of feedback mechanisms in land-atmosphere interaction. Water Resour. Res., 32, 13431357, https://doi.org/10.1029/96WR00005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1966: A scheme for numerical integration of the equations of motion on an irregular grid free of nonlinear instability. Mon. Wea. Rev., 94, 3940, https://doi.org/10.1175/1520-0493(1966)094<0039:ASFNIO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969a: Climate and the ocean circulation III. The Ocean Model. Mon. Wea. Rev., 97, 806827, https://doi.org/10.1175/1520-0493(1969)097<0806:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969b: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347376, https://doi.org/10.1016/0021-9991(69)90004-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1991: Michael Cox (1941–1989): His pioneering contributions to ocean circulation modeling. J. Phys. Oceanogr., 21, 12591270, https://doi.org/10.1175/1520-0485(1991)021<1259:MCHPCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and M. D. Cox, 1967: A numerical investigation of the oceanic general circulation. Tellus, 19, 5480, https://doi.org/10.3402/tellusa.v19i1.9761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/JC084iC05p02503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiatin variations on the climate of the earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., and L. Zubenok, 1961: The determination of evaporation from the land surface. Izv. Akad. Nauk SSSR Ser. Geogr., 6, 317.

    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., B. Haurwitz, J. S. Malkus, and H. M. Stommel, 1949: Vertical Distribution of Temperature and Humidity over the Caribbean Sea. Vol. 11, Papers in Physical Oceanography and Meteorology, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 85 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burridge, D. M., and J. Haseler, 1977: A model for medium-range weather forecasts: Adiabatic formation. ECMWF Tech. Rep. 4, 46 pp.

  • Bushby, F., and M. S. Timpson, 1967: A 10-level atmospheric model and frontal rain. Quart. J. Roy. Meteor. Soc., 93, 117, https://doi.org/10.1002/qj.49709339502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairns, B., A. A. Lacis, and B. E. Carlson, 2000: Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700714, https://doi.org/10.1175/1520-0469(2000)057<0700:AWICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223240, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., C. Hill, H. Jones, and J. Marshall, 2011: Super-parameterization in ocean modeling: Application to deep convection. Ocean Modell., 36, 90101, https://doi.org/10.1016/j.ocemod.2010.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513516, https://doi.org/10.1126/science.245.4917.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1962: Integration of the primitive and balance equations. Proc. Int. Symp. on Numerical Weather Prediction in Tokyo. Tokyo, Japan, Meteorological Society of Japan, 131–152.

  • Charney, J. G., 1966: The feasibility of a global observation and analysis experiment. Bull. Amer. Meteor. Soc., 47, 200230, https://doi.org/10.1175/1520-0477-47.3.200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202, https://doi.org/10.1002/qj.49710142802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flow. J. Meteor., 10, 7199, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., R. Fjörtoft, and J. V. Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237254, https://doi.org/10.3402/tellusa.v2i4.8607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., M. Halem, and R. Jastrow, 1969: Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci., 26, 11601163, https://doi.org/10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and Coauthors, 1979: Carbon dioxide and climate: A scientific assessment. National Academies Press, 34 pp., https://doi.org/10.17226/12181.

    • Crossref
    • Export Citation
  • Chen, J.-M., 1991: Turbulence-scale condensation parameterization. J. Atmos. Sci., 48, 15101512, https://doi.org/10.1175/1520-0469(1991)048<1510:TSCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, M.-D., and A. Arakawa, 1997: Inclusion of rainwater budget and convective downdrafts in the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci., 54, 13591378, https://doi.org/10.1175/1520-0469(1997)054<1359:IORBAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, F., F. Chéruy, N. Scott, and A. Chédin, 1998: A neural network approach for a fast and accurate computation of a longwave radiative budget. J. Appl. Meteor., 37, 13851397, https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, V., S. Ferrachat, O. Fuhrer, X. Lapillonne, C. E. Osuna, R. Pincus, J. Rood, and W. Sawyer, 2018: The CLAW DSL: Abstractions for performance portable weather and climate models. Proc. Platform for Advanced Scientific Computing Conf., New York, NY, ACM, 2:1–2:10, https://doi.org/10.1145/3218176.3218226.

    • Crossref
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, https://doi.org/10.1029/92JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842, https://doi.org/10.1256/smsqj.56613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, https://doi.org/10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci., 58, 32243242, https://doi.org/10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model Version 3, CCSM3. J. Climate, 19, 21222143, https://doi.org/10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coon, M. D., G. A. Maykut, R. S. Pritchard, D. A. Rothrock, and A. S. Thorndike, 1974: Modeling the pack ice as an elastic-plastic material. AIDJEX Bull., 24, 1105.

    • Search Google Scholar
    • Export Citation
  • Corby, G., A. Gilchrist, and P. Rowntree, 1977: United Kingdom Meteorological Office five-level general circulation model. Methods in Computational Physics: Advances in Research and Applications, Vol. 17, Elsevier, 67–110.

    • Crossref
    • Export Citation
  • Côté, J., and A. Staniforth, 1988: A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon. Wea. Rev., 116, 20032012, https://doi.org/10.1175/1520-0493(1988)116<2003:ATTLSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courant, R., K. Friedrichs, and H. Lewy, 1928: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann., 100, 3274, https://doi.org/10.1007/BF01448839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courant, R., K. Friedrichs, and H. Lewy, 1967: On the partial difference equations of mathematical physics. IBM J. Res. Dev., 11, 215234, https://doi.org/10.1147/rd.112.0215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and M. Naughton, 1994: A pole problem in the reduced Gaussian grid. Quart. J. Roy. Meteor. Soc., 120, 13891407, https://doi.org/10.1002/qj.49712051913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the coupled model intercomparison project. Global Planet. Change, 37, 103133, https://doi.org/10.1016/S0921-8181(02)00193-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, GFDL, Princeton University, 163 pp.

  • Cox, M. D., 1987: Isopycnal diffusion in a z-coordinate ocean model. Ocean Modell., 74, 15.

  • Cox, P. M., 2001: Description of the triffid dynamic global vegetation model. Hadley Centre Tech. Note 24, 16 pp.

  • Cox, P. M., C. Huntingford, and R. J. Harding, 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 212, 7994, https://doi.org/10.1016/S0022-1694(98)00203-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184, https://doi.org/10.1038/35041539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156, https://doi.org/10.1007/s00704-004-0049-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341, https://doi.org/10.1038/nature11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The first ISCCP regional experiment. Bull. Amer. Meteor. Soc., 68, 114118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 3142, https://doi.org/10.1177/1094342011428141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357373, https://doi.org/10.1046/j.1365-2486.2001.00383.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., K. Hasselmann, H. Höck, E. Maier-Reimer, U. Mikolajewicz, B. D. Santer, and R. Sausen, 1992: Time-dependent greenhouse warming computations with a coupled ocean–atmosphere model. Climate Dyn., 8, 5569, https://doi.org/10.1007/BF00209163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullen, M., 1993: The unified forecast/climate model. Meteor. Mag., 122, 8194.

  • Cullen, M., T. Davies, M. Mawson, J. James, S. Coulter, and A. Malcolm, 1997: An overview of numerical methods for the next generation U.K. NWP and climate model. Atmos.–Ocean, 35 (Suppl. 1), 425–444, https://doi.org/10.1080/07055900.1997.9687359.

    • Crossref
    • Export Citation
  • Curtis, A. R., 1956: The computation of radiative heating rates in the atmosphere. Proc. Roy. Soc. London, 236A, 156159.

  • Curtis, A. R., and R. M. Goody, 1954: Spectral line shape and its effect on atmospheric transmissions. Quart. J. Roy. Meteor. Soc., 80, 5867, https://doi.org/10.1002/qj.49708034307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 22812299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., J. C. McWilliams, and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264, 11231126, https://doi.org/10.1126/science.264.5162.1123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 23472365, https://doi.org/10.1175/JCLI3739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov, S., 2013: Ocean modeling on unstructured meshes. Ocean Modell., 69, 195210, https://doi.org/10.1016/j.ocemod.2013.05.005.

