100 Years of Progress in Hydrology

Christa D. Peters-Lidard Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
,
Faisal Hossain Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Faisal Hossain in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8668-2505
,
L. Ruby Leung Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3221-9467
,
Nate McDowell Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Nate McDowell in
Current site
Google Scholar
PubMed
Close
,
Matthew Rodell Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew Rodell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0106-7437
,
Francisco J. Tapiador Department of Environmental Sciences, Institute of Environmental Sciences, University of Castilla–La Mancha, Toledo, Spain

Search for other papers by Francisco J. Tapiador in
Current site
Google Scholar
PubMed
Close
,
F. Joe Turk Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by F. Joe Turk in
Current site
Google Scholar
PubMed
Close
, and
Andrew Wood Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The focus of this chapter is progress in hydrology for the last 100 years. During this period, we have seen a marked transition from practical engineering hydrology to fundamental developments in hydrologic science, including contributions to Earth system science. The first three sections in this chapter review advances in theory, observations, and hydrologic prediction. Building on this foundation, the growth of global hydrology, land–atmosphere interactions and coupling, ecohydrology, and water management are discussed, as well as a brief summary of emerging challenges and future directions. Although the review attempts to be comprehensive, the chapter offers greater coverage on surface hydrology and hydrometeorology for readers of this American Meteorological Society (AMS) monograph.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christa Peters-Lidard, christa.peters@nasa.gov

Abstract

The focus of this chapter is progress in hydrology for the last 100 years. During this period, we have seen a marked transition from practical engineering hydrology to fundamental developments in hydrologic science, including contributions to Earth system science. The first three sections in this chapter review advances in theory, observations, and hydrologic prediction. Building on this foundation, the growth of global hydrology, land–atmosphere interactions and coupling, ecohydrology, and water management are discussed, as well as a brief summary of emerging challenges and future directions. Although the review attempts to be comprehensive, the chapter offers greater coverage on surface hydrology and hydrometeorology for readers of this American Meteorological Society (AMS) monograph.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christa Peters-Lidard, christa.peters@nasa.gov
Save
  • Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srinivasan, 2007: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol., 333, 413430, https://doi.org/10.1016/j.jhydrol.2006.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen, 1986: An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol., 87, 4559, https://doi.org/10.1016/0022-1694(86)90114-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, H. D., A. K. MacAlady, D. D. Breshears, C. D. Allen, N. L. Stephenson, S. R. Saleska, T. E. Huxman, and N. G. McDowell, 2010: Climate-induced tree mortality: Earth system consequences. Eos, Trans. Amer. Geophys. Union, 91, 153154, https://doi.org/10.1029/2010EO170003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, H. D., C. H. Luce, D. D. Breshears, C. D. Allen, M. Weiler, V. C. Hale, A. M. S. Smith, and T. E. Huxman, 2012: Ecohydrological consequences of drought- and infestation- triggered tree die-off: Insights and hypotheses. Ecohydrology, 5, 145159, https://doi.org/10.1002/eco.233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, T. E., and T. C. Pagano, 2016: Flood Forecasting: A Global Perspective. Elsevier, 478 pp.

    • Crossref
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A Satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. J. Huffman, D. T. Bolvin, S. Curtis, and E. J. Nelkin, 2000: Tropical rainfall distributions determined using trmm combined with other satellite and rain gauge information. J. Appl. Meteor., 39, 20072023, https://doi.org/10.1175/1520-0450(2001)040<2007:TRDDUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, https://doi.org/10.1175/JAMC-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, M. Sapiano, J.-J. Wang, and G. J. Huffman, 2017: Global precipitation: Means, variations and trends during the satellite era (1979–2014). Surv. Geophys., 38, 679699, https://doi.org/10.1007/s10712-017-9416-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcamo, J., P. Döll, T. Henrichs, F. Kaspar, B. Lehner, T. Rösch, and S. Siebert, 2003: Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J., 48, 317338, https://doi.org/10.1623/hysj.48.3.317.45290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, L., P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger, 2013: GloFAS-global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci., 17, 11611175, https://doi.org/10.5194/hess-17-1161-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, https://doi.org/10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, C. D., D. D. Breshears, and N. G. McDowell, 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, https://doi.org/10.1890/ES15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., W. J. Ingram, and D. Stainforth, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., http://www.fao.org/3/X0490E/X0490E00.htm.

  • Allen, R. G., and Coauthors, 2007: Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng., 133, 395406, https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, W. M., and L. F. Konikow, 2015: Bringing GRACE down to Earth. Groundwater, 53, 826829, https://doi.org/10.1111/gwat.12379.

  • Alsdorf, D. E., E. Rodríguez, and D. P. Lettenmaier, 2007: Measuring surface water from space. Rev. Geophys., 45, RG2002, https://doi.org/10.1029/2006RG000197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amorocho, J., and B. Wu, 1977: Mathematical models for the simulation of cyclonic storm sequences and precipitation fields. J. Hydrol., 32, 329345, https://doi.org/10.1016/0022-1694(77)90025-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1972: National Weather Service River Forecast System forecast procedures. NOAA Tech. Memo. NWS HYDRO-14, 264 pp.

  • Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski, 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, https://doi.org/10.1016/S0034-4257(96)00215-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., and Coauthors, 2011: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci., 15, 223239, https://doi.org/10.5194/hess-15-223-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. G., and T. P. Burt, 1985: Hydrological Forecasting. Wiley, 604 pp.

  • Anyah, R. O., C. P. Weaver, G. Miguez-Macho, Y. Fan, and A. Robock, 2008: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J. Geophys. Res., 113, D07103, https://doi.org/10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. N., and R. E. Horton, 1936: Historical development of ideas regarding the origin of springs and ground-water. Eos, Trans. Amer. Geophys. Union, 17, 395400, https://doi.org/10.1029/TR017i002p00395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakker, M. H. N., 2009: Transboundary river floods: Examining countries, international river basins and continents. Water Policy, 11, 269288, https://doi.org/10.2166/wp.2009.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, Vol. 4, J. Biggins, Ed., Springer, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48.

    • Crossref
    • Export Citation
  • Barré de Saint-Venant, A. J. C., 1871: Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. C. R. Hebd. Seances Acad. Sci., 73, 148154.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. F. Moreno, G. J. Roerink, and T. van der Wal, 1998: A remote sensing Surface Energy Balance Algorithm for Land (SEBAL). J. Hydrol., 212–213, 213229, https://doi.org/10.1016/S0022-1694(98)00254-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1973: Eine neue Bilanz des globalen Wasserkreislaufes. Umschau, 20, 631632.

  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance: Mean Annual Global, Continental and Maritimes Precipitation, Evaporation and Run-Off. Elsevier, 179 pp.

  • Bear, J., 1972: Dynamics of Fluids in Porous Media. Elsevier, 764 pp.

  • Bearup, L. A., R. M. Maxwell, and J. E. Mccray, 2016: Hillslope response to insect-induced land-cover change: An integrated model of end-member mixing. Ecohydrology, 9, 195203, https://doi.org/10.1002/eco.1729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaumont, R. T., 1965: Mt. Hood pressure pillow snow gage. J. Appl. Meteor., 4, 626631, https://doi.org/10.1175/1520-0450(1965)004<0626:MHPPSG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, https://doi.org/10.1175/2009JHM1139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383, https://doi.org/10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. C., N. G. Mcdowell, C. D. Allen, and K. J. Anderson-Teixeira, 2015: Larger trees suffer most during drought in forests worldwide. Nat. Plants, 1, https://doi.org/10.1038/nplants.2015.139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., T. J. Bohn, K. Solander, N. G. McDowell, C. Xu, E. Vivoni, and R. S. Middleton, 2018: Climate-driven disturbances in the San Juan River sub-basin of the Colorado River. Hydrol. Earth Syst. Sci., 22, 709725, https://doi.org/10.5194/hess-22-709-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, https://doi.org/10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berne, A., R. Uijlenhoet, and P. A. Troch, 2005: Similarity analysis of subsurface flow response of hillslopes with complex geometry. Water Resour. Res., 41, W09410, https://doi.org/10.1029/2004WR003629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, E. K., and R. A. Berner, 1987: The Global Water Cycle: Geochemistry and Enviroment. Prentice-Hall, 397 pp.

  • Berry, Z. C., and Coauthors, 2018: The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward. Ecohydrology, 11, e1843, https://doi.org/10.1002/eco.1843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beschta, R. L., M. R. Pyles, A. E. Skaugset, and C. G. Surfleet, 2000: Peakflow responses to forest practices in the western cascades of Oregon, USA. J. Hydrol., 233, 102120, https://doi.org/10.1016/S0022-1694(00)00231-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, https://doi.org/10.1175/JHM-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, https://doi.org/10.1175/BAMS-85-11-1673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, https://doi.org/10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., and M. J. Kirkby, 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, https://doi.org/10.1080/02626667909491834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, K. J., H. Cloke, F. Pappenberger, R. Lamb, and N. Hunter, 2015: Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface. Sci. China Earth Sci., 58, 2535, https://doi.org/10.1007/s11430-014-5003-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biancamaria, S., D. P. Lettenmaier, and T. M. Pavelsky, 2016: The SWOT mission and its capabilities for land hydrology. Surv. Geophys., 37, 307337, https://doi.org/10.1007/s10712-015-9346-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierkens, M. F. P., 2015: Global hydrology 2015: State, trends, and directions. Water Resour. Res., 51, 49234947, https://doi.org/10.1002/2015WR017173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierkens, M. F. P., and Coauthors, 2015: Hyper-resolution global hydrological modelling: what is next? Hydrol. Processes, 29, 310320, https://doi.org/10.1002/hyp.10391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binley, A., S. S. Hubbard, J. A. Huisman, A. Revil, D. A. Robinson, K. Singha, and L. D. Slater, 2015: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res., 51, 38373866, https://doi.org/10.1002/2015WR017016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkett, C. M., 1998: Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour. Res., 34, 12231239, https://doi.org/10.1029/98WR00124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkett, C. M., C. Reynolds, B. Beckley, and B. Doorn, 2011: From research to operations: The USDA global reservoir and lake monitor. Coastal Altimetry, S. Vignudelli et al., Eds., Springer, 19–50.

    • Crossref
    • Export Citation
  • Blaney, H. F., and W. D. Criddle, 1950: Determining water requirements in irrigated areas from climatological and irrigation data. USDA Rep. SCS-TP-96, 50 pp.

  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and M. Sivapalan, 1995: Scale issues in hydrological modelling: A review. Hydrol. Processes, 9, 251290, https://doi.org/10.1002/hyp.3360090305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boening, C., J. K. Willis, F. W. Landerer, S. Nerem, and J. Fasullo, 2012: The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett., 39, L19602, https://doi.org/10.1029/2012GL053055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogena, H. R., J. A. Huisman, C. Oberdörster, and H. Vereecken, 2007: Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol., 344, 3242, https://doi.org/10.1016/j.jhydrol.2007.06.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, https://doi.org/10.1073/pnas.0700144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonnin, G. M., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley, 2006: Version 3.0: Delaware, District of Columbia, Illinois, Indiana, Kentucky, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, West Virginia. Vol. 2, Precipitation-Frequency Atlas of the United States, NOAA Atlas 14, 295 pp., http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume2.pdf.

  • Bosch, J. M., and J. D. Hewlett, 1982: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol., 55, 323, https://doi.org/10.1016/0022-1694(82)90117-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., S. D. Schubert, and G. K. Walker, 2005: Global changes of the water cycle intensity. J. Climate, 18, 15911608, https://doi.org/10.1175/JCLI3357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, R. J., 1963: Évapotranspiration réelle et potentielle signification climatique. IAHS Publ., 62, 134162.

