Abatzoglou, J. T., R. Barbero, and N. J. Nauslar, 2013: Diagnosing Santa Ana winds in Southern California with synoptic-scale analysis. Wea. Forecasting, 28, 704–710, https://doi.org/10.1175/WAF-D-13-00002.1.
Aebischer, U., and C. Schär, 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186–287, https://doi.org/10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2.
Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, https://doi.org/10.1029/2009GL038587.
Allwine, K. J., B. K. Lamb, and R. Eskridge, 1992: Wintertime dispersion in a mountainous basin at Roanoke, Virginia: Tracer study. J. Appl. Meteor., 31, 1295–1311, https://doi.org/10.1175/1520-0450(1992)031<1295:WDIAMB>2.0.CO;2.
Alpert, P., and H. Shafir, 1989: Mesoγ-scale distribution of orographic precipitation: Numerical study and comparison with precipitation derived from radar measurements. J. Appl. Meteor., 28, 1105–1117, https://doi.org/10.1175/1520-0450(1989)028<1105:MSDOOP>2.0.CO;2.
Anders, A. M., and S. W. Nesbitt, 2015: Altitudinal precipitation gradients in the tropics from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. J. Hydrometeor., 16, 441–448, https://doi.org/10.1175/JHM-D-14-0178.1.
Anders, A. M., G. H. Roe, B. Hallet, D. R. Montgomery, N. J. Finnegan, and J. Putkonen, 2006: Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Amer., 398, 39–53, https://doi.org/10.1130/2006.2398(03).
Anders, A. M., G. H. Roe, D. R. Durran, and J. R. Minder, 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8, 1068–1081, https://doi.org/10.1175/JHM610.1.
Andrews, D. G., and M. E. McIntyre, 1978a: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.
Andrews, D. G., and M. E. McIntyre, 1978b: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609–646, https://doi.org/10.1017/S0022112078002773.
Armi, L., 1986: The hydraulics of two flowing layers with different densities. J. Fluid Mech., 163, 27–58, https://doi.org/10.1017/S0022112086002197.
Armi, L., and R. Williams, 1993: The hydraulics of a stratified fluid flowing through a contraction. J. Fluid Mech., 251, 355–375, https://doi.org/10.1017/S0022112093003441.
Austin, G. R., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1996: Trade-wind clouds and Hawaiian rainbands. Mon. Wea. Rev., 124, 2126–2151, https://doi.org/10.1175/1520-0493(1996)124<2126:TWCAHR>2.0.CO;2.
Bacmeister, J. T., 1996: Stratospheric horizontal wavenumber of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 9441–9470, https://doi.org/10.1029/95JD03835.
Bacmeister, J. T., and R. T. Pierrehumbert, 1988: On high-drag states of nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45, 63–80, https://doi.org/10.1175/1520-0469(1988)045<0063:OHDSON>2.0.CO;2.
Bagtasa, G., 2017: Contribution of tropical cyclones to rainfall in the Philippines. J. Climate, 30, 3621–3633, https://doi.org/10.1175/JCLI-D-16-0150.1.
Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.
Baines, P. G., and T. N. Palmer, 1990: Rationale for a new physically based parameterization of subgrid scale orographic effects. ECMWF Tech. Memo. 169, 11 pp., https://doi.org/10.21957/h4h36b3u.
Bannon, P. R., 1992: A model of Rocky Mountain lee cyclogenesis. J. Atmos. Sci., 49, 1510–1522, https://doi.org/10.1175/1520-0469(1992)049<1510:AMORML>2.0.CO;2.
Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 229–283, https://doi.org/10.1007/978-1-935704-25-6_9.
Banta, R. M., 1995: Sea breezes shallow and deep on the California coast. Mon. Wea. Rev., 123, 3614–3622, https://doi.org/10.1175/1520-0493(1995)123<3614:SBSADO>2.0.CO;2.
Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–476, https://doi.org/10.1175/1520-0493(1987)115<0463:TGZITC>2.0.CO;2.
Barros, A. P., and D. P. Lettenmaier, 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265–284, https://doi.org/10.1029/94RG00625.
Barry, R. G., 2008: Mountain Weather and Climate. 3rd ed. Cambridge University Press, 532 pp., https://doi.org/10.1017/CBO9780511754753.