  • Davies, T., M. Cullen, M. Mawson, and A. Malcolm, 1998: A new dynamical formulation for the UK Meteorological Office Unified Model. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, Shinfield Park, Reading, ECMWF, 711.

  • Deardorff, J. W., 1964: A numerical study of two-dimensional parallel-plate convection. J. Atmos. Sci., 21, 419438, https://doi.org/10.1175/1520-0469(1964)021<0419:ANSOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972a: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93106, https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972b: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81106, https://doi.org/10.1007/BF00224974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, https://doi.org/10.1029/JC083iC04p01889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci., 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, https://doi.org/10.1177/1094342011428142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and A. Henderson-Sellers, 1988: Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. Roy. Meteor. Soc., 114, 439462, https://doi.org/10.1002/qj.49711448009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, P. Kennedy, and M. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp., https://doi.org/10.5065/D6668B58.

    • Crossref
    • Export Citation
  • Dickinson, R. E., Y. Tian, Q. Liu, and L. Zhou, 2008: Dynamics of leaf area for climate and weather models. J. Geophys. Res., 113, D16115, https://doi.org/10.1029/2007JD008934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., and J.-F. Mahfouf, 1996: Comparative influence of land and sea surfaces on the sahelian drought: A numerical study. Ann. Geophys., 14, 115130, https://doi.org/10.1007/s00585-996-0115-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietachmayer, G. S., and K. K. Droegemeier, 1992: Application of continuous dynamic grid adaption techniques to meteorological modeling. Part I: Basic formulation and accuracy. Mon. Wea. Rev., 120, 16751706, https://doi.org/10.1175/1520-0493(1992)120<1675:AOCDGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1994: Vegetation stress as a feedback mechanism in midlatitude drought. J. Climate, 7, 14631483, https://doi.org/10.1175/1520-0442(1994)007<1463:VSAAFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, C. P., 1973: Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants. Workshop on Micrometeorology, Boston, MA, Amer. Meteor. Soc, 313392.

  • Donaldson, C. P., and H. Rosenbaum, 1969: Calculation of turbulent, shear flows through closure of the Reynolds equations by invariant modeling. NASA Spec. Publ., 216, 231.

    • Search Google Scholar
    • Export Citation
  • Donea, J., A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran, 2004: Arbitrary Lagrangian–Eulerian methods. Fundamentals, Vol. 1, Encyclopedia of Computational Mechanics, E. Stein, R. Borst, and T. J. Hughes, Eds., Wiley & Sons, https://doi.org/10.1002/0470091355.ecm009.

    • Crossref
    • Export Citation
  • Donner, L., W. Schubert, and R. Somerville, 2011: The Development of Atmospheric General Circulation Models: Complexity, Synthesis and Computation. Cambridge University Press, 272 pp.

  • Douville, H., F. Chauvin, and H. Broqua, 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14, 23812403, https://doi.org/10.1175/1520-0442(2001)014<2381:IOSMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubos, T., and N. Kevlahan, 2013: A conservative adaptive wavelet method for the shallow-water equations on staggered grids. Quart. J. Roy. Meteor. Soc., 139, 19972020, https://doi.org/10.1002/qj.2097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., L. Fairhead, H. Le Treut, M. Berthelot, L. Bopp, P. Ciais, P. Friedlingstein, and P. Monfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29, 1405, https://doi.org/10.1029/2001GL013777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J. Geophys. Res., 99, 79918014, https://doi.org/10.1029/93JC03455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eddington, A. S., 1916: On the radiative equilibrium of the stars. Mon. Not. Roy. Astron. Soc., 77, 1635, https://doi.org/10.1093/mnras/77.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, P. N., 2010: A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. MIT Press, 528 pp.

  • Edwards, P. N., 2011: History of climate modeling. Wiley Interdiscip. Rev.: Climate Change, 2, 128139, https://doi.org/10.1002/wcc.95.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1960: On the transfer of energy in stationary mountain waves. Geophys. Publ., 22, 123.

  • Eliassen, A., and E. Raustein, 1968: A numerical integration experiment with a model atmosphere based on isentropic surfaces. Meteor. Ann., 5, 4563.

    • Search Google Scholar
    • Export Citation
  • Eliassen, E., B. Machenhauer, and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Institute for Teoretical Meteorology, University of Copenhagen, 74 pp.

  • Ellingson, R. G., and Y. Fouquart, 1991: The intercomparison of radiation codes in climate models: An overview. J. Geophys. Res., 96, 89258927, https://doi.org/10.1029/90JD01618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., J. Ellis, and S. Fels, 1991: The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 96, 89298953, https://doi.org/10.1029/90JD01450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., A. D. Del Genio, J. H. Jiang, and M. van Lier-Walqui, 2017: An improved convective ice parameterization for the NASA GISS global climate model and impacts on cloud ice simulation. J. Climate, 30, 317336, https://doi.org/10.1175/JCLI-D-16-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsasser, W. M., and M. F. Culbertson, 1960: Atmospheric Radiation Tables. Meteor. Monogr., No. 23, Amer. Meteor. Soc., 43 pp.

    • Crossref
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1981: A similarity theory for unsaturated downdrafts within clouds. J. Atmos. Sci., 38, 15411557, https://doi.org/10.1175/1520-0469(1981)038<1541:ASTFUD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132329, https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquhar, G. V., S. V. von Caemmerer, and J. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, https://doi.org/10.1007/BF00386231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision–coalescence. J. Geophys. Res., 101 21 39121 402, https://doi.org/10.1029/96JD01552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and M. D. Schwarzkopf, 1975: The Simplified Exchange Approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 14751488, https://doi.org/10.1175/1520-0469(1975)032<1475:TSEAAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180, https://doi.org/10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales-Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, https://doi.org/10.1029/97JC00480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, F., and H. A. Panofsky, 1970: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc., 51, 11141120, https://doi.org/10.1175/1520-0477(1970)051<1114:ASASG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. Hibler III, 1992: Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626651, https://doi.org/10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., G. Boer, W. Lee, N. McFarlane, D. Ramsden, M. Reader, and A. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16, 451467, https://doi.org/10.1007/s003820050339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, J. R., 2016: Inventing Atmospheric Science: Bjerknes, Rossby, Wexler, and the Foundations of Modern Meteorology. MIT Press, 306 pp.

    • Crossref
    • Export Citation
  • Flocco, D., and D. L. Feltham, 2007: A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res., 112, C08016, https://doi.org/10.1029/2006JC003836.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, https://doi.org/10.1029/96GB02692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. J. Griggs, and J. T. Houghton, 2004: History of the Hadley Centre for Climate Prediction and Research. Weather, 59, 317323, https://doi.org/10.1256/wea.121.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., B. Bonnel, and V. Ramaswamy, 1991: Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 89558968, https://doi.org/10.1029/90JD00290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. J. Climate, 9, 489529, https://doi.org/10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722, https://doi.org/10.1126/science.1094947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., J.-L. Dufresne, P. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus, 55B, 692700, https://doi.org/10.1034/j.1600-0889.2003.01461.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate, 19, 33373353, https://doi.org/10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friend, A. D., and Coauthors, 2007: FLUXNET and modelling the global carbon cycle. Global Change Biol., 13, 610633, https://doi.org/10.1111/j.1365-2486.2006.01223.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fultz, D., R. R. Long, G. V. Owens, W. Bohan, R. Kaylor, and J. Weil, 1959: Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions, Springer, 1–104.

    • Crossref
    • Export Citation
  • Fung, I., C. Tucker, and K. Prentice, 1987: Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of co2. J. Geophys. Res., 92, 29993015, https://doi.org/10.1029/JD092iD03p02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, https://doi.org/10.1029/JC095iC09p16179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geleyn, J. F., and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr. Phys. Atmos., 52, 116.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2013: Coupled models and climate projections. International Geophysics, Vol. 103, Elsevier, 609–623, https://doi.org/10.1016/B978-0-12-391851-2.00023-4.