  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brantley, S. L., and Coauthors, 2017: Reviews and syntheses: On the roles trees play in building and plumbing the critical zone. Biogeosciences, 14, 51155142, https://doi.org/10.5194/bg-14-5115-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, J. R., H. R. Barnard, R. Coulombe, and J. J. Mcdonnell, 2010: Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci., 3, 100104, https://doi.org/10.1038/ngeo722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., and A. T. Corey, 1964: Hydraulic properties of porous media. Colorado State University Hydrology Paper 3, 27 pp., https://dspace.library.colostate.edu/bitstream/handle/10217/61288/HydrologyPapers_n3.pdf?sequence=1.

  • Brown, R. D., and D. A. Robinson, 2011: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5, 219229, https://doi.org/10.5194/tc-5-219-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brückner, E., 1905: Die Bilanz des Kreislaufs des Wassers auf der Erde. Geogr. Z., 11, 436445.

  • Brunner, G. W., 2016: HEC-RAS River Analysis System: Hydraulic Reference Manual, version 5.0. USACE Doc. CPD-69, 538 pp., http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf.

  • Brunner, P., R. Therrien, P. Renard, C. T. Simmons, and H. J. H. Franssen, 2017: Advances in understanding river-groundwater interactions. Rev. Geophys., 55, 818854, https://doi.org/10.1002/2017RG000556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere. Springer, 302 pp.

    • Crossref
    • Export Citation
  • Budde, M. E., J. Rowland, and C. C. Funk, 2010: Agriculture and food availability – Remote sensing of agriculture for food security monitoring in the developing world. Earthzine, https://earthzine.org/agriculture-and-food-availability-remote-sensing-of-agriculture-for-food-security-monitoring-in-the-developing-world/.

  • Budyko, M. I., and A. A. Sokolov, 1978: Water balance of the Earth. World Water Balance and Water Resources of the Earth, V. I. Korzun, Ed., UNESCO, 586–591.

  • Burnash, R. J. C., R. L. Ferral, and R. A. McGuire, 1973: A generalized streamflow simulation system: Conceptual models for digital computers. Joint Federal and State River Forecast Center, U.S. National Weather Service, and California Department of Water Resources Tech. Rep., 204 pp.

  • Burt, T., G. Pinay, and S. Sabater, 2010: What do we still need to know about the ecohydrology of riparian zones? Ecohydrology, 3, 373377, https://doi.org/10.1002/eco.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, T. M., J. A. Sperfslage, K. P. Georgakakos, T. Sweeney, and D. L. Fread, 1999: National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J. Hydrol., 224, 2144, https://doi.org/10.1016/S0022-1694(99)00115-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, S. S., and T. R. Carroll, 1989: Effect of uneven snow cover on airborne snow water equivalent estimates obtained by measuring terrestrial gamma radiation. Water Resour. Res., 25, 15051510, https://doi.org/10.1029/WR025i007p01505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T., 2001: Airborne Gamma Radiation Snow Survey Program: A User’s guide version 5.0. National Operational Hydrologic Remote Sensing Center, 14 pp., https://www.nohrsc.noaa.gov/special/tom/gamma50.pdf.

  • Celia, M. A., E. T. Bouloutas, and R. L. Zarba, 1990: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res., 26, 14831496, https://doi.org/10.1029/WR026i007p01483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373380, https://doi.org/10.1038/359373a0.

  • Chandra, S., 1990: Hydrology in Ancient India. National Institute of Hydrology, 106 pp.

  • Chaney, N. W., P. Metcalfe, and E. F. Wood, 2016: HydroBlocks: a field-scale resolving land surface model for application over continental extents. Hydrol. Processes, 30, 35433559, https://doi.org/10.1002/hyp.10891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., J. L. Foster, and D. K. Hall, 1987: Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol., 9, 3944, https://doi.org/10.1017/S0260305500000355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, https://doi.org/10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, B. D. Tapley, D. D. Blankenship, and E. R. Ivins, 2007: Patagonia icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys. Res. Lett., 34, L22501, https://doi.org/10.1029/2007GL031871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., J. S. Famiglietti, B. R. Scanlon, and M. Rodell, 2016: Groundwater storage changes: Present status from GRACE observations. Surv. Geophys., 37, 397417, https://doi.org/10.1007/s10712-015-9332-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Hossain, 2018: Understanding model-based probable maximum precipitation estimation as a function of location and season from atmospheric reanalysis. J. Hydrometeor., 19, 459475, https://doi.org/10.1175/JHM-D-17-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., F. Hossain, and L. R. Leung, 2017: Probable maximum precipitation in the U.S. Pacific Northwest in a changing climate. Water Resour. Res., 53, 96009622, https://doi.org/10.1002/2017WR021094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open-Channel Hydraulics. McGraw Hill, 680 pp.

  • Chow, V. T., 1964: Handbook of Applied Hydrology: A Compendium of Water-Resources Technology. McGraw-Hill, 1468 pp.

  • Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604, https://doi.org/10.1029/WR014i004p00601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and R. B. Hanson, 2017: The citation impact of hydrology journals. Water Resour. Res., 53, 45334541, https://doi.org/10.1002/2017WR021125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2015: Improving the representation of hydrologic processes in Earth system models. Water Resour. Res., 51, 59295956, https://doi.org/10.1002/2015WR017096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2017: The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrol. Earth Syst. Sci., 21, 34273440, https://doi.org/10.5194/hess-21-3427-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cline, D., R. Armstrong, R. Davis, K. Elder, and G. Liston, 2004: CLPX Snow Pit Measurements. National Snow and Ice Data Center, accessed 10 April 2018, https://nsidc.org/data/clpx/clpx_pits.gd.html.

  • Coenders-Gerrits, A. M. J., R. J. van der Ent, T. A. Bogaard, L. Wang-Erlandsson, M. Hrachowitz, and H. H. G. Savenije, 2014: Uncertainties in transpiration estimates. Nature, 506, E1E2, https://doi.org/10.1038/nature12925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, W. J., and D. P. Loucks, 2015: Water management: Current and future challenges and research directions. Water Resour. Res., 51, 48234839, https://doi.org/10.1002/2014WR016869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, N. H., and R. K. Linsley, 1966: Digital simulation in hydrology; Stanford watershed model IV. Tech. Rep. 39, Dept. of Civil Engineering, Stanford University, 210 pp.

  • Crow, W. T., and Coauthors, 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, RG2002, https://doi.org/10.1029/2011RG000372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunge, J. A., 1969: On the subject of a flood propagation computation method (Muskingum method). J. Hydraul. Res., 7, 205230, https://doi.org/10.1080/00221686909500264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023, https://doi.org/10.1175/BAMS-84-8-1013.

  • Daliakopoulos, I. N., P. Coulibaly, and I. K. Tsanis, 2005: Groundwater level forecasting using artificial neural networks. J. Hydrol., 309, 229240, https://doi.org/10.1016/j.jhydrol.2004.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darama, Y., 2014: Comment on “Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran Region” by Katalyn A. Voss et al. Water Resour. Res., 50, 754757, https://doi.org/10.1002/2013WR014084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darcy, H., 1856: Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau. Victor Dalmon, 647 pp.

  • Dawdy, D. R., and W. B. Langbein, 1960: Mapping mean areal precipitation. Int. Assoc. Sci. Hydrol. Bull., 5, 1623, https://doi.org/10.1080/02626666009493176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, G. N., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann. Manage., 111, 157170, https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deems, J. S., T. H. Painter, and D. C. Finnegan, 2013: Lidar measurement of snow depth: A review. J. Glaciol., 59, 467479, https://doi.org/10.3189/2013JoG12J154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jeu, R. A. M., W. Wagner, T. R. H. Holmes, A. J. Dolman, N. C. Giesen, and J. Friesen, 2008: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys., 29, 399420, https://doi.org/10.1007/s10712-008-9044-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., J. Luterbacher, H. von Weissenfluh, E. Xoplaki, M. Brunet, and H. Wanner, 2007: Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Climate Dyn., 29, 251275, https://doi.org/10.1007/s00382-007-0233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., and S. Manabe, 1993: Climate variability and land-surface processes. Adv. Water Resour., 16, 320, https://doi.org/10.1016/0309-1708(93)90026-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demargne, J., and Coauthors, 2014: The Science of NOAA’s Operational Hydrologic Ensemble Forecast Service. Bull. Amer. Meteor. Soc., 95, 7998, https://doi.org/10.1175/BAMS-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deming, D., 2014: Pierre Perrault, the hydrologic cycle and the scientific revolution. Groundwater, 52, 156162, https://doi.org/10.1111/gwat.12138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deming, D., 2017: Edme Mariotte and the beginning of quantitative hydrogeology. Groundwater, 56, 350–355, https://doi.org/10.1111/gwat.12609.

    • Search Google Scholar
    • Export Citation
  • de Silva, T. K. N. P., D. L. O. Mendis, V. E. A. Wickramanayake, and C. G. Uragoda, 1995: Scientific principles seen in ancient artefacts and monumental structures. Natural Resources Energy and Science Authority of Sri Lanka, 54 pp.

  • Dickey, J. O., and Coauthors, 1997: Satellite Gravity and the Geosphere. National Academies Press, 126 pp., https://doi.org/10.17226/5767.

    • Crossref
    • Export Citation
  • Dickinson, R. E., 1984: Modeling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 58–72.

    • Crossref
    • Export Citation
  • Dickinson, R. E., and A. Henderson-Sellers, 1988: Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. Roy. Meteor. Soc., 114, 439462, https://doi.org/10.1002/qj.49711448009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp., https://doi.org/10.5065/D6668B58.

    • Crossref
    • Export Citation
  • Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80, 851878, https://doi.org/10.1175/1520-0477(1999)080<0851:TPPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006a: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, https://doi.org/10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006b: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, https://doi.org/10.1175/JHM532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, https://doi.org/10.1175/JHM-D-11-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2018: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375392, https://doi.org/10.1175/JHM-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, M. C., F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes, 1985: Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens., GE-23, 3546, https://doi.org/10.1109/TGRS.1985.289498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döll, P., H. Müller Schmied, C. Schuh, F. T. Portmann, and A. Eicker, 2014: Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res., 50, 56985720, https://doi.org/10.1002/2014WR015595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolman, A. J., 2005: Actual evaporation. Encyclopedia of Hydrological Sciences, M. G. Anderson and J. J. McDonnell, Eds., Wiley, 647–656, https://doi.org/10.1002/0470848944.hsa048.

    • Crossref
    • Export Citation
  • Dooge, J. C. I., 1959: A general theory of the unit hydrograph. J. Geophys. Res., 64, 241, https://doi.org/10.1029/JZ064i002p00241.

  • Dooge, J. C. I., 1973: Linear theory of hydrologic systems. USDA-ARS Tech. Bull. 1468, 337 pp.

  • Dooge, J. C. I., 1986: Looking for hydrologic laws. Water Resour. Res., 22, 46S58S, https://doi.org/10.1029/WR022i09Sp0046S.

  • Dooge, J. C. I., 1996: Walter Langbein and the emergence of scientific hydrology. Water Resour. Res., 32, 29692977, https://doi.org/10.1029/96WR00273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doorenbos, J., and W. O. Pruitt, 1977: Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, 154 pp., http://www.fao.org/3/a-f2430e.pdf.