Barstad, I., and S. Grønås, 2005: Southwesterly flows over southern Norway—Mesoscale sensitivity to large-scale wind direction and speed. Tellus, 57A, 136–152, https://doi.org/10.3402/TELLUSA.V57I2.14627.
Barstad, I., and R. B. Smith, 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6, 85–99, https://doi.org/10.1175/JHM-404.1.
Barstad, I., and F. Schüller, 2011: An extension of Smith’s linear theory of orographic precipitation: Introduction of vertical layers. J. Atmos. Sci., 68, 2695–2709, https://doi.org/10.1175/JAS-D-10-05016.1.
Beck, H. E., and Coauthors, 2019: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019.
Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137–161, https://doi.org/10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.
Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 3518–3543, https://doi.org/10.1175/JCLI3815.1.
Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.
Billings, B. J., V. Grubišić, and R. D. Borys, 2006: Maintenance of a mountain valley cold pool: A numerical study. Mon. Wea. Rev., 134, 2266–2278, https://doi.org/10.1175/MWR3180.1.
Blumen, W., 1965: A random model of momentum flux by mountain waves. Geophys. Norv., 26, 1–33.
Blumen, W., Ed., 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 323 pp., https://doi.org/10.1007/978-1-935704-25-6.
Blumen, W., and C. D. McGregor, 1976: Wave drag by three-dimensional mountain lee-waves in nonplanar shear flow. Tellus, 28, 287–298, https://doi.org/10.3402/tellusa.v28i4.10295.
Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravity waves and large-scale flows: An efficient description beyond the nonacceleration paradigm. J. Atmos. Sci., 73, 4833–4852, https://doi.org/10.1175/JAS-D-16-0069.1.
Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513–539, https://doi.org/10.1017/S0022112067000515.
Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218, https://doi.org/10.1038/nature08707.
Boos, W. R., and Z. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci. Rep., 3, 1192, https://doi.org/10.1038/srep01192.
Bougeault, P., B. Benech, P. Bessemoulin, B. Carissimo, A. J. Clar, J. Pelon, M. Petitdidier, and E. Richard, 1997: PYREX: A summary of findings. Bull. Amer. Meteor. Soc., 78, 637–650, https://doi.org/10.1175/1520-0477(1997)078<0637:PASOF>2.0.CO;2.
Bougeault, P., and Coauthors, 2001: The MAP Special Observing Period. Bull. Amer. Meteor. Soc., 82, 433–462, https://doi.org/10.1175/1520-0477(2001)082<0433:TMSOP>2.3.CO;2.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 2539–2558, https://doi.org/10.1175/2009JAS3078.1.
Breeding, R. J., 1971: A nonlinear investigation of critical levels for internal atmospheric gravity waves. J. Fluid Mech., 50, 545–563, https://doi.org/10.1017/S0022112071002751.
Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466–480, https://doi.org/10.1002/qj.49709239403.
Bretherton, F. P., 1969: Momentum transfer by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213–243, https://doi.org/10.1002/qj.49709540402.
Bretherton, F. P., and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302A, 529–554, https://doi.org/10.1098/rspa.1968.0034.
Broad, A. S., 1995: Linear theory of momentum fluxes in 3-D flows with turning of the mean wind with height. Quart. J. Roy. Meteor. Soc., 121, 1891–1902, https://doi.org/10.1002/qj.49712152806.
Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 1181–1201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.
Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 23–41, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.
Bühler, O., 2014: Waves and Mean Flows. Cambridge University Press, 374 pp., https://doi.org/10.1017/CBO9781107478701.
Burk, S. D., and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668–686, https://doi.org/10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.
Buzzi, A., and A. Speranza, 1986: A theory of deep cyclogenesis in the lee of the Alps. Part II: Effects of finite topographic slope and height. J. Atmos. Sci., 43, 2826–2837, https://doi.org/10.1175/1520-0469(1986)043<2826:ATODCI>2.0.CO;2.
Cao, Y., and R. G. Fovell, 2016: Downslope windstorms of San Diego County. Part I: A case study. Mon. Wea. Rev., 144, 529–552, https://doi.org/10.1175/MWR-D-15-0147.1.
Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 4132–4146, https://doi.org/10.1175/2008JCLI2275.1.