    • Crossref
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11, 12871306, https://doi.org/10.1175/1520-0442(1998)011<1287:TNCSMG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis, 2018: Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett., 45, 57425751, https://doi.org/10.1029/2018GL078202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch, 2004: Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol., 286, 249270, https://doi.org/10.1016/j.jhydrol.2003.09.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GEWEX Cloud System Science Team, 1993: The GEWEX Cloud System Study (GCSS). Bull. Amer. Meteor. Soc., 74, 387400, https://doi.org/10.1175/1520-0477(1993)074<0387:TGCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. C. Easter, 1992: Computationally efficient approximations to stratiform cloud microphysics parameterization. Mon. Wea. Rev., 120, 15721582, https://doi.org/10.1175/1520-0493(1992)120<1572:CEATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, R. C. Easter, and H. Abdul-Razzak, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 21 77721 794, https://doi.org/10.1029/97JD01810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2001: A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106, 52795293, https://doi.org/10.1029/2000JD900503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibelin, A.-L., J.-C. Calvet, J.-L. Roujean, L. Jarlan, and S. O. Los, 2006: Ability of the land surface model ISBA-A-gs to simulate leaf area index at the global scale: Comparison with satellites products. J. Geophys. Res., 111, D18102, https://doi.org/10.1029/2005JD006691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-Analysis Project Rep. Series 1, 72 pp.

  • Gienapp, P., L. Hemerik, and M. E. Visser, 2005: A new statistical tool to predict phenology under climate change scenarios. Global Change Biol., 11, 600606, https://doi.org/10.1111/j.1365-2486.2005.00925.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilchrist, A., G. A. Corby, and R. L. Newson, 1973: A numerical experiment using a general circulation model of the atmosphere. Quart. J. Roy. Meteor. Soc., 99, 234, https://doi.org/10.1002/qj.49709941903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2018: ICON-A, the atmosphere component of the ICON earth system model. Part I: Model description. J. Adv. Model. Earth Syst., 10, 16131637, https://doi.org/10.1029/2017MS001242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, https://doi.org/10.1175/MWR-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glushko, G., 1966: Turbulent boundary layer on a flat plate in an incompressible fluid. NASA Tech. Doc. 19660015623, 24 pp.

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’S CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, https://doi.org/10.1175/JCLI3630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., M. Salzmann, L. J. Donner, L. W. Horowitz, Y. Ming, and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, 31453160, https://doi.org/10.1175/2010JCLI3945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, D., C. Little, O. Sergienko, A. Gnanadesikan, R. Hallberg, and M. Oppenheimer, 2012: Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. sensitivity to external forcings. J. Geophys. Res., 117, F02038, https://doi.org/10.1029/2011JF002247.

    • Search Google Scholar
    • Export Citation
  • Goody, R., R. West, L. Chen, and D. Crisp, 1989: The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 42, 539550, https://doi.org/10.1016/0022-4073(89)90044-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, https://doi.org/10.1007/s003820050010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952, https://doi.org/10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178, https://doi.org/10.1016/S0167-2789(99)00104-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, https://doi.org/10.1175/1520-0485(1990)020<1634:OPVMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1967: Division of radiative streams into internal transfer and cooling to space. Quart. J. Roy. Meteor. Soc., 93, 371372, https://doi.org/10.1002/qj.49709339710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., C. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250, https://doi.org/10.1175/2009JCLI2949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 528 pp.

  • Griffies, S. M., and R. J. Greatbatch, 2012: Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modell., 51, 3772, https://doi.org/10.1016/j.ocemod.2012.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 805830, https://doi.org/10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2000: Developments in ocean climate modelling. Ocean Modell., 2 (3–4), 123192, https://doi.org/10.1016/S1463-5003(00)00014-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 3231, https://doi.org/10.5194/gmd-9-3231-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grobecker, A., S. C. Coroniti, and R. Cannon Jr., 1974: Report of findings: The effects of stratospheric pollution by aircraft. Department of Transportation Systems Development and TechnologyTech. Rep., 836 pp.

  • Grumbine, R. W., 2013: Keeping Ice’S simplicity—A modeling start. NOAA/NWS/NCEP Tech. Rep., MMAB Contribution 314, 30 pp., https://polar.ncep.noaa.gov/mmab/papers/tn314/MMAB_314.pdf.

  • Habata, S., M. Yokokawa, and S. Kitawaki, 2003: The earth simulator system. NEC Res. Dev., 44, 2126.

  • Hall, F., and P. Sellers, 1995: First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) in 1995. J. Geophys. Res., 100, 25 38325 395, https://doi.org/10.1029/95JD03300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2003: The ability of large-scale ocean models to accept parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model. Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 187–203.

  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

  • Hansen, J. E., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, 1981: Climate impact of increasing atmospheric carbon dioxide. Science, 213, 957966, https://doi.org/10.1126/science.213.4511.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609662, https://doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

    • Crossref
    • Export Citation
  • Harper, A., I. T. Baker, A. S. Denning, D. A. Randall, D. Dazlich, and M. Branson, 2014: Impact of evapotranspiration on dry season climate in the Amazon forest. J. Climate, 27, 574591, https://doi.org/10.1175/JCLI-D-13-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harper, K. C., 2012: Weather by the Numbers: The Genesis of Modern Meteorology. MIT Press, 320 pp.

  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., P. H. Lauritzen, and R. Mittal, 2011: A flux-form version of the Conservative Semi-Lagrangian Multi-Tracer Transport Scheme (CSLAM) on the cubed sphere grid. J. Comput. Phys., 230, 12151237, https://doi.org/10.1016/j.jcp.2010.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 10091016, https://doi.org/10.1029/JD092iD01p01009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, D. A. Randall, T. G. Corsetti, and D. A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46, 19221942, https://doi.org/10.1175/1520-0469(1989)046<1922:ERBACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, https://doi.org/10.1175/JAS3963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugen, D., J. Kaimal, and E. Bradley, 1971: An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 97, 168180, https://doi.org/10.1002/qj.49709741204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haut, T., and B. Wingate, 2014: An asymptotic parallel-in-time method for highly oscillatory pdes. SIAM J. Sci. Comput., 36, A693A713, https://doi.org/10.1137/130914577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J., D. Roberts, A. Slingo, J. Edwards, and K. Shine, 1997: General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Climate, 10, 15621577, https://doi.org/10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, M. W., M. R. Petersen, B. A. Wingate, E. Hunke, and M. Maltrud, 2008: Lateral mixing in the eddying regime and a new broad-ranging formulation. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 339–352.

    • Crossref
    • Export Citation
  • Heikes, R., and D. A. Randall, 1995: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 18621880, https://doi.org/10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikes, R., D. A. Randall, and C. S. Konor, 2013: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver. Mon. Wea. Rev., 141, 44504469, https://doi.org/10.1175/MWR-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1980: Modeling a variable thickness ice cover. Mon. Wea. Rev., 108, 19431973, https://doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkelmann, K., 1951: Der mechanismus des meteorologischen lärmes. Tellus, 3, 285296, https://doi.org/10.3402/tellusa.v3i4.8655.

  • Hoffman, F. M., and Coauthors, 2014: Causes and implications of persistent atmospheric carbon dioxide biases in earth system models. J. Geophys. Res. Biogeosci., 119, 141162, https://doi.org/10.1002/2013JG002381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, F. M., and Coauthors, 2016: 2016 International Land Model Benchmarking (ILAMB) workshop report. U.S. DOE Office of ScienceTech. Rep. DOE/SC-0186, https://doi.org/10.2172/1330803, 172 pp.