  • Dorigo, W., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, https://doi.org/10.5194/hess-15-1675-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, and D. Fernández-Prieto, 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett., 39, L18405, https://doi.org/10.1029/2012GL052988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2017: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., and P. J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Meteor., 28, 833855, https://doi.org/10.1175/1520-0450(1989)028<0833:AGCOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., and F. Chauvin, 2000: Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dyn., 16, 719736, https://doi.org/10.1007/s003820000080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., F. Chauvin, and H. Broqua, 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14, 23812403, https://doi.org/10.1175/1520-0442(2001)014<2381:IOSMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downer, C. W., and F. L. Ogden, 2004: GSSHA: Model to simulate diverse stream flow producing processes. J. Hydrol. Eng., 9, 161174, https://doi.org/10.1061/(ASCE)1084-0699(2004)9:3(161).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., E. H. Bair, and R. E. Davis, 2016: Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev.: Water, 3, 461474, https://doi.org/10.1002/wat2.1140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, https://doi.org/10.1029/91WR02985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., F. Pappenberger, A. Wood, H. L. Cloke, and J. Schaake, Eds., 2018: Handbook of Hydrometeorological Ensemble Forecasting. Springer, 1528 pp.

    • Crossref
    • Export Citation
  • Dunne, T., T. R. Moore, and C. H. Taylor, 1975: Recognition and prediction of runoff-producing zones in humid regions. Hydrol. Sci. Bull., 20 (3), 305327.

    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1970: Dynamic Hydrology. McGraw-Hill, 462 pp.

  • Eagleson, P. S., 1978a: Climate, soil, and vegetation: 1. Introduction to water balance dynamics. Water Resour. Res., 14, 705712, https://doi.org/10.1029/WR014i005p00705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978b: Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm sequences. Water Resour. Res., 14, 713721, https://doi.org/10.1029/WR014i005p00713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978c: Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase. Water Resour. Res., 14, 722730, https://doi.org/10.1029/WR014i005p00722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978d: Climate, soil, and vegetation: 4. The expected value of annual evapotranspiration. Water Resour. Res., 14, 731739, https://doi.org/10.1029/WR014i005p00731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978e: Climate, soil, and vegetation: 5. A derived distribution of storm surface runoff. Water Resour. Res., 14, 741748, https://doi.org/10.1029/WR014i005p00741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978f: Climate, soil, and vegetation: 6. Dynamics of the annual water balance. Water Resour. Res., 14, 749764, https://doi.org/10.1029/WR014i005p00749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1978g: Climate, soil, and vegetation: 7. A derived distribution of annual water yield. Water Resour. Res., 14, 765776, https://doi.org/10.1029/WR014i005p00765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eagleson, P. S., 1986: The emergence of global-scale hydrology. Water Resour. Res., 22, 6S14S, https://doi.org/10.1029/WR022i09Sp0006S.

  • Eagleson, P. S., 1991: Hydrologic science: A distinct geoscience. Rev. Geophys., 29, 237248, https://doi.org/10.1029/90RG02615.

  • Eagleson, P. S., N. M. Fennessey, W. Qinliang, and I. Rodríguez-Iturbe, 1987: Application of spatial Poisson models to air mass thunderstorm rainfall. J. Geophys. Res., 92, 96619678, https://doi.org/10.1029/JD092iD08p09661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Elder, K., J. Dozier, and J. Michaelsen, 1991: Snow accumulation and distribution in an Alpine Watershed. Water Resour. Res., 27, 15411552, https://doi.org/10.1029/91WR00506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1996: Precipitation recycling. Rev. Geophys., 34, 367378, https://doi.org/10.1029/96RG01927.

  • Emerton, R. E., and Coauthors, 2016: Continental and global scale flood forecasting systems. Wiley Interdiscip. Rev.: Water, 3, 391418, https://doi.org/10.1002/wat2.1137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., 1995: Recent advances in land-atmosphere interaction research. Rev. Geophys., 33, 9951003, https://doi.org/10.1029/95RG01163.

  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, T. A., M. W. Williams, and A. Winstral, 2005: Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resour. Res., 41, W04014, https://doi.org/10.1029/2003WR002973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137142, https://doi.org/10.5194/essd-7-137-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evaristo, J., and J. J. McDonnell, 2017: Prevalence and magnitude of groundwater use by vegetation: A global stable isotope meta-analysis. Sci. Rep., 7, 44110, https://doi.org/10.1038/srep44110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and E. F. Wood, 1991: Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models. Surv. Geophys., 12, 179204, https://doi.org/10.1007/BF01903418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and E. F. Wood, 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30, 30613078, https://doi.org/10.1029/94WR01498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., A. Cazenave, A. Eicker, J. T. Reager, M. Rodell, and I. Velicogna, 2015: Satellites provide the big picture. Science, 349, 684685, https://doi.org/10.1126/science.aac9238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., 2015: Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res., 51, 30523069, https://doi.org/10.1002/2015WR017037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and R. L. Bras, 1995: On the concept of a representative elementary area in catchment runoff. Hydrol. Processes, 9, 821832, https://doi.org/10.1002/hyp.3360090708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., G. Miguez-Macho, C. P. Weaver, R. Walko, and A. Robock, 2007: Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res., 112, D10125, https://doi.org/10.1029/2006JD008111.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., G. Miguez-Macho, E. G. Jobbágy, R. B. Jackson, and C. Otero-Casal, 2017: Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA, 114, 10 57210 577, https://doi.org/10.1073/pnas.1712381114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farthing, M. W., and F. L. Ogden, 2017: Numerical solution of Richards’ equation: A review of advances and challenges. Soil Sci. Soc. Amer. J., 81, 1257–1269, https://doi.org/10.2136/sssaj2017.02.0058.

    • Crossref
    • Export Citation
  • Fast, J. D., and M. D. McCorcle, 1990: A two-dimensional numerical sensitivity study of the Great Plains low-level jet. Mon. Wea. Rev., 118, 151164, https://doi.org/10.1175/1520-0493(1990)118<0151:ATDNSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedora, M. A., and R. L. Beschta, 1989: Storm runoff simulation using an antecedent precipitation index (API) model. J. Hydrol., 112, 121133, https://doi.org/10.1016/0022-1694(89)90184-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., R. D. Robarts, M. Kumagai, H. P. Nachtnebel, E. Odada, and A. V. Zhulidov, 2015: Time for in situ renaissance. Science, 349, 685686, https://doi.org/10.1126/science.aac7358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A. D., 2000: Hydrologic modeling system HEC-HMS: Technical reference manual. USACE Doc. CPD-74B, 145 pp., http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical Reference Manual_(CPD-74B).pdf.

  • Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180, https://doi.org/10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19, 36593680, https://doi.org/10.1175/JCLI3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, https://doi.org/10.1038/ngeo1174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello, and E. Shevliakova, 2017: The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun., 8, 110, https://doi.org/10.1038/s41467-017-01038-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL027992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, K., 1919: Precipitation and run-off in the drainage basin of the Oder. Mon. Wea. Rev., 47, 743744, https://doi.org/10.1175/1520-0493(1919)47<743b:PARITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, C. R., S. H. Laseter, W. T. Swank, and J. M. Vose, 2011: Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol. Appl., 21, 20492067, https://doi.org/10.1890/10-2246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, https://doi.org/10.1175/JHM-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., 1989: A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths. Water Resour. Res., 25, 799815, https://doi.org/10.1029/WR025i005p00799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., and D. P. Lettenmaier, 1987: A Markov renewal model for rainfall occurrences. Water Resour. Res., 23, 875884, https://doi.org/10.1029/WR023i005p00875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeze, R. A., and R. L. Harlan, 1969: Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol., 9, 237258, https://doi.org/10.1016/0022-1694(69)90020-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeze, R. A., and J. A. Cherry, 1979: Groundwater. Prentice-Hall, 604 pp.

  • Frei, A., M. Tedesco, S. Lee, J. Foster, D. K. Hall, R. Kelly, and D. A. Robinson, 2012: A review of global satellite-derived snow products. Adv. Space Res., 50, 10071029, https://doi.org/10.1016/j.asr.2011.12.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritzsche, R., 1906: Niederschlag, Abfluss und Verdunstung auf den Landflächen der Erde. Z. Gewässerkunde, 7 (6), 321–370.

  • Funk, C., and J. P. Verdin, 2010: Real-time decision support systems: The Famine Early Warning System network. Satellite Rainfall Applications for Surface Hydrology, F. Hossain, Ed., Springer, 295–320.

    • Crossref
    • Export Citation
  • Gaborit, É., and Coauthors, 2017: A hydrological prediction system based on the SVS land-surface scheme: Efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin. Hydrol. Earth Syst. Sci., 21, 48254839, https://doi.org/10.5194/hess-21-4825-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., C. Birkett, and D. P. Lettenmaier, 2012: Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res., 48, W09504, https://doi.org/10.1029/2012WR012063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments—A review. J. Climate, 6, 419449, https://doi.org/10.1175/1520-0442(1993)006<0419:SOCSTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrido, F., M. Ghodrati, and M. Chendorain, 1999: Small-scale measurement of soil water content using a fiber optic sensor. Soil. Sci. Soc. Amer. J., 63, 15051512, https://doi.org/10.2136/sssaj1999.6361505x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, https://doi.org/10.1175/JHM-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., 2006: Analytical results for operational flash flood guidance. J. Hydrol., 317, 81103, https://doi.org/10.1016/j.jhydrol.2005.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., and R. L. Bras, 1984: A hydrologically useful station precipitation model. Water Resour. Res., 20, 15971610, https://doi.org/10.1029/WR020i011p01597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A., A. Boone, D. Yamazaki, B. Decharme, F. Papa, and N. Mognard, 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 16411665, https://doi.org/10.1175/JHM-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A., C. Peters-Lidard, M. Rodell, and P. D. Bates, 2017: Trade-off between cost and accuracy in large-scale surface water dynamic modeling. Water Resour. Res., 53, 49424955, https://doi.org/10.1002/2017WR020519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. Yu, and D. Yates, 2015: The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp., http://www.ral.ucar.edu/projects/wrf_hydro/.

  • Gourley, J. J., Z. L. Flamig, Y. Hong, and K. W. Howard, 2014: Evaluation of past, present and future tools for radar-based flash-flood prediction in the USA. Hydrol. Sci. J., 59, 13771389, https://doi.org/10.1080/02626667.2014.919391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, W. L., 1999: Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resour. Res., 35, 13051311, https://doi.org/10.1029/1999WR900016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, W. L., 2006: Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79, 336360, https://doi.org/10.1016/j.geomorph.2006.06.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, W. L., E. Wohl, T. Sinha, and J. L. Sabo, 2010: Sedimentation and sustainability of western American reservoirs. Water Resour. Res., 46, W12535, https://doi.org/10.1029/2009WR008836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, W. H., and G. A. Ampt, 1911: Studies on soil physics. J. Agric. Sci., 4, 124, https://doi.org/10.1017/S0021859600001441.