Carruthers, D. J., and J. C. R. Hunt, 1990: Fluid mechanics of airflow over hills: Turbulence, fluxes, and waves in the boundary layer. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 83–107, https://doi.org/10.1007/978-1-935704-25-6_5.
Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246–260, https://doi.org/10.1175/JCLI-D-11-00707.1.
Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449–469, https://doi.org/10.1175/JCLI3996.1.
Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 38–54, https://doi.org/10.3402/tellusa.v1i2.8500.
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083.
Chater, A. M., and A. P. Sturman, 1998: Atmospheric conditions influencing the spillover of rainfall to lee of the Southern Alps, New Zealand. Int. J. Climatol., 18, 77–92, https://doi.org/10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M.
Chen, C.-C., D. R. Durran, and G. J. Hakim, 2005: Mountain-wave momentum flux in an evolving synoptic-scale flow. J. Atmos. Sci., 62, 3213–3231, https://doi.org/10.1175/JAS3543.1.
Chen, C.-C., G. J. Hakim, and D. R. Durran, 2007: Transient mountain waves and their interaction with large scales. J. Atmos. Sci., 64, 2378–2400, https://doi.org/10.1175/JAS3972.1.
Chen, S.-H., and Y.-L. Lin, 2005: Orographic effects on a conditionally unstable flow over an idealized three-dimensional mesoscale mountain. Meteor. Atmos. Phys., 88, 1–21, https://doi.org/10.1007/s00703-003-0047-6.
Chow, F. K., S. F. J. DeWekker, and B. J. Snyder, Eds., 2013: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, 750 pp., https://doi.org/10.1007/978-94-007-4098-3.
Clark, T. L., and W. R. Peltier, 1977: On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci., 34, 1715–1730, https://doi.org/10.1175/1520-0469(1977)034<1715:OTEASO>2.0.CO;2.
Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122–3134, https://doi.org/10.1175/1520-0469(1984)041<3122:CLRATR>2.0.CO;2.
Cohen, N. Y., and W. R. Boos, 2017: The influence of orographic Rossby and gravity waves on rainfall. Quart. J. Roy. Meteor. Soc., 143, 845–851, https://doi.org/10.1002/qj.2969.
Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 2577–2610, https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.
Colle, B. A., and C. F. Mass, 1996: An observational and modeling study of the interaction of low-level southwesterly flow with the Olympic Mountains during COAST IOP 4. Mon. Wea. Rev., 124, 2152–2175, https://doi.org/10.1175/1520-0493(1996)124<2152:AOAMSO>2.0.CO;2.
Colle, B. A., and C. F. Mass, 2000: High-resolution observations and numerical simulations of easterly gap flow through the Strait of Juan de Fuca on 9–10 December 1995. Mon. Wea. Rev., 128, 2398–2422, https://doi.org/10.1175/1520-0493(2000)128<2398:HROANS>2.0.CO;2.
Colle, B. A., and Y. Zeng, 2004a: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 2780–2801, https://doi.org/10.1175/MWR2821.1.
Colle, B. A., and Y. Zeng, 2004b: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part II: Impact of barrier width and freezing level. Mon. Wea. Rev., 132, 2802–2815, https://doi.org/10.1175/MWR2822.1.
Colle, B. A., J. B. Wolfe, W. J. Steenburgh, D. E. Kingsmill, J. A. W. Cox, and J. C. Shafer, 2005: High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEX IOP3. Mon. Wea. Rev., 133, 2947–2971, https://doi.org/10.1175/MWR3017.1.
Colle, B. A., R. B. Smith, and D. A. Wesley, 2013: Theory, observations, and predictions of orographic precipitation. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer, 291–344, https://doi.org/10.1007/978-94-007-4098-3.
Colman, B. R., and C. F. Dierking, 1992: The Taku wind of southeast Alaska: Its identification and prediction. Wea. Forecasting, 7, 49–64, https://doi.org/10.1175/1520-0434(1992)007<0049:TTWOSA>2.0.CO;2.
Colquhoun, J. R., D. J. Shepherd, C. E. Coulman, R. K. Smith, and K. McInnes, 1985: The southerly burster of south eastern Australia: An orographically forced cold front. Mon. Wea. Rev., 113, 2090–2107, https://doi.org/10.1175/1520-0493(1985)113<2090:TSBOSE>2.0.CO;2.