    • Crossref
    • Export Citation
  • Hogan, R. J., S. A. Schäfer, C. Klinger, J. C. Chiu, and B. Mayer, 2016: Representing 3-D cloud radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res. Atmos., 121, 85838599, https://doi.org/10.1002/2016JD024875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., T. Quaife, and R. Braghiere, 2018: Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-vegetation 1.1. Geosci. Model Dev., 11, 339, https://doi.org/10.5194/gmd-11-339-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the Sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414, https://doi.org/10.1175/JCLI3751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice. J. Climate, 25, 14131430, https://doi.org/10.1175/JCLI-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363392, https://doi.org/10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, J. L., Jr., and S. Manabe, 1971: Simulation of climate by a global general circulation model: I. Hydrologic cycle and heat balance. Mon. Wea. Rev., 99, 335370, https://doi.org/10.1175/1520-0493(1971)099<0335:SOCBAG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A., and B. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A., E. De Bruijn, and H. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575, https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, J.-P. Chen, and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 24832503, https://doi.org/10.1175/2010JAS3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortal, M., and A. Simmons, 1991: Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev., 119, 10571074, https://doi.org/10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horvat, C., and E. Tziperman, 2015: A prognostic model of the sea-ice floe size and thickness distribution. Cryosphere, 9, 21192134, https://doi.org/10.5194/tc-9-2119-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655, https://doi.org/10.1002/qj.49710142918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsie, E.-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 25812594, https://doi.org/10.1175/1520-0469(1984)041<2581:NSOFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, Y.-J. G., and A. Arakawa, 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon. Wea. Rev., 118, 19331959, https://doi.org/10.1175/1520-0493(1990)118<1933:NMOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2010: CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual, version 4.1. LA-CC-06-012, 116 pp.

  • Huntzinger, D. N., and Coauthors, 2012: North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecol. Modell., 232, 144157, https://doi.org/10.1016/j.ecolmodel.2012.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntzinger, D. N., and Coauthors, 2017: Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep., 7, 4765, https://doi.org/10.1038/s41598-017-03818-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyman, J. M., and M. Shashkov, 1997: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl., 33, 81104, https://doi.org/10.1016/S0898-1221(97)00009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1990: Climate Change: The IPCC Scientific Assessment. Cambridge University Press, 365 pp.

  • Izumi, Y., and J. S. Caughey, 1976: Minnesota 1973 Atmospheric Boundary Layer Experiment data report. Air Force Cambridge Research Labs Hanscom AFB Tech. Rep. AFCRL-TR-76-0038, 29 pp.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarraud, M., and A. J. Simmons, 1983: The spectral technique. Seminar on Numerical Methods for Weather Prediction, Reading, United Kingdom, ECMWF, 15–19, https://www.ecmwf.int/sites/default/files/elibrary/1983/10253-spectral-technique.pdf.

  • Jarvis, P., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P., and K. McNaughton, 1986: Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, Vol. 15, A. MacFadyen and E. D. Ford, Eds., Elsevier, 1–49, https://doi.org/10.1016/S0065-2504(08)60119-1.

    • Crossref
    • Export Citation
  • Johnson, R. H., 1976: The role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. J. Atmos. Sci., 33, 18901910, https://doi.org/10.1175/1520-0469(1976)033<1890:TROCSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Elsevier, 43–316.

    • Crossref
    • Export Citation
  • Johnson, D. R., 1997: “General coldness of climate models” and the second law: Implications for modeling the earth system. J. Climate, 10, 28262846, https://doi.org/10.1175/1520-0442(1997)010<2826:GCOCMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., and L. W. Uccellini, 1983: A comparison of methods for computing the sigma-coordinate pressure gradient force for flow over sloped terrain in a hybrid theta-sigma model. Mon. Wea. Rev., 111, 870886, https://doi.org/10.1175/1520-0493(1983)111<0870:ACOMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517522, https://doi.org/10.1126/science.173.3996.517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolly, W. M., R. Nemani, and S. W. Running, 2005: A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biol., 11, 619632, https://doi.org/10.1111/j.1365-2486.2005.00930.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., 2016: Simulation of orographic effects with a quasi-3-D multiscale modeling framework: Basic algorithm and preliminary results. J. Adv. Model. Earth Syst., 8, 16571673, https://doi.org/10.1002/2016MS000783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2014: Modeling the moist-convective atmosphere with a Quasi-3-D Multiscale Modeling Framework (Q3D MMF). J. Adv. Model. Earth Syst., 6, 185205, https://doi.org/10.1002/2013MS000295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037, https://doi.org/10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102, 509522, https://doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and W. M. Washington, 1967: NCAR global general circulation model of the atmosphere. Mon. Wea. Rev., 95, 389402, https://doi.org/10.1175/1520-0493(1967)095<0389:NGGCMO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and W. M. Washington, 1969: Thermal and dynamical effects of orography on the general circulation of the atmosphere. Proc. WMO/IUGG Symp. on Numerical Weather Prediction, Tokyo, Japan, WMO, 47–56.

  • Kasahara, A., and W. M. Washington, 1971: General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations. J. Atmos. Sci., 28, 657701, https://doi.org/10.1175/1520-0469(1971)028<0657:GCEWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katayama, A., 1967: On the radiation budget of the troposphere over the Northern Hemisphere (II). J. Meteor. Soc. Japan Ser. II, 45, 125.

    • Search Google Scholar
    • Export Citation
  • Katayama, A., 1972: A simplified scheme for computing radiation transfer in the troposphere. Numerical Simulation of Weather and Climate Tech. Rep. 6, Department of Meteorology, Univeristy of California, Los Angeles, 77 pp.

  • Kathuroju, N., M. A. White, J. Symanzik, M. D. Schwartz, J. A. Powell, and R. R. Nemani, 2007: On the use of the Advanced Very High Resolution Radiometer for development of prognostic land surface phenology models. Ecol. Modell., 201, 144156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, M., M. A. Silva-Dias, D. C. Nepstad, and M. O. Silva-Andreae, 2004: The Large-Scale Biosphere-Atmosphere Experiment in Amazonia: Analyzing regional land use change effects. Ecosystems and Land Use Change, Geophys. Monogr., Vol. 153, Amer. Geophys. Union, 321–334, https://doi.org/10.1029/153GM24.

    • Crossref
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38 (1–4), 109145, https://doi.org/10.1016/0169-8095(94)00090-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J., and B. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311314, https://doi.org/10.1126/science.260.5106.311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J., J. Hack, G. Bonan, B. Boville, D. Williamson, and P. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149, https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. J. Webb, D. Stainforth, and S. M. Paterson, 1991: The development of a free-surface Bryan–Cox–Semtner ocean model. J. Phys. Oceanogr., 21, 13331348, https://doi.org/10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and A. Pirani, 2009: The state of the art of seasonal prediction: Outcomes and recommendations from the first World Climate Research Program workshop on seasonal prediction. Bull. Amer. Meteor. Soc., 90, 455458, https://doi.org/10.1175/2008BAMS2707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15, 747762, https://doi.org/10.1175/1520-0450(1976)015<0747:IBCCEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konor, C. S., and A. Arakawa, 1997: Design of an atmospheric model based on a generalized vertical coordinate. Mon. Wea. Rev., 125, 16491673, https://doi.org/10.1175/1520-0493(1997)125<1649:DOAAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korn, P., 2017: Formulation of an unstructured grid model for global ocean dynamics. J. Comput. Phys., 339, 525552, https://doi.org/10.1016/j.jcp.2017.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, https://doi.org/10.1029/91JD01696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreidenweis, S., M. Petters, and U. Lohmann, 2019: 100 years of progress in cloud physics, aerosols, and aerosol chemistry. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.1, in press.

    • Crossref
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, https://doi.org/10.1029/2003GB002199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45, 22212250, https://doi.org/10.1175/1520-0469(1988)045<2221:NSOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1965: Numerical integration of the primitive equations on a spherical grid. Mon. Wea. Rev., 93, 399415, https://doi.org/10.1175/1520-0493(1965)093<0399:NIOTPE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1968: Note on finite difference expressions for the hydrostatic relation and pressure gradient force. Mon. Wea. Rev., 96, 654656, https://doi.org/10.1175/1520-0493(1968)096<0654:NOFDEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwizak, M., and A. J. Robert, 1971: A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon. Wea. Rev., 99, 3236, https://doi.org/10.1175/1520-0493(1971)099<0032:ASSFGP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and V. Oinas, 1991: A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 90279063, https://doi.org/10.1029/90JD01945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CCERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langlois, W., and H. Kwok, 1969: Description of the Mintz-Arakawa numerical general circulation model. Department of Meteorology, University of California, Los Angeles, Tech. Rep., 95 pp.