  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Wea. Rev., 106, 11531171, https://doi.org/10.1175/1520-0493(1978)106<1153:REFGSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grill, G., B. Lehner, A. E. Lumsdon, G. K. MacDonald, C. Zarfl, and C. Reidy Liermann, 2015: An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett., 10, 015001, https://doi.org/10.1088/1748-9326/10/1/015001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., and Coauthors, 2014: Land-surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors. Atmos. Chem. Phys., 14, 83438367, https://doi.org/10.5194/acp-14-8343-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., T. Skaugen, and D. P. Lettenmaier, 2006: Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett., 33, L08406, https://doi.org/10.1029/2006GL026047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, https://doi.org/10.1175/2011JHM1324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hager, W. H., 2001: Gauckler and the GMS formula. J. Hydraul. Eng., 127, 635638, https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(635).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, https://doi.org/10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., 2011: Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest region of North America. Hydrol. Earth Syst. Sci., 15, 14271443, https://doi.org/10.5194/hess-15-1427-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., S. Kanae, and T. Oki, 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327, 2224, https://doi.org/10.1016/j.jhydrol.2005.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, D. M., P. J. Wood, and J. P. Sadler, 2004: Ecohydrology and hydroecology: A “new paradigm”? Hydrol. Processes, 18, 34393445, https://doi.org/10.1002/hyp.5761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, D. M., S. Demuth, H. A. J. van Lanen, U. Looser, C. Prudhomme, G. Rees, K. Stahl, and L. M. Tallaksen, 2011: Large-scale river flow archives: Importance, current status and future needs. Hydrol. Processes, 25, 11911200, https://doi.org/10.1002/hyp.7794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hantush, M. S., and C. E. Jacob, 1955: Non-steady radial flow in an infinite leaky aquifer. Eos, Trans. Amer. Geophys. Union, 36, 95100, https://doi.org/10.1029/TR036i001p00095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Z. A. Samani, 1985: Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1, 9699, https://doi.org/10.13031/2013.26773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harley, B. M., 1971: A modular distributed model of catchment dynamics. Ph.D. dissertation, Massachusetts Institute of Technology, 537 pp.

  • Harman, C., and P. A. Troch, 2014: What makes Darwinian hydrology “Darwinian”? Asking a different kind of question about landscapes. Hydrol. Earth Syst. Sci., 18, 417433, https://doi.org/10.5194/hess-18-417-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrower, M. J., 2008: Hydrology, ideology, and the origins of irrigation in ancient southwest Arabia. Curr. Anthropol., 49, 497510, https://doi.org/10.1086/587890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatfield, J. L., K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson, and D. Wolfe, 2011: Climate impacts on agriculture: Implications for crop production. Agron. J., 103, 351370, https://doi.org/10.2134/agronj2010.0303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, J., and C. Velden, 2011: Supporting meteorological field experiment missions and postmission analysis with satellite digital data and products. Bull. Amer. Meteor. Soc., 92, 10091022, https://doi.org/10.1175/2011BAMS3138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazenberg, P., Y. Fang, P. Broxton, D. Gochis, G. Y. Niu, J. D. Pelletier, P. A. Troch, and X. Zeng, 2015: A hybrid-3D hillslope hydrological model for use in Earth system models. Water Resour. Res., 51, 82188239, https://doi.org/10.1002/2014WR016842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedrick, A., H. P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline, 2015: Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements. Cryosphere, 9, 1323, https://doi.org/10.5194/tc-9-13-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrologic cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helms, D., S. E. Phillips, and P. F. Reich, Eds., 2008: The history of snow survey and water supply forecasting: Interviews with U.S. Department of Agriculture pioneers. USDA NRCS, 321 pp., https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043910.pdf.

  • Henry, A. J., 1919: Floods on lower Rio Grande. Mon. Wea. Rev., 47, 742743, https://doi.org/10.1175/1520-0493(1919)47<742:FOLRG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, A. J., 1928: Horton and Grunsky on the hydrology of the Great Lakes. Mon. Wea. Rev., 56, 1114, https://doi.org/10.1175/1520-0493(1928)56<11:HAGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hershfield, D. M., 1961a: Rainfall frequency atlas of the United States: For durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Weather Bureau Technical Paper 40, 65 pp., http://www.nws.noaa.gov/oh/hdsc/PF_documents/TechnicalPaper_No40.pdf.

  • Hershfield, D. M., 1961b: Estimation of the probable maximum precipitation. ASCE J. Hydraul. Div., 87, 99116.

  • Hirsch, A. L., J. Kala, A. J. Pitman, C. Carouge, J. P. Evans, V. Haverd, and D. Mocko, 2014: Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the Southern Hemisphere. J. Hydrometeor., 15, 300319, https://doi.org/10.1175/JHM-D-13-05.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, F. M., and Coauthors, 2017: 2016 International Land Model Benchmarking (ILAMB) Workshop Report. Rep. DOE/SC-0186, 159 pp., https://doi.org/10.2172/1330803.

    • Crossref
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and S. A. Isard, 1994: A soil moisture climatology of Illinois. J. Climate, 7, 822833, https://doi.org/10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. T., and G. E. Likens, 2016: Hubbard Brook: The Story of a Forest Ecosystem. Yale University Press, 271 pp.

  • Hong, S.-Y., and E. Kalnay, 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 844, 842844, https://doi.org/10.1038/35048548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1933: The role of infiltration in the hydrologic cycle. Eos, Trans. Amer. Geophys. Union, 14, 446460, https://doi.org/10.1029/TR014i001p00446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1941: An approach toward a physical interpretation of infiltration-capacity. Soil. Sci. Soc. Amer. J., 5, 399417, https://doi.org/10.2136/sssaj1941.036159950005000C0075x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, https://doi.org/10.1002/qj.1991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and N. Katiyar, 2006: Improving flood forecasting in international river basins. Eos, Trans. Amer. Geophys. Union, 87, 49, https://doi.org/10.1029/2006EO050001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and D. P. Lettenmaier, 2006: Flood prediction in the future: Recognizing hydrologic issues in anticipation of the Global Precipitation Measurement mission. Water Resour. Res., 42, W11301, https://doi.org/10.1029/2006WR005202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., I. Jeyachandran, and R. Pielke Sr., 2010: Dam safety effects due to human alteration of extreme precipitation. Water Resour. Res., 46, W03301, https://doi.org/10.1029/2009WR007704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Coauthors, 2014: Crossing the “valley of death”: Lessons learned from implementing an operational satellite-based flood forecasting system. Bull. Amer. Meteor. Soc., 95, 12011207, https://doi.org/10.1175/BAMS-D-13-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., N. Biswas, M. Ashraf, and B. A. Zeeshan, 2017: Growing more with less in the Indus Valley using cell phones and satellite data. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO075143.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. Zaitchik, 2012: Drought indicators based on model assimilated GRACE terrestrial water storage observations. Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (Olympex). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H., M. H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar, 2017: Relation between precipitation location and antecedent/ subsequent soil moisture spatial patterns. J. Geophys. Res. Atmos., 122, 63196328, https://doi.org/10.1002/2016JD026042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G. J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, https://doi.org/10.1175/2009JTECHA1284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, M. K., 1940: The theory of ground-water motion. J. Geol., 48, 785944, https://doi.org/10.1086/624930.

  • Huff, F. A., and S. A. Changnon, 1964: A model 10-inch rainstorm. J. Appl. Meteor., 3, 587599, https://doi.org/10.1175/1520-0450(1964)003<0587:AMIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphrey, V., L. Gudmundsson, and S. I. Seneviratne, 2016: Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys., 37, 357395, https://doi.org/10.1007/s10712-016-9367-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Idso, S. B., R. D. Jackson, R. J. Reginato, B. A. Kimball, and F. S. Nakayama, 1975: The dependence of bare soil albedo on soil water content. J. Appl. Meteor., 14, 109113, https://doi.org/10.1175/1520-0450(1975)014<0109:TDOBSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, C. E., 1940: On the flow of water in an elastic artesian aquifer. Trans. Amer. Geophys. Union, 21, 574, https://doi.org/10.1029/TR021i002p00574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jasechko, S., Z. Sharp, J. Gibson, S. Birks, Y. Yi, and P. Fawcett, 2013: Terrestrial water fluxes dominated by transpiration. Nature, 496, 347350, https://doi.org/10.1038/nature11983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., G. Y. Niu, and Z. L. Yang, 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J. Geophys. Res., 114, D06109, https://doi.org/10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. M., and Coauthors, 2018: Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ., 41, 576588, https://doi.org/10.1111/pce.13121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julien, P. Y., B. Saghafian, and F. L. Ogden, 1995: Raster-based hydrologic modeling of spatially-varied surface runoff. J. Amer. Water Resour. Assoc., 31, 523536, https://doi.org/10.1111/j.1752-1688.1995.tb04039.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, https://doi.org/10.5194/bg-6-2001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., T. R. McVicar, and M. F. McCabe, 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, https://doi.org/10.1007/s10712-008-9037-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. E., 2009: The AMSR-E snow depth algorithm: Description and initial results. J. Remote Sens. Soc. Japan, 29, 307317, https://doi.org/10.11440/rssj.29.307.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. E., A. T. Chang, L. Tsang, and J. L. Foster, 2003: A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41, 230242, https://doi.org/10.1109/TGRS.2003.809118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenny, J., N. Barber, S. Hutson, K. S. Linsey, J. K. Lovelace, and M. Maupin, 2009: Estimated use of water in the United States in 2005. USGS Circular 1344, 52 pp., https://pubs.usgs.gov/circ/1344/pdf/c1344.pdf.

    • Crossref
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2016: Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ., 180, 4063, https://doi.org/10.1016/j.rse.2016.02.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, https://doi.org/10.1002/met.284.

  • Kinter, J. L., and J. Shukla, 1990: The Global Hydrologic and Energy Cycles: Suggestions for studies in the pre-Global Energy and Water Cycle Experiment (GEWEX) period. Bull. Amer. Meteor. Soc., 71, 181189, https://doi.org/10.1175/1520-0477(1990)071<0181:TGHAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D., R. Adler, D. Adler, C. Peters-Lidard, and G. Huffman, 2012: Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J. Hydrometeor., 13, 15361551, https://doi.org/10.1175/JHM-D-12-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistenmacher, M., and A. P. Georgakakos, 2015: Assessment of reservoir system variable forecasts. Water Resour. Res., 51, 34373458, https://doi.org/10.1002/2014WR016564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemeš, V., 1988: A hydrological perspective. J. Hydrol., 100, 328, https://doi.org/10.1016/0022-1694(88)90179-5.