Cook, K. H., and I. M. Held, 1992: The stationary response to large-scale orography in a general circulation model and a linear model. J. Atmos. Sci., 49, 525–539, https://doi.org/10.1175/1520-0469(1992)049<0525:TSRTLS>2.0.CO;2.
Cooper, W. A., S. M. Spuler, M. Spowart, D. H. Lenschow, and R. B. Friesen, 2014: Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor. Atmos. Meas. Tech., 7, 3215–3231, https://doi.org/10.5194/amt-7-3215-2014.
Crapper, G. D., 1962: Waves in the lee of a mountain with elliptical contours. Philos. Trans. Roy. Soc. London, 254A, 601–623, https://doi.org/10.1098/rsta.1962.0007.
Crochet, P., T. Jóhannesson, T. Jónsson, O. Sigurðsson, H. Björnsson, F. Pálsson, and I. Barstad, 2007: Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydrometeor., 8, 1285–1306, https://doi.org/10.1175/2007JHM795.1.
Crosman, E. T., and J. D. Horel, 2017: Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmos. Res., 193, 10–25, https://doi.org/10.1016/j.atmosres.2017.04.010.
Cuffey, K. M., and W. S. B. Paterson, 2010: The Physics of Glaciers. 4th ed. Academic Press, 704 pp.
Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140–158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.
Damiani, R., and Coauthors, 2008: The Cumulus, Photogrammetric, In Situ, and Doppler Observations Experiment of 2006. Bull. Amer. Meteor. Soc., 89, 57–73, https://doi.org/10.1175/BAMS-89-1-57.
Danielson, J. J., and D. B. Gesch, 2011: Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). USGS Open-File Rep. 2011-1073, 26 pp., https://doi.org/10.3133/ofr20111073.
Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993.
Davis, A. M. J., and R. T. McNider, 1997: The development of Antarctic katabatic winds and implications for the coastal ocean. J. Atmos. Sci., 54, 1248–1261, https://doi.org/10.1175/1520-0469(1997)054<1248:TDOAKW>2.0.CO;2.
Deardorff, J. W., 1976: Island wind shadows observed by satellite and radar. Bull. Amer. Meteor. Soc., 57, 1241–1242, https://doi.org/10.1175/1520-0477-57.10.1241.
Demko, J. C., and B. Geerts, 2010: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part II: Interaction with deep convection. Mon. Wea. Rev., 138, 3603–3622, https://doi.org/10.1175/2010MWR3318.1.
Dettinger, M., K. Redmond, and D. Cayan, 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 1102–1116, https://doi.org/10.1175/JHM-390.1.
Dezfuli, A. K., B. F. Zaitchik, H. S. Badr, J. Evans, and C. D. Peters-Lidard, 2017: The role of low-level, terrain-induced jets in rainfall variability in Tigris–Euphrates headwaters. J. Hydrometeor., 18, 819–835, https://doi.org/10.1175/JHM-D-16-0165.1.
Domeisen, D. I. V., L. Sun, and G. Chen, 2013: The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett., 40, 4933–4937, https://doi.org/10.1002/grl.50943.
Dorman, C. E., R. C. Beardsley, and R. Limeburner, 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteor. Soc., 121, 1903–1921, https://doi.org/10.1002/qj.49712152807.
Dörnbrack, A., T. Gerz, and U. Schulmann, 1995: Turbulent breaking of overturning gravity waves below a critical level. Appl. Sci. Res., 54, 163–176, https://doi.org/10.1007/BF00849114.
Dörnbrack, A., M. Leutbecher, R. Kivi, and E. Kyrö, 1999: Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia. Tellus, 51A, 951–963, https://doi.org/10.3402/tellusa.v51i5.14504.
Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186–201, https://doi.org/10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.
Doyle, J. D., and D. R. Durran, 2004: Recent developments in the theory of atmospheric rotors. Bull. Amer. Meteor. Soc., 85, 337–342, https://doi.org/10.1175/1520-0477-85.3.327.
Doyle, J. D., and Q. Jiang, 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Quart. J. Roy. Meteor. Soc., 132, 1877–1905, https://doi.org/10.1256/qj.05.140.