  • Lappen, C.-L., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58, 20212036, https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability. J. Atmos. Sci., 58, 11171128, https://doi.org/10.1175/1520-0469(2001)058<1117:SBITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1985: Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon. Wea. Rev., 113, 19701996, https://doi.org/10.1175/1520-0493(1985)113<1970:MTSDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., and R. D. Nair, 2008: Monotone and conservative cascade remapping between spherical grids (CaRS): Regular latitude–longitude and cubed-sphere grids. Mon. Wea. Rev., 136, 14161432, https://doi.org/10.1175/2007MWR2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laval, K., and R. Sadourny, 1979: Expériences de simulation de la circulation générale de l’atmosphère avec le modèle du LMD. Evolution of Planetary Atmospheres and Climatology of the Earth, Centre National d’Études Spatiales, Département des Affaires Universitaires, 493–506.

  • Laval, K., R. Sadourny, and Y. Serafini, 1981a: Land surface processes in a simplified general circulation model. Geophys. Astrophys. Fluid Dyn., 17, 129150, https://doi.org/10.1080/03091928108243677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laval, K., H. L. Treut, and R. Sadourny, 1981b: Effect of cumulus parameterization on the dynamics of a general circulation model. Geophys. Astrophys. Fluid Dyn., 17, 113127, https://doi.org/10.1080/03091928108243676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and J. M. Slingo, 2004: An annual cycle of vegetation in a GCM. Part I: Implementation and impact on evaporation. Climate Dyn., 22, 87105, https://doi.org/10.1007/s00382-003-0366-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., and P. Rowntree, 1993: A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Quart. J. Roy. Meteor. Soc., 119, 509530, https://doi.org/10.1002/qj.49711951109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBauer, D. S., and K. K. Treseder, 2008: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371379, https://doi.org/10.1890/06-2057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-L., and K. Liou, 2007: A coupled atmosphere–ocean radiative transfer system using the analytic four-stream approximation. J. Atmos. Sci., 64, 36813694, https://doi.org/10.1175/JAS4004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, https://doi.org/10.1016/j.ocemod.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The gravity current entrainment climate process team. Bull. Amer. Meteor. Soc., 90, 657670, https://doi.org/10.1175/2008BAMS2667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C., 1965a: Numerical simulation of the earth’s atmosphere. Methods in Computational Physics, B. Adler, S. Fernbach, and M.Rotenberg, Eds., Vol. 4, Academic Press, 1–28.

  • Leith, C. E., 1965b: Convection in a six-level model atmosphere. Proc. Int. Symposium of Dynamics of Large-Scale Atmospheric Processes, International Association of Meteorology and Atmospheric Physics, Moscow, Russia, 134–138.

  • Leith, C., 1988: The computational physics of the global atmosphere. Energy in Physics, War and Peace, Springer, 161–173.

    • Crossref
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.

    • Crossref
    • Export Citation
  • Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, https://doi.org/10.1038/ngeo689.

  • Lettau, H., 1954: Improved models of thermal diffusion in the soil. Eos, Trans. Amer. Geophys. Union, 35, 121132, https://doi.org/10.1029/TR035i001p00121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutwyler, D., O. Fuhrer, X. Lapillonne, D. Lüthi, and C. Schär, 2016: Towards European-scale convection-resolving climate simulations with GPUs: A study with COSMO 4.19. Geosci. Model Dev., 9, 33933412, https://doi.org/10.5194/gmd-9-3393-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W., and S. Yoh, 1993: Binormal model of ensemble partial cloudiness. J. Atmos. Sci., 50, 12281237, https://doi.org/10.1175/1520-0469(1993)050<1228:BMOEPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., 1998: Clarifying the dynamics of the general circulation: Phillips’s 1956 experiment. Bull. Amer. Meteor. Soc., 79, 3960, https://doi.org/10.1175/1520-0477(1998)079<0039:CTDOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 18651885, https://doi.org/10.1175/MWR2949.1.

  • Lewis, J. M., 2008: Smagorinsky’s GFDL: Building the team. Bull. Amer. Meteor. Soc., 89, 13391353, https://doi.org/10.1175/2008BAMS2599.1.

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1997: Introduction to “computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I.” J. Comput. Phys., 135, 101102, https://doi.org/10.1006/jcph.1997.5722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., R. Laprise, and H. Ritchie, Eds., 1997: Numerical Methods in Atmosphere and Ocean Modelling: The Andre Robert Memorial Volume. Canadian Meteorological and Oceanographic Society, 581 pp.

  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model. Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12, 557572, https://doi.org/10.1007/BF00207939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 89178934, https://doi.org/10.5194/acp-9-8917-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Feichter, C. C. Chuang, and J. E. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104, 91699198, https://doi.org/10.1029/1999JD900046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-ham. Atmos. Chem. Phys., 7, 34253446, https://doi.org/10.5194/acp-7-3425-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus, 12, 364373, https://doi.org/10.3402/tellusa.v12i4.9420.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Los, S., and Coauthors, 2000: A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor., 1, 183199, https://doi.org/10.1175/1525-7541(2000)001<0183:AGYBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucht, W., S. Schaphoff, T. Erbrecht, U. Heyder, and W. Cramer, 2006: Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag., 1 (1), 6, https://doi.org/10.1186/1750-0680-1-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, W.-G., S. Wang, J. Huang, L. Yan, and J. Huang, 2006: Influence of plant photosynthesis and transpiration character on nitrogen removal effect in wetland. Zhongguo Huanjing Kexue, 26 (1), 3033.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2012: A framework for benchmarking land models. Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012.

    • Crossref
    • Export Citation
  • Lynch, P., 1993: Richardson’s forecast factory: The $64,000 question. Meteor. Mag., 122, 69–69.

  • Lynch, P., 2006: The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge University Press, 290 pp.

  • Lynch, P., and O. Lynch, 2008: Forecasts by PHONIAC. Weather, 63, 324326, https://doi.org/10.1002/wea.241.

  • MacKinnon, J., L. St Laurent, and A. C. N. Garabato, 2013: Diapycnal mixing processes in the ocean interior. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler, et al., Eds., International Geophysics Series, Vol. 103, Elsevier, 159–183, https://doi.org/10.1016/B978-0-12-391851-2.00007-6.

    • Crossref
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1997: OPA 8 ocean general circulation model reference manual. LODYC/IPSL, 91 pp.

  • Majewski, D., and Coauthors, 2002: The operational global icosahedral–hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319338, https://doi.org/10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1952: Recent advances in the study of convective clouds and their interaction with the environment. Tellus, 4 (2), 7187, https://doi.org/10.3402/tellusa.v4i2.8680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and G. Witt, 1959: The evolution of a convective element: A numerical calculation. The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, B. Bolin, Ed., Rockefeller Institute, 425–439.

  • Manabe, S., 1969a: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97, 739774, https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969b: Climate and the ocean circulation: II. The atmospheric circulation and the effect of heat transport by ocean currents. Mon. Wea. Rev., 97, 775805, https://doi.org/10.1175/1520-0493(1969)097<0775:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and F. Möller, 1961: On the radiative equilibrium and heat balance of the atmosphere. Mon. Wea. Rev., 89, 503532, https://doi.org/10.1175/1520-0493(1961)089<0503:OTREAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and J. Smagorinsky, 1967: Simulated climatology of a general circulation model with a hydrologic cycle: II. Analysis of the tropical atmosphere. Mon. Wea. Rev., 95, 155169, https://doi.org/10.1175/1520-0493(1967)095<0155:SCOAGC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and B. G. Hunt, 1968: Experiments with a stratospheric general circulation model. Mon. Wea. Rev., 96, https://doi.org/10.1175/1520-0493(1968)096<0477:EWASGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and K. Bryan, 1969: Climate calculations with a combined ocean–atmosphere model. J. Atmos. Sci., 26, 786789, https://doi.org/10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and J. Mahlman, 1976: Simulation of seasonal and interhemispheric variations in the stratospheric circulation. J. Atmos. Sci., 33, 21852217, https://doi.org/10.1175/1520-0469(1976)033<2185:SOSAIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 55295554, https://doi.org/10.1029/JC085iC10p05529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Wetherald, 1980: On the distribtution of climate change resulting from an increase of CO2 content in the atmosphere. J. Atmos. Sci., 37, 99118, https://doi.org/10.1175/1520-0469(1980)037<0099:OTDOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Colorado State University Atmospheric Science Paper 266, 73 pp.