  • Kollet, S., and Coauthors, 2017: The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res., 53, 867890, https://doi.org/10.1002/2016WR019191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • König, M., and M. Sturm, 1998: Mapping snow distribution in the Alaskan Arctic using aerial photography and topographic relationships. Water Resour. Res., 34, 34713483, https://doi.org/10.1029/98WR02514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., S. Reed, M. Smith, Z. Zhang, and D.-J. Seo, 2004: Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. J. Hydrol., 291, 297318, https://doi.org/10.1016/j.jhydrol.2003.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 2697–2715, https://doi.org/10.1029/91JD01696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000a: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000b: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646, https://doi.org/10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, S., and Coauthors, 2011: Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4, 481499, https://doi.org/10.1002/eco.176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing earth system science. Bull. Amer. Meteor. Soc., 94, 365375, https://doi.org/10.1175/BAMS-D-11-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, https://doi.org/10.1029/2006GL028679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuichling, E., 1889: The relation between the rainfall and the discharge of sewers in populous districts. Trans. Amer. Soc. Civ. Eng., 20, 156.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., 2015: Hydrocomplexity: Addressing water security and emergent environmental risks. Water Resour. Res., 51, 58275838, https://doi.org/10.1002/2015WR017342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., S. Wang, D. M. Mocko, C. D. Peters-Lidard, and Y. Xia, 2017: Similarity assessment of land surface model outputs in the North American Land Data Assimilation System. Water Resour. Res., 53, 89418965, https://doi.org/10.1002/2017WR020635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., L. J. Mata, N. W. Arnell, P. Döll, B. Jimenez, K. Miller, T. Oki, Z. Şen, and I. Shiklomanov, 2008: The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J., 53, 310, https://doi.org/10.1623/hysj.53.1.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon, 2013: Probable maximum precipitation and climate change. Geophys. Res. Lett., 40, 14021408, https://doi.org/10.1002/grl.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lettau, H., 1969: Evaporation climatonomy. Mon. Wea. Rev., 97, 691699, https://doi.org/10.1175/1520-0493(1969)097<0691:IANATN>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., D. Alsdorf, J. Dozier, G. J. Huffman, M. Pan, and E. F. Wood, 2015: Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res., 51, 73097342, https://doi.org/10.1002/2015WR017616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., M. Huang, Y. Qian, and X. Liang, 2011: Climate-soil-vegetation control on groundwater table dynamics and its feedbacks in a climate model. Climate Dyn., 36, 5781, https://doi.org/10.1007/s00382-010-0746-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhomme, J. P., E. Elguero, A. Chehbouni, and G. Boulet, 1998: Stomatal control of transpiration: Examination of Monteith’s formulation of canopy resistance. Water Resour. Res., 34, 23012308, https://doi.org/10.1029/98WR01339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 415, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, A. Tokay, and L. F. Bliven, 2016: Retrieval of snow properties for Ku- and Ka-band dual-frequency radar. J. Appl. Meteor. Climatol., 55, 18451858, https://doi.org/10.1175/JAMC-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., and G. B. Whitham, 1955: On kinematic waves. I. Flood movement in long rivers. Proc. Roy. Soc. London, 229A, 281–316, https://doi.org/10.1098/rspa.1955.0088.

    • Crossref
    • Export Citation
  • Ligon, F. K., W. E. Dietrich, and W. J. Trush, 1995: Downstream ecological effects of dams. BioScience, 45, 183192, https://doi.org/10.2307/1312557.

  • Liu, F., R. Parmenter, P. D. Brooks, M. H. Conklin, and R. C. Bales, 2008: Seasonal and interannual variation of streamflow pathways and biogeochemical implications in semi-arid, forested catchments in Valles Caldera, New Mexico. Ecohydrology, 1, 239252, https://doi.org/10.1002/eco.22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2012: Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci., 16, 38633887, https://doi.org/10.5194/hess-16-3863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M. H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, https://doi.org/10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., and F. Lott, 2010: Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas. Water Resour. Res., 46, W00D16, https://doi.org/10.1029/2008WR007035.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and E. F. Wood, 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866884, https://doi.org/10.1175/2008JHM980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., and Coauthors, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 12861289, https://doi.org/10.1126/science.1130776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., A. A. Arendt, D. D. Rowlands, J. J. McCarthy, and C. F. Larsen, 2008: Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54, 767777, https://doi.org/10.3189/002214308787779933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvovich, M. I., 1972: World water balance (general report). IAHS Publ., 93, 401–415.

  • Machguth, H., O. Eisen, F. Paul, and M. Hoelzle, 2006: Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. Geophys. Res. Lett., 33, L13503, https://doi.org/10.1029/2006GL026576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackay, D. S., D. E. Roberts, B. E. Ewers, J. S. Sperry, N. G. McDowell, and W. T. Pockman, 2015: Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour. Res., 51, 61566176, https://doi.org/10.1002/2015WR017244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahanama, S., B. Livneh, R. Koster, D. Lettenmaier, and R. Reichle, 2012: Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrometeor., 13, 189203, https://doi.org/10.1175/JHM-D-11-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., 1993: Handbook of Hydrology. McGraw-Hill, 1424 pp.

  • Mallick, K., A. Jarvis, J. B. Fisher, K. P. Tu, E. Boegh, and D. Niyogi, 2013: Latent heat flux and canopy conductance based on Penman–Monteith, Priestley–Taylor equation, and Bouchet’s complementary hypothesis. J. Hydrometeor., 14, 419442, https://doi.org/10.1175/JHM-D-12-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the Earth’s surface. Mon. Wea. Rev., 97, 739774, https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manning, R., 1891: On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Irel., 20, 161207.

  • Maquin, M., E. Mouche, C. Mügler, M.-C. Pierret, and D. Viville, 2017: A soil column model for predicting the interaction between water table and evapotranspiration. Water Resour. Res., 53, 58775898, https://doi.org/10.1002/2016WR020183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., F. Dominguez, and G. Miguez-Macho, 2016: Effects of a groundwater scheme on the simulation of soil moisture and evapotranspiration over southern South America. J. Hydrometeor., 17, 29412957, https://doi.org/10.1175/JHM-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. R., 1969: The average annual water balance of the world. Proc. Symp. on Water Balance in North America, Banff, AB, Canada, American Water Resource Association, 29–40.

  • Matott, L. S., 2017: OSTRICH: An optimization software tool, documentation and user's guide, version 17.12.19. University at Buffalo Center for Computational Research, 79 pp., http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html.

  • Maxwell, R. M., and N. L. Miller, 2005: Development of a coupled land surface and groundwater model. J. Hydrometeor., 6, 233247, https://doi.org/10.1175/JHM422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and S. J. Kollet, 2008: Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci., 1, 665669, https://doi.org/10.1038/ngeo315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and L. E. Condon, 2016: Connections between groundwater flow and transpiration partitioning. Science, 353, 377380, https://doi.org/10.1126/science.aaf7891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood, 2016: The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev., 9, 283305, https://doi.org/10.5194/gmd-9-283-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., and Coauthors, 2017: The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci., 21, 38793914, https://doi.org/10.5194/hess-21-3879-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G. T., 1940: Flood routing. Flood Control, Engineer School Fort Belvoir, 127–177.

  • McDonald, M. G., and A. W. Harbaugh, 2003: The history of MODFLOW. Groundwater, 41, 280283, https://doi.org/10.1111/j.1745-6584.2003.tb02591.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonnell, J. J., 2017: Beyond the water balance. Nat. Geosci., 10, 396, https://doi.org/10.1038/ngeo2964.

  • McDonnell, J. J., and Coauthors, 2007: Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res., 43, W07301, https://doi.org/10.1029/2006WR005467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDowell, N. G., and C. D. Allen, 2015: Darcy’s law predicts widespread forest mortality under climate warming. Nat. Climate Change, 5, 669672, https://doi.org/10.1038/nclimate2641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDowell, N. G., S. T. Michaletz, K. E. Bennett, K. C. Solander, C. Xu, R. M. Maxwell, and R. S. Middleton, 2018: Predicting chronic climate-driven disturbances and their mitigation. Trends Ecol. Evol., 33, 1527, https://doi.org/10.1016/j.tree.2017.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNally, A., and Coauthors, 2017: A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mein, R. G., and C. L. Larson, 1973: Modeling infiltration during a steady rain. Water Resour. Res., 9, 384394, https://doi.org/10.1029/WR009i002p00384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinzer, O. E., 1923: The occurrence of groundwater in the United States, with a discussion of principles. Geological Survey Water-Supply Paper 489, 321 pp., https://pubs.er.usgs.gov/publication/wsp489.

  • Miguez-Macho, G., and Y. Fan, 2012: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res., 117, D15113, https://doi.org/10.1029/2012JD017539.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Y. Fan, C. P. Weaver, R. Walko, and A. Robock, 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, https://doi.org/10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Miller, E. E., and R. D. Miller, 1956: Physical theory for capillary flow phenomena. J. Appl. Phys., 27, 324332, https://doi.org/10.1063/1.1722370.

  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, https://doi.org/10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415, 514517, https://doi.org/10.1038/415514a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573–574, https://doi.org/10.1126/science.1151915.

    • Crossref
    • Export Citation
  • Mintz, Y., 1984: The sensitivity of numerically simulated climates to land-surface conditions. The Global Climate, J. H. Houghton, Ed., Cambridge University Press, 79–105.

  • Mintz, Y., and Y. V. Serafini, 1992: A global monthly climatology of soil moisture and water balance. Climate Dyn., 8, 1327, https://doi.org/10.1007/BF00209340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mladenova, I. E., and Coauthors, 2014: Remote monitoring of soil moisture using passive microwave-based techniques—Theoretical basis and overview of selected algorithms for AMSR-E. Remote Sens. Environ., 144, 197213, https://doi.org/10.1016/j.rse.2014.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mockus, V., 1972: Section 4 Hydrology: Chapter 21 Design Hydrographs. SCS National Engineering Handbook, 127 pp., https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/NEHhydrology/ch21.pdf.

  • Mohanty, B. P., M. H. Cosh, V. Lakshmi, and C. Montzka, 2017: Soil moisture remote sensing: State-of-the-science. Vadose Zone J., 16, https://doi.org/10.2136/vzj2016.10.0105.

    • Crossref
    • Export Citation
  • Molotch, N. P., P. D. Brooks, S. P. Burns, M. Litvak, R. K. Monson, J. R. McConnell, and K. Musselman, 2009: Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology, 2, 129142, https://doi.org/10.1002/eco.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monson, O. W., 1934: The snow survey as an index to summer precipitation. Mon. Wea. Rev., 62, 322330, https://doi.org/10.1175/1520-0493(1934)62<322:TSSAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montanari, A., J. Bahr, G. Blöschl, X. Cai, D. S. Mackay, A. M. Michalak, H. Rajaram, and G. Sander, 2015: Fifty years of Water Resources Research: Legacy and perspectives for the science of hydrology. Water Resour. Res., 51, 67976803, https://doi.org/10.1002/2015WR017998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, https://doi.org/10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, https://doi.org/10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulvaney, T. J., 1851: On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Proc. Inst. Civ. Eng. Irel., 4, 1833.

    • Search Google Scholar
    • Export Citation
  • Murray, J., 1887: On the total annual rainfall on the land of the globe, and the relation of rainfall to the annual discharge of rivers. Scott. Geogr. Mag., 3, 6577, https://doi.org/10.1080/14702548708554511.

    • Search Google Scholar
    • Export Citation
  • Nagler, F. A., 1933: Certain flood-flow phenomena of Iowa Rivers. Mon. Wea. Rev., 61, 57, https://doi.org/10.1175/1520-0493(1933)61<5:CFPOIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 700 pp., https://doi.org/10.17226/24938.

    • Crossref
    • Export Citation
  • National Research Council, 1991: Opportunities in the Hydrologic Sciences. National Academies Press, 371 pp., https://doi.org/10.17226/1543.

    • Crossref
    • Export Citation
  • National Research Council, 2006: Completing the Forecast: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts. National Academies Press, 124 pp., https://doi.org/10.17226/11699.

    • Crossref
    • Export Citation
  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 454 pp., https://doi.org/10.17226/11820.

    • Crossref
    • Export Citation
  • Nearing, G. S., D. M. Mocko, C. D. Peters-Lidard, S. V. Kumar, and Y. Xia, 2016: Benchmarking NLDAS-2 soil moisture and evapotranspiration to separate uncertainty contributions. J. Hydrometeor., 17, 745759, https://doi.org/10.1175/JHM-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., S. W. Running, R. R. Nemani, and S. W. Running, 1989: Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteor., 28, 276284, https://doi.org/10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, B. D., and Coauthors, 2006: Ecohydrology of water-limited environments: A scientific vision. Water Resour. Res., 42, W06302, https://doi.org/10.1029/2005WR004141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., and Coauthors, 2017: Exploring trends through “RainSphere”: Research data transformed into public knowledge. Bull. Amer. Meteor. Soc., 98, 653658, https://doi.org/10.1175/BAMS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P., A. Thorstensen, S. Sorooshian, K. Hsu, A. Aghakouchak, H. Ashouri, H. Tran, and D. Braithwaite, 2018: Global precipitation trends across spatial scales using satellite observations. Bull. Amer. Meteor. Soc., 99, 689697, https://doi.org/10.1175/BAMS-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and J.-A. Kong, 1977: Theory for passive microwave remote sensing of near-surface soil moisture. J. Geophys. Res., 82, 31083118, https://doi.org/10.1029/JB082i020p03108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noaman, M. N., and D. El Quosy, 2017: Hydrology of the Nile and ancient agriculture. Irrigated Agriculture in Egypt: Past, Present and Future, M. Staoh and S. Aboulroos, Eds., Springer, 9–28, https://doi.org/10.1007/978-3-319-30216-4_2.