Doyle, J. D., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128, 901–914, https://doi.org/10.1175/1520-0493(2000)128<0901:AIOMPW>2.0.CO;2.
Duck, T. J., and J. A. Whiteway, 2005: The spectrum of waves and turbulence at the tropopause. Geophys. Res. Lett., 32, L07801, https://doi.org/10.1029/2004GL021189.
Durán, L., and I. Barstad, 2018: Multi-scale evaluation of a linear model of orographic precipitation over Sierra de Guadarrama (Iberian Central System). Int. J. Climatol., 38, 4127–4141, https://doi.org/10.1002/JOC.5557.
Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527–2543, https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.
Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81, https://doi.org/10.1007/978-1-935704-25-6_4.
Durran, D. R., 1992: Two-layer solutions to long’s equation for vertically propagating mountain waves: How good is linear theory? Quart. J. Roy. Meteor. Soc., 118, 415–433, https://doi.org/10.1002/qj.49711850502.
Durran, D. R., 1995a: Do breaking mountain waves decelerate the local mean flow? J. Atmos. Sci., 52, 4010–4040, https://doi.org/10.1175/1520-0469(1995)052<4010:DBMWDT>2.0.CO;2.
Durran, D. R., 1995b: Pseudomomentum diagnostics for two-dimensional stratified compressible flow. J. Atmos. Sci., 52, 3997–4009, https://doi.org/10.1175/1520-0469(1995)052<3997:PDFTDS>2.0.CO;2.
Durran, D. R., 2010: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. 2nd ed. Texts in Applied Mathematics, Vol. 32, Springer, 516 pp., https://doi.org/10.1007/978-1-4419-6412-0.
Durran, D. R., 2015a: Mountain meteorology: Downslope winds. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, J. Pyle, and F. Zhang, Eds., Academic Press, 69–74, https://doi.org/10.1016/B978-0-12-382225-3.00288-7.
Durran, D. R., 2015b: Mountain meteorology: Lee waves and mountain waves. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, J. Pyle, and F. Zhang, Eds., Academic Press, 95–102, https://doi.org/10.1016/B978-0-12-382225-3.00202-4.
Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 2152–2158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.
Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 2341–2361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.
Durran, D. R., and J. B. Klemp, 1986: Numerical modeling of moist airflow over topography. Proceedings of International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology, Springer, 960–974, https://doi.org/10.1007/978-1-935704-19-5_54.
Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds, Part II: Non-linear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 3402–3412, https://doi.org/10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.
Durran, D. R., M. O. G. Hills, and P. N. Blossey, 2015: The dissipation of trapped lee waves. Part I: Leakage of inviscid waves into the stratosphere. J. Atmos. Sci., 72, 1569–1584, https://doi.org/10.1175/JAS-D-14-0238.1.
Eckart, C., 1960: Hydrodynamics of Oceans and Atmospheres. Pergamon Press, 302 pp., https://doi.org/10.1016/C2013-0-01648-9.
Eckermann, S. D., J. Ma, and D. Broutman, 2015: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci., 72, 2330–2347, https://doi.org/10.1175/JAS-D-14-0147.1.
Egger, J., 1988: Alpine lee cyclogenesis: Verification of theories. J. Atmos. Sci., 45, 2187–2203, https://doi.org/10.1175/1520-0469(1988)045<2187:ALCVOT>2.0.CO;2.
Ehard, B., and Coauthors, 2016: Combination of lidar and model data for studying deep gravity wave propagation. Mon. Wea. Rev., 144, 77–98, https://doi.org/10.1175/MWR-D-14-00405.1.
Eidhammer, T., V. Grubišić, R. Rasmussen, and K. Ikdea, 2018: Winter precipitation efficiency of mountain ranges in the Colorado Rockies under climate change. J. Geophys. Res., 123, 2573–2590, https://doi.org/10.1002/2017JD027995.
Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1–23.
Epifanio, C. C., and D. R. Durran, 2002a: Lee-vortex formation in free-slip stratified flow over ridges. Part I: Comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J. Atmos. Sci., 59, 1153–1165, https://doi.org/10.1175/1520-0469(2002)059<1153:LVFIFS>2.0.CO;2.