  • Marchand, R., and T. Ackerman, 2011: A cloud-resolving model with an adaptive vertical grid for boundary layer clouds. J. Atmos. Sci., 68, 10581074, https://doi.org/10.1175/2010JAS3638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, J.-M. Campin, C. Hill, and A. White, 2004: Atmosphere–ocean modeling exploiting fluid isomorphisms. Mon. Wea. Rev., 132, 28822894, https://doi.org/10.1175/MWR2835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127, https://doi.org/10.1016/S1463-5003(02)00015-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsland, S., J. Church, N. Bindoff, and G. Williams, 2007: Antarctic coastal polynya response to climate change. J. Geophys. Res., 112, C07009, https://doi.org/10.1029/2005JC003291.

    • Search Google Scholar
    • Export Citation
  • Masuda, Y., and H. Ohnishi, 1986: An integration scheme of the primitive equation model with an icosahedral-hexagonal grid system and its application to the shallow water equations. J. Meteor. Soc. Japan Ser. II, 64, 317326.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 2016: Prologue: Tropical meteorology 1960–2010—personal recollections. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0012.1.

    • Crossref
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, https://doi.org/10.1029/JC076i006p01550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, S., 1999: ENIAC: The Triumphs and Tragedies of the World’s First Computer. Walker & Company, 262 pp.

  • McDonald, A., and J. Bates, 1987: Improving the estimate of the departure point position in a two-time level semi-Lagrangian and semi-implicit scheme. Mon. Wea. Rev., 115, 737739, https://doi.org/10.1175/1520-0493(1987)115<0737:ITEOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, https://doi.org/10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., S. Groeskamp, and S. M. Griffies, 2014: On geometrical aspects of interior ocean mixing. J. Phys. Oceanogr., 44, 21642175, https://doi.org/10.1175/JPO-D-13-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., and M. R. Dix, 2008: An updated description of the conformal-cubic atmospheric model. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 51–75.

    • Crossref
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Crossref
    • Export Citation
  • Meador, W. E., and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630643, https://doi.org/10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313318, https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, T. Wigley, J. M. Arblaster, and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16, 426444, https://doi.org/10.1175/1520-0442(2003)016<0426:SAGGFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34, 356358, https://doi.org/10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1982: On the convergence and error problems of the calculation of the pressure gradient force in sigma coordinate models. Geophys. Astrophys Fluid Dyn., 19, 105117, https://doi.org/10.1080/03091928208208949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Z. I. Janjić, 1985: Problems and numerical methods of the incorporation of mountains in atmospheric models. Large-Scale Computations in Fluid Mechanics, Part 2, B. E. Engquist, S. Osher, and R. C. J. Somerville, Eds., Lectures in Applied Mathematics, Vol. 22, American Mathematical Society, 81120.

  • Michael, G. A., 1996: An interview with Chuck Leith. http://www.computer-history.info/Page1.dir/pages/Leith.html.

  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377445, https://doi.org/10.1002/andp.19083300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., S. Bélair, M. Faucher, M. Vallée, M. L. Carrera, and A. Glazer, 2016: The Pan-Canadian high resolution (2.5 km) deterministic prediction system. Wea. Forecasting, 31, 17911816, https://doi.org/10.1175/WAF-D-16-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P., and K. Dunne, 1994: Sensitivity of the global water cycle to the water-holding capacity of land. J. Climate, 7, 506526, https://doi.org/10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, L. J. Donner, V. T. Phillips, S. A. Klein, P. A. Ginoux, and L. W. Horowitz, 2007: Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci., 64, 11891209, https://doi.org/10.1175/JAS3874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mintz, Y., 1968: Very long-term global integration of the primitive equations of atmospheric motion: An experiment in climate simulation. Causes of Climatic Change, Springer, 20–36.

    • Crossref
    • Export Citation
  • Mintz, Y., and J. Bjerknes, 1951: Progress Report: Investigation of the general circulation of the atmosphere. University of California, Los Angeles.

  • Mitchell, J. F. B., R. Davis, W. A. Ingram, and C. Senior, 1995a: On surface temperature, greenhouse gases, and aerosols: Models and observations. J. Climate, 8, 23642386, https://doi.org/10.1175/1520-0442(1995)008<2364:OSTGGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., T. Johns, J. M. Gregory, and S. Tett, 1995b: Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501504, https://doi.org/10.1038/376501a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., and J. Sirutis, 1977: Comparative integrations of global models with various parameterized processes of subgrid-scale vertical transports—Description of the parameterizations (atmospheric circulation). Beitr. Phys. Atmos., 50, 445487.

    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., J. Smagorinsky, R. F. Strickler, and G. Hembree, 1969: Experimental extended predictions with a nine-level hemispheric model. Mon. Wea. Rev., 97, 176, https://doi.org/10.1175/1520-0493(1969)097<0001:EEPWAN>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., M. J. Iacono, R. Pincus, H. W. Barker, L. Oreopoulos, and D. L. Mitchell, 2016: Contributions of the ARM Program to radiative transfer modeling for climate and weather applications. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0041.1.

    • Crossref
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Monteith, J., 1965: Evaporation and the environment, the state and movement of water in living organisms. Proceedings of the XIX Symposium of the Society for Experimental Biology, Cambridge University Press, 205–234.

  • Morcrette, J.-J., 1990: Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118, 847873, https://doi.org/10.1175/1520-0493(1990)118<0847:IOCTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1991: Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res., 96, 91219132, https://doi.org/10.1029/89JD01597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrisette, P. M., 1989: The evolution of policy responses to stratospheric ozone depletion. Nat. Resour. J., 29, 793820.

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep Sea Res., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Murphy, J., 1995: Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part 1: Control climate and flux adjustment. J. Climate, 8, 3656, https://doi.org/10.1175/1520-0442(1995)008<0036:TROTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273, https://doi.org/10.1006/jcph.1996.0136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G., K. Gage, and W. Jasperson, 1984: Kinetic energy spectrum of large-and mesoscale atmospheric processes. Nature, 310, 36, https://doi.org/10.1038/310036a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council Climatic Impact Committee, 1975: Environmental Impact of Stratospheric Flight: Biological and Climatic Effects of Aircraft Emissions in the Stratosphere. National Academies Press, 352 pp.

  • Neu, J. L., M. J. Prather, and J. E. Penner, 2007: Global atmospheric chemistry: Integrating over fractional cloud cover. J. Geophys. Res., 112, D11306, https://doi.org/10.1029/2006JD008007.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norby, R. J., and Coauthors, 2005: Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA, 102, 18 05218 056, https://doi.org/10.1073/pnas.0509478102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Research Department Tech. Memo. 206, 41 pp.

  • Notz, D., and C. M. Bitz, 2017: Sea ice in earth system models. Sea Ice, 3, 304325.

  • Oglesby, R. J., and D. J. Erickson III, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2, 13621380, https://doi.org/10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., 1962: Convection of isolated masses of a buoyant fluid: A numerical calculation. J. Atmos. Sci., 19, 492502, https://doi.org/10.1175/1520-0469(1962)019<0492:COIMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliger, E., E. Wellck, A. Kasahara, and M. Washington, 1970: Description of NCAR global circulation model. NCAR Technical Note NCAR/TN-56+STR, 94 pp., https://doi.org/10.5065/D6XG9P35.

    • Crossref
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan. Ser. II, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Oren, R., and Coauthors, 2001: Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 411, 469472, https://doi.org/10.1038/35078064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and H. W. Barker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125A, 301330, https://doi.org/10.1002/qj.49712555316.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Coauthors, 2012: The continual intercomparison of radiation codes: Results from phase I. J. Geophys. Res., 117, D06118, https://doi.org/10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890895, https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ose, T., 1993: An examination of the effects of explicit cloud water in the UCLA GCM. J. Meteor. Soc. Japan. Ser. II, 71, 93109.