    • Crossref
    • Export Citation
  • O’Connell, P. E., and R. T. Clarke, 1981: Adaptive hydrological forecasting—A review. Hydrol. Sci. Bull., 26, 179205, https://doi.org/10.1080/02626668109490875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohara, N., M. L. Kavvas, S. Kure, Z. Q. Chen, S. Jang, and E. Tan, 2011: Physically based estimation of maximum precipitation over American River watershed, California. J. Hydrol. Eng., 16, 351361, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., 1999: The Global Water Cycle. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney, Eds., Cambridge University Press, 10–29.

  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and water resources. Science, 313, 10681072, https://doi.org/10.1126/science.1128845.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • O’Neill, P. E., S. Chan, E. G. Njoku, T. J. Jackson, and R. Bindlish, 2015: Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document Level 2 & 3 Soil Moisture (Passive) Data Products. JPL D-66480, 80 pp., https://smap.jpl.nasa.gov/documents/.

  • Owe, M., R. de Jeu, and J. Walker, 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39, 16431654, https://doi.org/10.1109/36.942542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owe, M., R. de Jeu, and T. Holmes, 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, https://doi.org/10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, https://doi.org/10.1175/2009JHM1116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, T., A. Wood, K. Werner, and R. Tama-Sweet, 2014: Western U.S. water supply forecasting: A tradition evolves. Eos, Trans. Amer. Geophys. Union, 95, 2829, https://doi.org/10.1002/2014EO030007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., K. Rittger, C. McKenzie, P. Slaughter, R. E. Davis, and J. Dozier, 2009: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ., 113, 868879, https://doi.org/10.1016/j.rse.2009.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., and Coauthors, 2016: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ., 184, 139152, https://doi.org/10.1016/j.rse.2016.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paiva, R. C. D., W. Collischonn, M. P. Bonnet, and L. G. G. De Gonçalves, 2012: On the sources of hydrological prediction uncertainty in the Amazon. Hydrol. Earth Syst. Sci., 16, 31273137, https://doi.org/10.5194/hess-16-3127-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pechlivanidis, I. G., T. Bosshard, H. Spångmyr, G. Lindström, D. Gustafsson, and B. Arheimer, 2014: Uncertainty in the Swedish operational hydrological forecasting systems. Vulnerability, Uncertainty, and Risk, American Society of Civil Engineers, 253–262, https://doi.org/10.1061/9780784413609.026.

    • Crossref
    • Export Citation
  • Peck, E. L., 1980: Design of precipitation networks. Bull. Amer. Meteor. Soc., 61, 894906, https://doi.org/10.1175/1520-0477-61.8.894.

  • Peck, E. L., and M. J. Brown, 1962: An approach to the development of isohyetal maps for mountainous areas. J. Geophys. Res., 67, 681694, https://doi.org/10.1029/JZ067i002p00681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., A. Loew, O. Merlin, and N. E. C. Verhoest, 2017: A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys., 55, 341366, https://doi.org/10.1002/2016RG000543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120–145, https://doi.org/10.1098/rspa.1948.0037.

    • Crossref
    • Export Citation
  • Penn, C. A., L. A. Bearup, R. M. Maxwell, and D. W. Clow, 2016: Numerical experiments to explain multiscale hydrological responses to mountain pine beetle tree mortality in a headwater watershed. Water Resour. Res., 52, 31433161, https://doi.org/10.1002/2015WR018300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peñuelas, J., M. F. Garbulsky, and I. Filella, 2011: Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New Phytol., 191, 596599, https://doi.org/10.1111/j.1469-8137.2011.03791.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peral, E., and Coauthors, 2018: Radar technologies for Earth remote sensing from CubeSat Platforms. Proc. IEEE, 106, 404418, https://doi.org/10.1109/JPROC.2018.2793179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2017: Scaling, similarity, and the fourth paradigm for hydrology. Hydrol. Earth Syst. Sci., 21, 37013713, https://doi.org/10.5194/hess-21-3701-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfister, L., H. H. G. Savenije, and F. Fenicia, 2009: Leonardo Da Vinci’s Water Theory: On the Origin and Fate of Water. International Association of Hydrological Sciences, 92 pp.

  • Philip, J. R., 1957: The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci., 83, 345357, https://doi.org/10.1097/00010694-195705000-00002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., P. Friedlingstein, P. Ciais, N. de Noblet-Ducoudre, D. Labat, and S. Zaehle, 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247, https://doi.org/10.1073/pnas.0707213104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Porporato, A., and I. Rodríguez-Iturbe, 2002: Ecohydrology—A challenging multidisciplinary research perspective. Hydrol. Sci. J., 47, 811821, https://doi.org/10.1080/02626660209492985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and Coauthors, 2017: Hydrological outlook UK: An operational streamflow and groundwater level forecasting system at monthly to seasonal time scales. Hydrol. Sci. J., 62, 27532768, https://doi.org/10.1080/02626667.2017.1395032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., T. W. Ford, J. K. Wang, A. Khong, E. Harris, T. Lindgren, D. W. Goldberg, and Z. Li, 2016: The North American Soil Moisture Database: Development and applications. Bull. Amer. Meteor. Soc., 97, 14411459, https://doi.org/10.1175/BAMS-D-13-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, M., M. Sulis, and S. J. Kollet, 2015: The subsurface-land surface-atmosphere connection under convective conditions. Adv. Water Resour., 83, 240249, https://doi.org/10.1016/j.advwatres.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajaram, H., and Coauthors, 2015: A reflection on the first 50 years of Water Resources Research. Water Resour. Res., 51, 78297837, https://doi.org/10.1002/2015WR018089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rakhecha, P. R., and V. P. Singh, 2009: Greatest point and areal rainfalls. Applied Hydrometeorology, Springer, 163–189.

    • Crossref
    • Export Citation
  • Ramsay, B., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 15371546, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America. Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403426, https://doi.org/10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. Part II: Large-scale water balance investigations. Mon. Wea. Rev., 96, 720734, https://doi.org/10.1175/1520-0493(1968)096<0720:AWVTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastogi, D., and Coauthors, 2017: Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin. J. Geophys. Res. Atmos., 122, 48084828, https://doi.org/10.1002/2016JD026001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., D. L. Brakensiek, and K. E. Saxtonn, 1982: Estimation of Soil Water Properties. Trans. ASAE, 25, 13161320, https://doi.org/10.13031/2013.33720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reager, J. T., A. S. Gardner, J. S. Famiglietti, D. N. Wiese, A. Eicker, and M. H. Lo, 2016: A decade of sea level rise slowed by climate-driven hydrology. Science, 351, 699703, https://doi.org/10.1126/science.aad8386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.-J. Seo, and DMIP Participants, 2004: Overall distributed model intercomparison project results. J. Hydrol., 298, 2760, https://doi.org/10.1016/j.jhydrol.2004.03.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, https://doi.org/10.1016/j.jhydrol.2007.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reggiani, P., M. Sivapalan, and S. Majid Hassanizadeh, 1998: A unifying framework for watershed thermodynamics: Balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Adv. Water Resour., 22, 367398, https://doi.org/10.1016/S0309-1708(98)00012-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reggiani, P., S. M. Hassanizadeh, M. Sivapalan, and W. G. Gray, 1999: A unifying framework for watershed thermodynamics: constitutive relationships. Adv. Water Resour., 23, 1539, https://doi.org/10.1016/S0309-1708(99)00005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reggiani, P., M. Sivapalan, and S. M. Hassanizadeh, 2000: Conservation equations governing hillslope responses: Exploring the physical basis of water balance. Water Resour. Res., 36, 18451863, https://doi.org/10.1029/2000WR900066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reggiani, P., M. Sivapalan, S. M. Hassanizadeh, and W. G. Gray, 2001: Coupled equations for mass and momentum balance in a stream network: theoretical derivation and computational experiments. Proc. Roy. Soc. London, 457A, 157189, https://doi.org/10.1098/rspa.2000.0661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. Physics, 1, 318817, https://doi.org/10.1063/1.1745010.

  • Richey, A. S., B. F. Thomas, M. H. Lo, J. S. Famiglietti, S. Swenson, and M. Rodell, 2015: Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res., 51, 51985216, https://doi.org/10.1002/2015WR017351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, B. D., J. V. Baumgartner, J. Powell, and D. P. Braun, 1996: a method for assessing hydrologic alteration within ecosystems. Conserv. Biol., 10, 11631174, https://doi.org/10.1046/j.1523-1739.1996.10041163.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rihani, J. F., F. K. Chow, and R. M. Maxwell, 2015: Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks. J. Adv. Model. Earth Syst., 7, 915937, https://doi.org/10.1002/2014MS000371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman, 2003: A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J., 2, 444, https://doi.org/10.2136/vzj2003.4440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and Coauthors, 2008: Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J., 7, 358, https://doi.org/10.2136/vzj2007.0143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, https://doi.org/10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and J. S. Famiglietti, 2001: An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 37, 13271340, https://doi.org/10.1029/2000WR900306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. Chen, H. Kato, J. S. Famiglietti, J. Nigro, and C. R. Wilson, 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159166, https://doi.org/10.1007/s10040-006-0103-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, https://doi.org/10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., E. B. McWilliams, J. S. Famiglietti, H. K. Beaudoing, and J. Nigro, 2011: Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Processes, 25, 40824092, https://doi.org/10.1002/hyp.8369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, https://doi.org/10.1175/JCLI-D-14-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M.-H. Lo, 2018: Emerging trends in global freshwater availability. Nature, 557, 651659, https://doi.org/10.1038/s41586-018-0123-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., 2000: Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resour. Res., 36, 39, https://doi.org/10.1029/1999WR900210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., and J. M. Mejía, 1974a: On the transformation of point rainfall to areal rainfall. Water Resour. Res., 10, 729735, https://doi.org/10.1029/WR010i004p00729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., and J. M. Mejía, 1974b: The design of rainfall networks in time and space. Water Resour. Res., 10, 713728, https://doi.org/10.1029/WR010i004p00713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenthal, W., and J. Dozier, 1996: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res., 32, 115130, https://doi.org/10.1029/95WR02718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouhani, H., and R. Leconte, 2016: A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using regional climate model output. Water Resour. Res., 52, 73477365, https://doi.org/10.1002/2016WR018603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowlands, D. D., S. B. Luthcke, S. M. Klosko, F. G. R. Lemoine, D. S. Chinn, J. J. McCarthy, C. M. Cox, and O. B. Anderson, 2005: Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32, L04310, https://doi.org/10.1029/2004GL021908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowntree, P. R., and J. A. Bolton, 1983: Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart. J. Roy. Meteor. Soc., 109, 501526, https://doi.org/10.1002/qj.49710946105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahoo, S., T. Russo, and U. Lall, 2016: Comment on “Quantifying renewable groundwater stress with GRACE” by Alexandra S. Richey et al. Water Resour. Res., 52, 41844187, https://doi.org/10.1002/2015WR018085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas, F. R., and Coauthors, 2018: Towards real-time continental scale streamflow simulation in continuous and discrete space. J. Amer. Water Resour. Assoc., 54, 727, https://doi.org/10.1111/1752-1688.12586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., R. Kumar, and S. Attinger, 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samouëlian, A., I. Cousin, A. Tabbagh, A. Bruand, and G. Richard, 2005: Electrical resistivity survey in soil science: A review. Soil Tillage Res., 83, 173193, https://doi.org/10.1016/j.still.2004.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., T. M. Hamill, R. Buizza, and M. Clark, 2007: HEPEX: The Hydrological Ensemble Prediction Experiment. Bull. Amer. Meteor. Soc., 88, 15411548, https://doi.org/10.1175/BAMS-88-10-1541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, https://doi.org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmugge, T., P. Gloersen, T. Wilheit, and F. Geiger, 1974: Remote sensing of soil moisture with microwave radiometers. J. Geophys. Res., 79, 317323, https://doi.org/10.1029/JB079i002p00317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, G., D. Kirschbaum, E. Anderson, and K. Rashid, 2016: Role of Earth observation data in disaster response and recovery: From science to capacity building. Earth Science Satellite Applications, F. Hossain, Ed., Springer, 119–146, https://doi.org/10.1007/978-3-319-33438-7_5.

    • Crossref
    • Export Citation
  • Sellers, P. J., and F. G. Hall, 1992: FIFE in 1992: Results, scientific gains, and future research directions. J. Geophys. Res., 97, 19 09119 109, https://doi.org/10.1029/92JD02173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1995: The Boreal Ecosystem– Study (BOREAS): An overview and early results from the 1994 field year. Bull. Amer. Meteor. Soc., 76, 15491577, https://doi.org/10.1175/1520-0477(1995)076<1549:TBESAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senay, G. B., M. E. Budde, and J. P. Verdin, 2011: Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agric. Water Manage., 98, 606618, https://doi.org/10.1016/j.agwat.2010.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, https://doi.org/10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, L. K., 1932: Streamflow from rainfall by the unit-hydrograph method. Eng. News-Rec., 108, 501505.

  • Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737739, https://doi.org/10.1126/science.1247620.

  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuman, J. W., 1929: Correlation between rainfall and run-off. Mon. Wea. Rev., 57, 179184, https://doi.org/10.1175/1520-0493(1929)57<179:CBRAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 2007: Putting the “vap” into evaporation. Hydrol. Earth Syst. Sci., 11, 210244, https://doi.org/10.5194/hess-11-210-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 2008: Evapotranspiration measurement methods. SouthWest Hydrology, Vol. 7, SAHRA, The University of Arizona, Tucson, AZ, 22–23, http://web.sahra.arizona.edu/swhydro/archive/V7_N1/feature3.pdf.

  • Shuttleworth, W. J., and J. S. Wallace, 1985: Evaporation from sparse crops - An energy combination theory. Quart. J. Roy. Meteor. Soc., 111, 839855, https://doi.org/10.1002/qj.49711146910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sidle, R. C., and Y. Onda, 2004: Hydrogeomorphology: Overview of an emerging science. Hydrol. Processes, 18, 597602, https://doi.org/10.1002/hyp.1360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R., K. Subramanian, and J. C. Refsgaard, 1999: Hydrological modelling of a small watershed using MIKE SHE for irrigation planning. Agric. Water Manage., 41, 149166, https://doi.org/10.1016/S0378-3774(99)00022-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, V. P., 2018: Hydrologic modeling: Progress and future directions. Geosci. Lett., 5, 15, https://doi.org/10.1186/s40562-018-0113-z.

  • Singh, V. P., and D. A. Woolhiser, 2002: Mathematical modeling of watershed hydrology. J. Hydrol. Eng., 7, 270292, https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., 2005: Pattern, process and function: Elements of a unified theory of hydrology at the catchment scale. Encyclopedia of Hydrological Sciences, M. G. Anderson and J. J. McDonnell, Eds., 1–27, John Wiley & Sons, Ltd, https://doi.org/10.1002/0470848944.hsa012.

    • Crossref
    • Export Citation
  • Sivapalan, M., 2018: From engineering hydrology to Earth system science: Milestones in the transformation of hydrologic science. Hydrol. Earth Syst. Sci., 22, 16651693, https://doi.org/10.5194/hess-2017-670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and E. F. Wood, 1987: A multidimensional model of nonstationary space-time rainfall at the catchment scale. Water Resour. Res., 23, 12891299, https://doi.org/10.1029/WR023i007p01289. https://doi.org/10.1002/2017WR021396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and P. C. D. Milly, 1989: On the relationship between the time condensation approximation and the flux concentration relation. J. Hydrol., 105, 357367, https://doi.org/10.1016/0022-1694(89)90113-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and G. Blöschl, 2017: The growth of hydrological understanding: technologies, ideas, and societal needs shape the field. Water Resour. Res., 53, 81378146,

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. B., K. P. Georgakakos, and X. Liang, 2004: The distributed model intercomparison project (DMIP). J. Hydrol., 298, 13, https://doi.org/10.1016/j.jhydrol.2004.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2013: The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments. J. Hydrol., 507, 300329, https://doi.org/10.1016/j.jhydrol.2013.08.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sollins, P., and F. M. McCorison, 1981: Nitrogen and carbon solution chemistry of an old growth coniferous forest watershed before and after cutting. Water Resour. Res., 17, 14091418, https://doi.org/10.1029/WR017i005p01409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperry, J. S., M. D. Venturas, W. R. L. Anderegg, M. Mencuccini, D. S. Mackay, Y. Wang, and D. M. Love, 2017: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ., 40, 816830, https://doi.org/10.1111/pce.12852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, T. N., 2000: Eight Lectures on India’s Economic Reforms. T. N. Srinivasan, Ed., Oxford University Press, 114 pp.

    • Crossref
    • Export Citation
  • Su, H., M. F. McCabe, E. F. Wood, Z. Su, and J. H. Prueger, 2005: Modeling Evapotranspiration during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. Hydrometeor., 6, 910922, https://doi.org/10.1175/JHM466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 85100, https://doi.org/10.5194/hess-6-85-2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutanto, S. J., and Coauthors, 2014: HESS Opinions “A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation.” Hydrol. Earth Syst. Sci., 18, 28152827, https://doi.org/10.5194/hess-18-2815-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 31743189, https://doi.org/10.1175/MWR3248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, https://doi.org/10.1073/pnas.1116706108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2006: Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J. Hydrometeor., 7, 252270, https://doi.org/10.1175/JHM478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., P. J.-F. Yeh, J. Wahr, and J. Famiglietti, 2006: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett., 33, L16401, https://doi.org/10.1029/2006GL026962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tague, C. L., and L. E. Band, 2001: Evaluating explicit and implicit routing for watershed hydro-ecological models of forest hydrology at the small catchment scale. Hydrol. Processes, 15, 14151439, https://doi.org/10.1002/hyp.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamisiea, M. E., E. W. Leuliette, J. L. Davis, and J. X. Mitrovica, 2005: Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys. Res. Lett., 32, L20501, https://doi.org/10.1029/2005GL023961.

    • Crossref
    • Export Citation
  • Tao, W.-K., and Coauthors, 2016: TRMM latent heating retrieval: Applications and comparisons with field campaigns and large-scale analyses. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0013.1.

    • Crossref
    • Export Citation
  • Tapiador, F. J., C. F. Angelis, N. Viltard, F. Cuartero, and M. de Castro, 2011: On the suitability of regional climate models for reconstructing climatologies. Atmos. Res., 101, 739751, https://doi.org/10.1016/j.atmosres.2011.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, https://doi.org/10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2017: On the optimal measuring area for pointwise rainfall estimation: A dedicated experiment with 14 laser disdrometers. J. Hydrometeor., 18, 753760, https://doi.org/10.1175/JHM-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004: GRACE measurements of mass variability in the Earth system. Science, 305, 503505, https://doi.org/10.1126/science.1099192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tappeiner, U., G. Tappeiner, J. Aschenwald, E. Tasser, and B. Ostendorf, 2001: GIS-based modelling of spatial pattern of snow cover duration in an alpine area. Ecol. Modell., 138, 265275, https://doi.org/10.1016/S0304-3800(00)00407-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., 2015: Detecting soil moisture impacts on convective initiation in Europe. Geophys. Res. Lett., 42, 46314638, https://doi.org/10.1002/2015GL064030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. De Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theis, C. V., 1935: The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos, Trans. Amer. Geophys. Union, 16, 519524, https://doi.org/10.1029/TR016i002p00519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thielen, J., J. Bartholmes, M.-H. Ramos, and A. de Roo, 2009: The European Flood Alert System – Part 1: Concept and development. Hydrol. Earth Syst. Sci., 13, 125140, https://doi.org/10.5194/hess-13-125-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, A. S., and H. R. Oliver, 1977: On Penman’s equation for estimating regional evaporation. Quart. J. Roy. Meteor. Soc., 103, 345357, https://doi.org/10.1002/qj.49710343610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014: A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, https://doi.org/10.1002/2014GL059323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, S. E., and Coauthors, 2011: Patterns, puzzles and people: Implementing hydrologic synthesis. Hydrol. Processes, 25, 32563266, https://doi.org/10.1002/hyp.8234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 55, https://doi.org/10.2307/210739.

  • Todini, E., 2007: A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrol. Earth Syst. Sci., 11, 16451659, https://doi.org/10.5194/hess-11-1645-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, https://doi.org/10.1175/JHM600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. Van Der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trescott, P. C., G. F. Pinder, and S. P. Larson, 1980: Finite difference model for aquifer simulation in two dimensions with results of numerical experiments. USGS Water-Resources Investigations, Book 7, Chapter C1, 116 pp., https://pubs.usgs.gov/twri/twri7-c1/html/pdf/TWRI_7-C1.pdf.

  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976, https://doi.org/10.1175/MWR2839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troch, P. A., C. Paniconi, and E. Emiel van Loon, 2003: Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resour. Res., 39, 1316, https://doi.org/10.1029/2002WR001728.

    • Crossref
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, https://doi.org/10.1016/S0168-1923(00)00123-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UN-Water, 2008: Transboundary waters: Sharing benefits, sharing responsibilities. Task Force on Transboundary Waters Thematic Paper, 16 pp., https://www.unwater.org/publications/transboundary-waters-sharing-benefits-sharing-responsibilities/.

  • Valente, A., R. Morais, A. Tuli, J. W. Hopmans, and G. J. Kluitenberg, 2006: Multi-functional probe for small-scale simultaneous measurements of soil thermal properties, water content, and electrical conductivity. Sens. Actuators A, 132, 7077, https://doi.org/10.1016/j.sna.2006.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Sleen, P., and Coauthors, 2015: No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci., 8, 2428, https://doi.org/10.1038/ngeo2313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dijk, A. I. J. M., L. J. Renzullo, Y. Wada, and P. A. Tregoning, 2014: Global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci., 18, 29552973, https://doi.org/10.5194/hess-18-2955-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Amer. J., 44, 892898, https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, https://doi.org/10.1029/2006GL028001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., and J. Wahr, 2005: Greenland mass balance from GRACE. Geophys. Res. Lett., 32, L18505, https://doi.org/10.1029/2005GL023955.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., and J. Wahr, 2006: Measurements of time-variable gravity show mass loss in Antarctica. Science, 311, 17541756, https://doi.org/10.1126/science.1123785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K., and I. Yeserkepova, 1991: Soil moisture: Empirical data and model results. J. Climate, 4, 6679, https://doi.org/10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, https://doi.org/10.1016/j.rse.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voeikov, A. I., 1884: Klimaty Zemnogo Shara, v Osobennosti Rossii (The Earth’s Climate with Special Reference to Russia). A. Ilyin, 672 pp.