  • Palmén, E., 1948: On the distribution of temperature and wind in the upper westerlies. J. Meteor., 5, 2027, https://doi.org/10.1175/1520-0469(1948)005<0020:OTDOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., and H. Riehl, 1957: Budget of angular momentum and energy in tropical cyclones. J. Meteor., 14, 150159, https://doi.org/10.1175/1520-0469(1957)014<0150:BOAMAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., G. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., Č. Branković, and D. Richardson, 2000: A probability and decision-model analysis of provost seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc., 126, 20132033, https://doi.org/10.1256/smsqj.56702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., F. Doblas-Reyes, A. Weisheimer, and M. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, https://doi.org/10.1175/BAMS-89-4-459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., and Coauthors, 2011: A large and persistent carbon sink in the world’s forests. Science, 333, 988993, https://doi.org/10.1126/science.1201609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov, 2017: Toward low cloud-permitting cloud superparameterization with explicit boundary layer turbulence. J. Adv. Model. Earth Syst., 9, 15421571, https://doi.org/10.1002/2017MS000968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120145.

  • Persson, A., 2005a: Early operational numerical weather prediction outside the USA: An historical introduction. Part I: Internationalism and engineering NWP in Sweden, 1952–69. Meteor. Appl., 12, 135159, https://doi.org/10.1017/S1350482705001593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, A., 2005b: Early operational numerical weather prediction outside the USA: An historical introduction: Part II: Twenty countries around the world. Meteor. Appl., 12, 269289, https://doi.org/10.1017/S1350482705001751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., F. Hossain, L. R. Leung, N. McDowell, M. Rodell, F. J. Tapiador, F. J. Turk, and A. Wood, 2019: 100 years of progress in hydrology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1.

    • Crossref
    • Export Citation
  • Petty, G. W., 2002: Area-average solar radiative transfer in three-dimensionally inhomogeneous clouds: The Independently Scattering Cloudlet model. J. Atmos. Sci., 59, 29102929, https://doi.org/10.1175/1520-0469(2002)059<2910:AASRTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123164, https://doi.org/10.1002/qj.49708235202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957a: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184185, https://doi.org/10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957b: A map projection system suitable for large-scale numerical weather prediction. J. Meteor. Soc. Japan. Ser. II, 35, 262267, https://doi.org/10.2151/jmsj1923.35A.0_262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1959: An example of non-linear computational instability. The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, B. Bolin, Ed., Rockefeller Institute, 501–504.

  • Pielke, R. A., G. Dalu, J. Snook, T. Lee, and T. Kittel, 1991: Nonlinear influence of mesoscale land use on weather and climate. J. Climate, 4, 10531069, https://doi.org/10.1175/1520-0442(1991)004<1053:NIOMLU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105, 27 05927 065, https://doi.org/10.1029/2000JD900504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. A. McFarlane, and S. A. Klein, 1999: Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites. J. Geophys. Res., 104, 61836191, https://doi.org/10.1029/1998JD200125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and Coauthors, 2015: Radiative flux and forcing parameterization error in aerosol-free clear skies. Geophys. Res. Lett., 42, 54855492, https://doi.org/10.1002/2015GL064291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., P. Mascart, E. Richard, and R. Rosset, 1989: An investigation of mesoscale flows induced by vegetation inhomogeneities using an evapotranspiration model calibrated against HAPEX-MOBILHY data. J. Appl. Meteor., 28, 976992, https://doi.org/10.1175/1520-0450(1989)028<0976:AIOMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitcher, E. J., R. C. Malone, V. Ramanathan, M. L. Blackmon, K. Puri, and W. Bourke, 1983: January and July simulations with a spectral general circulation model. J. Atmos. Sci., 40, 580604, https://doi.org/10.1175/1520-0469(1983)040<0580:JAJSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2008: Introduction of prognostic rain in ECHAM5: Design and single column model simulations. Atmos. Chem. Phys., 8, 29492963, https://doi.org/10.5194/acp-8-2949-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, J. F., 1970: The delta function approximation in radiative transfer theory. J. Atmos. Sci., 27, 943949, https://doi.org/10.1175/1520-0469(1970)027<0943:TDFAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, E., J. Mielikainen, B. Huang, H. A. Huang, and T. Lee, 2013: GPU acceleration experience with RRTMG long wave radiation model. Proc. SPIE, 8895, 88950H, https://doi.org/10.1117/12.2031450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, S. D., and Coauthors, 1995: Geographical, biological and remote sensing aspects of the Hydrologic Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel). Remote Sens. Environ., 51, 215234, https://doi.org/10.1016/0034-4257(94)00076-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18. Kluwer Academic, 954 pp.

  • Pury, D. G., and G. D. Farquhar, 1997: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ., 20, 537557, https://doi.org/10.1111/j.1365-3040.1997.00094.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and M. Suarez, 2011: Cloud-system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS-5). Geophys. Res. Lett., 38, L16809, https://doi.org/10.1029/2011GL048438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qaddouri, A., and V. Lee, 2011: The Canadian Global Environmental Multiscale model on the Yin-Yang grid system. Quart. J. Roy. Meteor. Soc., 137, 19131926, https://doi.org/10.1002/qj.873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., F. H. Semazzi, and J. S. Scroggs, 1998: A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 126, 747771, https://doi.org/10.1175/1520-0493(1998)126<0747:AGNSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., E. J. Pitcher, R. C. Malone, and M. L. Blackmon, 1983: The response of a spectral general circulation model to refinements in radiative processes. J. Atmos. Sci., 40, 605630, https://doi.org/10.1175/1520-0469(1983)040<0605:TROASG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. Cess, E. Harrison, P. Minnis, B. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 5763, https://doi.org/10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1976: The interaction of the planetary boundary layer with large-scale circulations. Ph.D. thesis, University of California, Los Angeles, 214 pp.

  • Randall, D. A., 1987: Turbulent fluxes of liquid water and buoyancy in partly cloudy layers. J. Atmos. Sci., 44, 850858, https://doi.org/10.1175/1520-0469(1987)044<0850:TFOLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1994: Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Wea. Rev., 122, 13711377, https://doi.org/10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Abeles, and T. G. Corsetti, 1985: Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J. Atmos. Sci., 42, 641676, https://doi.org/10.1175/1520-0469(1985)042<0641:SSOTPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, https://doi.org/10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C.-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923, https://doi.org/10.1175/1520-0469(1992)049<1903:ASOBBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 1996a: A revised land surface parameterization (SiB2) for GCMs. Part III: The greening of the Colorado State University general circulation model. J. Climate, 9, 738763, https://doi.org/10.1175/1520-0442(1996)009<0738:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., K.-M. Xu, R. J. Somerville, and S. Iacobellis, 1996b: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9, 16831697, https://doi.org/10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2003: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84, 455469, https://doi.org/10.1175/BAMS-84-4-455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., C. DeMott, C. Stan, M. Khairoutdinov, J. Benedict, R. McCrary, K. Thayer-Calder, and M. Branson, 2016: Simulations of the tropical general circulation with a multiscale global model. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0016.1.

    • Crossref
    • Export Citation
  • Rauscher, S. A., and T. D. Ringler, 2014: Impact of variable-resolution meshes on midlatitude baroclinic eddies using CAM-MPAS-A. Mon. Wea. Rev., 142, 42564268, https://doi.org/10.1175/MWR-D-13-00366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, 1994: Measuring phenological variability from satellite imagery. J. Veg. Sci., 5, 703714, https://doi.org/10.2307/3235884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1911: IX. the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. Roy. Soc. London, 210A, 307357, https://doi.org/10.1098/rsta.1911.0009.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press, 250 pp.

  • Richter, J. H., A. Solomon, and J. T. Bacmeister, 2014: Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 6, 357383, https://doi.org/10.1002/2013MS000303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. Malkus, 1958: On the heat balance of the equatorial trough zone. Geophysica, 6, 503538.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud, 2013: A multi-resolution approach to global ocean modeling. Ocean Modell., 69, 211232, https://doi.org/10.1016/j.ocemod.2013.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, H., 1991: Application of the semi-Lagrangian method to a multilevel spectral primitive-equations model. Quart. J. Roy. Meteor. Soc., 117, 91106, https://doi.org/10.1002/qj.49711749705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent, and M. Hamrud, 1995: Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev., 123, 489514, https://doi.org/10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, L., C. Horvat, S. Dean, and C. M. Bitz, 2018: An emergent sea ice floe size distribution in a global coupled ocean-sea ice model. J. Geophys. Res. Oceans, 123, 43224337, https://doi.org/10.1029/2017JC013692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, W. T., and A. Slingo, 1979: A high resolution infrared radiative transfer scheme to study the interaction of radiation with cloud. Quart. J. Roy. Meteor. Soc., 105, 603614, https://doi.org/10.1002/qj.49710544508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, A. J., 1966: The integration of a low order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44, 237245, https://doi.org/10.2151/jmsj1965.44.5_237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, A. J., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symp. on NWP, Tokyo, Japan, Meteorological Society of Japan, VII.19–VII.24.