  • Vogel, R. M., U. Lall, X. Cai, B. Rajagopalan, P. K. Weiskel, R. P. Hooper, and N. C. Matalas, 2015: Hydrology: The interdisciplinary science of water. Water Resour. Res., 51, 44094430, https://doi.org/10.1002/2015WR017049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voisin, N., H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung, 2013: On an improved sub-regional water resources management representation for integration into earth system models. Hydrol. Earth Syst. Sci., 17, 36053622, https://doi.org/10.5194/hess-17-3605-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers, 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288, https://doi.org/10.1126/science.289.5477.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Coauthors, 2010: Global threats to human water security and river biodiversity. Nature, 467, 555561, https://doi.org/10.1038/nature09440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, J. M., G. Sun, C. R. Ford, M. Bredemeier, K. Otsuki, X. Wei, Z. Zhang, and L. Zhang, 2011: Forest ecohydrological research in the 21st century: What are the critical needs? Ecohydrology, 4, 146158, https://doi.org/10.1002/eco.193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., H. V. Gupta, B. Nualláin, and W. Bouten, 2006: Real-time data assimilation for operational ensemble streamflow forecasting. J. Hydrometeor., 7, 548565, https://doi.org/10.1175/JHM504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuyovich, C. M., J. M. Jacobs, and S. F. Daly, 2014: Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resour. Res., 50, 90889102, https://doi.org/10.1002/2013WR014734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. Van Beek, and M. F. P. Bierkens, 2012: Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagener, T., and H. S. Wheater, 2006: Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. J. Hydrol., 320, 132154, https://doi.org/10.1016/j.jhydrol.2005.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J., M. Molenaar, and F. Bryan, 1998: Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30 20530 229, https://doi.org/10.1029/98JB02844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., G. R. Willgoose, and J. D. Kalma, 2004: In situ measurement of soil moisture: a comparison of techniques. J. Hydrol., 293, 8599, https://doi.org/10.1016/j.jhydrol.2004.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, W., and Coauthors, 2017: Hydrological drought in the Anthropocene: Impacts of local water extraction and reservoir regulation in the U.S. J. Geophys. Res. Atmos., 122, 11 31311 328, https://doi.org/10.1002/2017JD026899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., and R. E. Dickinson, 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., S. Manzoni, S. Ravi, D. Riveros-Iregui, and K. Caylor, 2015: Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems. Ecosphere, 6, 133, https://doi.org/10.1890/ES15-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., H. Lu, L. R. Leung, H. Li, J. Zhao, K. Yang, F. Tian, and K. Sothea, 2017: Dam construction in Lancang-Mekong river basin could mitigate future flood risk from warming-induced intensified rainfall. Geophys. Res. Lett., 44, 10 37810 386. https://doi.org/10.1002/2017GL075037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waymire, E., V. K. Gupta, and I. Rodriguez-Iturbe, 1984: A spectral theory of rainfall intensity at the meso-β scale. Water Resour. Res., 20, 14531465, https://doi.org/10.1029/WR020i010p01453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, X., G. Sun, J. M. Vose, K. Otsuki, Z. Zhang, and K. Smetterm, 2011: Forest ecohydrological processes in a changing environment. Ecohydrology, 4, 143145, https://doi.org/10.1002/eco.218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welles, E., and S. Sorooshian, 2009: Scientific verification of deterministic river stage forecasts. J. Hydrometeor., 10, 507520, https://doi.org/10.1175/2008JHM1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welles, E., S. Sorooshian, G. Carter, and B. Olsen, 2007: Hydrologic verification: A call for action and collaboration. Bull. Amer. Meteor. Soc., 88, 503511, https://doi.org/10.1175/BAMS-88-4-503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, K., J. S. Verkade, and T. C. Pagano, 2016: Application of hydrological forecast verification information. Handbook of Hydrometeorological Ensemble Forecasting, Q. Duan et al., Eds., Springer, 1–21, https://doi.org/10.1007/978-3-642-40457-3_7-1.

    • Search Google Scholar
    • Export Citation
  • Westerhoff, R. S., M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop, 2013: Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci., 17, 651663, https://doi.org/10.5194/hess-17-651-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., P. Storck, and C. F. Mass, 2002: Description and evaluation of a hydrometeorological forecast system for mountainous watersheds. Wea. Forecasting, 17, 250262, https://doi.org/10.1175/1520-0434(2002)017<0250:DAEOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., and F. Di Giuseppe, 2018: The benefit of seamless forecasts for hydrological predictions over Europe. Hydrol. Earth Syst. Sci., 22, 34093420, https://doi.org/10.5194/hess-22-3409-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheater, H. S., and P. Gober, 2015: Water security and the science agenda. Water Resour. Res., 51, 54065424, https://doi.org/10.1002/2015WR016892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigneron, J. P., J. C. Calvet, T. Pellarin, A. A. Van De Griend, M. Berger, and P. Ferrazzoli, 2003: Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Remote Sens. Environ., 85, 489506, https://doi.org/10.1016/S0034-4257(03)00051-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, B. P., 2010: Transformative ecosystem change and ecohydrology: Ushering in a new era for watershed management. Ecohydrology, 3, 126130, https://doi.org/10.1002/eco.104.

    • Search Google Scholar
    • Export Citation
  • Williams, I. N., M. S. Torn, W. J. Riley, and M. F. Wehner, 2014: Impacts of climate extremes on gross primary production under global warming. Environ. Res. Lett., 9, 094011, https://doi.org/10.1088/1748-9326/9/9/094011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., P. J. Hanson, P. J. Mulholland, D. D. Baldocchi, and S. D. Wullschleger, 2001: A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteor., 106, 153168, https://doi.org/10.1016/S0168-1923(00)00199-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2009: Manual on Estimation of Probable Maximum Precipitation (PMP). 2nd ed. Operational Hydrology Rep. 1, WMO-332, 259 pp. http://library.wmo.int/pmb_ged/wmo_332.pdf.

  • Wolanski, E., L. A. Boorman, L. Chícharo, E. Langlois-Saliou, R. Lara, A. J. Plater, R. J. Uncles, and M. Zalewski, 2004: Ecohydrology as a new tool for sustainable management of estuaries and coastal waters. Wetlands Ecol. Manage., 12, 235276, https://doi.org/10.1007/s11273-005-4752-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712, https://doi.org/10.1175/BAMS-87-12-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett., 35, L14401, https://doi.org/10.1029/2008GL034648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., T. Hopson, A. Newman, L. Brekke, J. Arnold, and M. Clark, 2016a: Quantifying streamflow forecast skill elasticity to initial condition and climate prediction skill. J. Hydrometeor., 17, 651668, https://doi.org/10.1175/JHM-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., T. Pagano, and M. Roos, 2016b: Tracing the Origins of ESP. HEPEX Historical Hydrology Series, Edition 1, HEPEX: A Global Community in Hydrological Ensemble Prediction, accessed 30 April 2018, https://hepex.irstea.fr/tracing-the-origins-of-esp/.

  • Wood, E. F., M. Sivapalan, K. Beven, and L. Band, 1988: Effects of spatial variability and scale with implications to hydrologic modeling. J. Hydrol., 102, 2947, https://doi.org/10.1016/0022-1694(88)90090-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolhiser, D. A., and J. A. Liggett, 1967: Unsteady, one-dimensional flow over a plane—The rising hydrograph. Water Resour. Res., 3, 753771, https://doi.org/10.1029/WR003i003p00753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, https://doi.org/10.1175/JHM-D-11-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Tian, G. J. Huffman, H. Li, and J. Wang, 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, https://doi.org/10.1002/2013WR014710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2018: A new research approach for observing and characterizing land–atmosphere feedback. Bull. Amer. Meteor. Soc., 99, 1639–1667, https://doi.org/10.1175/BAMS-D-17-0009.1.

    • Crossref
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, https://doi.org/10.1175/2769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., F. Dominguez, X. Zeng, H. Hu, H. Gupta, and B. Yang, 2017: Impact of irrigation over the California Central Valley on regional climate. J. Hydrometeor., 18, 13411357, https://doi.org/10.1175/JHM-D-16-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, P. J. F., M. Irizarry, and E. A. Eltahir, 1998: Hydroclimatology of Illinois: A comparison of monthly evaporation estimates based on atmospheric water balance and soil water balance. J. Geophys. Res., 103, 19 82319 837, https://doi.org/10.1029/98JD01721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, W. W.-G., 1985: Reservoir management and operations models: A state-of-the-art review. Water Resour. Res., 21, 17971818, https://doi.org/10.1029/WR021i012p01797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, W. W.-G., 1986: Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resour. Res., 22, 95108, https://doi.org/10.1029/WR022i002p00095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yigzaw, W., F. Hossain, and A. Kalyanapu, 2013: Comparison of PMP-driven probable maximum floods with flood magnitudes due to increasingly urbanized catchment: The case of American River Watershed. Earth Interact., 17, https://doi.org/10.1175/2012EI000497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoder, C. F., J. G. Williams, J. O. Dickey, B. E. Schutz, R. J. Eanes, and B. D. Tapley, 1983: Secular variation of Earth’s gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature, 303, 757762, https://doi.org/10.1038/303757a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and L. R. Leung, 2015: Assessing the relative influence of soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys. Res. Lett., 42, 50055013, https://doi.org/10.1002/2015GL064139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., Z. Xie, J. Zheng, X. Tian, and Z. Yang, 2008: Effects of water table dynamics on regional climate: A case study over East Asian monsoon area. J. Geophys. Res., 113, D21112, https://doi.org/10.1029/2008JD010180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zalewski, M., 2000: Ecohydrology—The scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecol. Eng., 16, 18, https://doi.org/10.1016/S0925-8574(00)00071-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner, 2015: A global boom in hydropower dam construction. Aquat. Sci., 77, 161170, https://doi.org/10.1007/s00027-014-0377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1987: Fractal structure and exponential decorrelation in rain. J. Geophys. Res., 92, 95869590, https://doi.org/10.1029/JD092iD08p09586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and M. Decker, 2009: Improving the numerical solution of soil moisture–based Richards equation for land models with a deep or shallow water table. J. Hydrometeor., 10, 308319, https://doi.org/10.1175/2008JHM1011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., Y. Xie, F. Counillon, X. Ma, P. Yu, and Z. Jing, 2018: Regional coupled model and data assimilation. Adv. Meteor., 2018, 9434102, https://doi.org/10.1155/2018/9434102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., H.-Y. Li, Z. D. Deng, L. R. Leung, J. R. Skalski, and S. J. Cooke, 2019: On the variable effects of climate change on Pacific salmon. Ecol. Modell., 397, 95106, https://doi.org/10.1016/j.ecolmodel.2019.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zoch, R. T., 1934: On the relation between rainfall and stream flow. Mon. Wea. Rev., 62, 315322, https://doi.org/10.1175/1520-0493(1934)62<315:OTRBRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zreda, M., D. Desilets, T. P. A. Ferré, and R. L. Scott, 2008: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett., 35, L21402, https://doi.org/10.1029/2008GL035655.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5787 2216 333
PDF Downloads 2339 309 22