  • Robert, A. J., 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.–Ocean, 19, 3546, https://doi.org/10.1080/07055900.1981.9649098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, A. J., 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan. Ser. II, 60, 319325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, A. J., J. Henderson, and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev., 100, 329335, https://doi.org/10.1175/1520-0493(1972)100<0329:AITISF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., and C. D. Walshaw, 1966: The computation of infra-red cooling rate in planetary atmospheres. Quart. J. Roy. Meteor. Soc., 92, 6792, https://doi.org/10.1002/qj.49709239107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., L. Dümenil, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, and U. Schlese, 1989: The Hamburg version of the ECMWF model (ECHAM): Research activities in atmospheric and oceanic modelling. CAS/JSC Working Group on Numerical Experimentation RAAOM Rep. 13, 7-1.

  • Rossby, C.-G., 1937: Isentropic analysis. Bull. Amer. Meteor. Soc., 18, 201209, https://doi.org/10.1175/1520-0477-18.6-7.201.

  • Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale variations of clouds for the earth’s radiation budget. J. Climate, 15, 557585, https://doi.org/10.1175/1520-0442(2002)015<0557:IOTOMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 1987: The HITRAN database: 1986 edition. Appl. Opt., 26, 40584097, https://doi.org/10.1364/AO.26.004058.

  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105, 15 49515 507, https://doi.org/10.1029/2000JD900129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128, 10701088, https://doi.org/10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowntree, P., 1976: Response of the atmosphere to a tropical Atlantic Ocean temperature anomaly. Quart. J. Roy. Meteor. Soc., 102, 607625, https://doi.org/10.1002/qj.49710243308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowntree, P., and J. Walker, 1978: The effects of doubling the CO2 concentration on radiative-convective equilibrium. Carbon Dioxide, Climate and Society, Elsevier, 181–191.

    • Crossref
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136144, https://doi.org/10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689, https://doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1984: January and July performances of the lmd general circulation model. New Perspectives in Climate Modeling, Elsevier, 173–198.

  • Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Wea. Rev., 96, 351356, https://doi.org/10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandbach, S., J. Thuburn, D. Vassilev, and M. G. Duda, 2015: A semi-implicit version of the MPAS-atmosphere dynamical core. Mon. Wea. Rev., 143, 38383855, https://doi.org/10.1175/MWR-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasamori, T., 1968: The radiative cooling calculation for application to general circulation experiments. J. Appl. Meteor., 7, 721729, https://doi.org/10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S.-I. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, https://doi.org/10.1016/j.jcp.2007.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The non-hydrostatic icosahedral atmospheric model: Description and development. Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sausen, R., K. Barthel, and K. Hasselmann, 1988: Coupled ocean-atmosphere models with flux correction. Climate Dyn., 2, 145163, https://doi.org/10.1007/BF01053472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, S. A., R. J. Hogan, C. Klinger, J. C. Chiu, and B. Mayer, 2016: Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length. J. Geophys. Res. Atmos., 121, 85678582, https://doi.org/10.1002/2016JD024876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779784, https://doi.org/10.1175/1520-0477-64.7.779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, A., P. R. Oke, G. Brassington, M. Entel, R. Fiedler, D. A. Griffin, and J. Mansbridge, 2008: Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Prog. Oceanogr., 76, 334365, https://doi.org/10.1016/j.pocean.2008.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., 1976: A numerical simulation of the general circulation of atmospheric ozone. Ph.D. dissertation, Department of Atmospheric Sciences, University of California, Los Angeles, 376 pp.

  • Schlesinger, M. E., and Y. Mintz, 1979: Numerical simulation of ozone production, transport and distribution with a global atmospheric general circulation model. J. Atmos. Sci., 36, 13251361, https://doi.org/10.1175/1520-0469(1979)036<1325:NSOOPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Schär, and A. P. Siebesma, 2017: Climate goals and computing the future of clouds. Nat. Climate Change, 7, 35, https://doi.org/10.1038/nclimate3190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenberg Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., R. B. Rood, and J. Pfaendtner, 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc., 74, 23312342, https://doi.org/10.1175/1520-0477(1993)074<2331:AADFES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuster, A., 1905: Radiation through a foggy atmosphere. Astrophys. J., 21, 122, https://doi.org/10.1086/141186.

  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self collection. Atmos. Res., 59, 265281, https://doi.org/10.1016/S0169-8095(01)00126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seland, Ø., T. Iversen, A. Kirkevåg, and T. Storelvmo, 2008: Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus, 60A, 459491, https://doi.org/10.1111/j.1600-0870.2008.00318.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., 1985: Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens., 6, 13351372, https://doi.org/10.1080/01431168508948283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res., 102, 28 73128 769, https://doi.org/10.1029/97JD03300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. A. Sud, and A. Dalcher, 1986: A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., J. Berry, G. Collatz, C. Field, and F. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ., 42, 187216, https://doi.org/10.1016/0034-4257(92)90102-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996a: A revised land surface parameterization (SIB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705, https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., C. J. Tucker, G. J. Collatz, S. O. Los, C. O. Justice, D. A. Dazlich, and D. A. Randall, 1996b: A revised land surface parameterization (SIB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706737, https://doi.org/10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8, 392400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., 1974: An oceanic general circulation model with bottom topography. University of California, Los Angeles, Tech. Rep. UCLA-NSWC-TR-9, 99 pp.

  • Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., and Y. Mintz, 1977: Numerical simulation of the gulf stream and mid-ocean eddies. J. Phys. Oceanogr., 7, 208230, https://doi.org/10.1175/1520-0485(1977)007<0208:NSOTGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97, 54935550, https://doi.org/10.1029/92JC00095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, https://doi.org/10.1029/2000GL011373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2010: Synergies between numerical weather prediction and general circulation climate models. The Development of Atmospheric General Circulation Models, L. Donner, W. Schubert, and R. Somerville, Eds., Cambridge University Press, 197–208.

  • Shabecoff, P., 1988: Global warming has begun, expert tells senate. New York Times, 24 June, A1.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, https://doi.org/10.1029/2007GB003176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S.-I., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., and R. J. Hogan, 2008: Tripleclouds: An efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height. J. Climate, 21, 23522370, https://doi.org/10.1175/2007JCLI1940.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuman, F. G., and J. B. Hovermale, 1968: An operational six-layer primitive equation model. J. Appl. Meteor., 7, 525547, https://doi.org/10.1175/1520-0450(1968)007<0525:AOSLPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silberman, I., 1954: Planetary waves in the atmosphere. J. Meteor., 11, 2734, https://doi.org/10.1175/1520-0469(1954)011<0027:PWITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., D. M. Burridge, M. Jarraud, C. Girard, and W. Wergen, 1989: The ECMWF medium-range prediction models development of the numerical formulations and the impact of increased resolution. Meteor. Atmos. Phys., 40, 2860, https://doi.org/10.1007/BF01027467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 9, 471489, https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. H. Simpson, D. A. Andrews, and M. A. Eaton, 1965: Experimental cumulus dynamics. Rev. Geophys., 3, 387431, https://doi.org/10.1029/RG003i003p00387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitch, S., V. Brovkin, W. von Bloh, D. van Vuuren, B. Eickhout, and A. Ganopolski, 2005: Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem. Cycles, 19, GB2013, https://doi.org/10.1029/2004GB002311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol., 14, 20152039, https://doi.org/10.1111/j.1365-2486.2008.01626.x.

    • Crossref
    • Search Google Scholar
    • Export Citation