Epifanio, C. C., and D. R. Durran, 2002b: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanisms of vorticity and PV production in nonlinear viscous wakes. J. Atmos. Sci., 59, 1166–1181, https://doi.org/10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2.
Etling, D., 1989: On atmospheric vortex streets in the wake of large islands. Meteor. Atmos. Phys., 41, 157–164, https://doi.org/10.1007/BF01043134.
Evans, J. P., and A. Alsamawi, 2011: The importance of the Zagros Mountains barrier jet to future precipitation in the Fertile Crescent. Open Atmos. Sci. J., 5, 87–95, https://doi.org/10.2174/1874282301105010087.
Fallah, B., U. Cubasch, K. Prömmel, and S. Sodoudi, 2016: A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Climate Dyn., 47, 1485–1495, https://doi.org/10.1007/s00382-015-2914-5.
Fan, S.-M., L. M. Harris, and L. W. Horowitz, 2015: Atmospheric energy transport to the Arctic 1979–2012. Tellus, 67A, 25 482, https://doi.org/10.3402/tellusa.v67.25482.
Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613–633, https://doi.org/10.1175/WAF-D-10-05020.1.
Flamant, C., E. Richard, C. Schär, R. Rotunno, L. Nance, M. Sprenger, and R. Benoit, 2004: The wake south of the Alps: Dynamics and structure of the lee-side flow and secondary potential vorticity banners. Quart. J. Roy. Meteor. Soc., 130, 1275–1303, https://doi.org/10.1256/qj.03.17.
Frisinger, H. H., 1972: Aristotle and his “Meteorologica”. Bull. Amer. Meteor. Soc., 53, 634–638, https://doi.org/10.1175/1520-0477(1972)053<0634:AAH>2.0.CO;2.
Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106..
Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 1126–1148, https://doi.org/10.1175/2008JAS2726.1.
Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425–453, https://doi.org/10.1175/BAMS-D-14-00269.1.
Fuhrer, O., and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 2810–2828, https://doi.org/10.1175/JAS3512.1.
Gaberšek, S., and D. R. Durran, 2004: Gap flows through idealized topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 2846–2862, https://doi.org/10.1175/JAS-3340.1.
Gal-Chen, T., and R. C. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209–228, https://doi.org/10.1016/ 0021-9991(75)90037-6.
Gallus, W. A., and J. B. Klemp, 2000: Behavior of flow over step orography. Mon. Wea. Rev., 128, 1153–1164, https://doi.org/10.1175/1520-0493(2000)128<1153:BOFOSO>2.0.CO;2.
Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 2238–2245, https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.
Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 2302–2315, https://doi.org/10.1175/JAS3496.1.
Garreaud, R., and R. Munoz, 2005: The low-level jet off the subtropical west coast of South America: Structure and variability. Mon. Wea. Rev., 133, 2246–2261, https://doi.org/10.1175/MWR2972.1.
Garreaud, R., M. Falvey, and A. Montecinos, 2016: Orographic precipitation in coastal southern Chile: Mean distribution, temporal variability, and linear contribution. J. Hydrometeor., 17, 1185–1202, https://doi.org/10.1175/JHM-D-15-0170.1.
Garvert, M. F., B. Smull, and C. Mass, 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711–737, https://doi.org/10.1175/JAS3876.1.
Gat, J. R., 1996: Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225.
Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 2344–2365, https://doi.org/10.1175/JAS-D-10-05009.1.
Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1.
Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 1920–1933, https://doi.org/10.1175/2008JCLI2548.1.
Gill, A., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.
Gjevik, B., and T. Marthinsen, 1978: Three-dimensional lee-wave pattern. Quart. J. Roy. Meteor. Soc., 104, 947–957, https://doi.org/10.1002/qj.49710444207.
Gohm, A., and G. J. Mayr, 2004: Hydraulic aspects of föhn winds in an Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 449–480, https://doi.org/10.1256/qj.03.28.
Goren, L., S. D. Willett, F. Herman, and J. Braun, 2014: Coupled numerical–analytical approach to landscape evolution modeling. Earth Surf. Processes Landforms, 39, 522–545, https://doi.org/10.1002/esp.3514.
Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation. Elsevier, 472 pp.
Grosvenor, D. P., J. C. King, T. W. Choularton, and T. Lachlan-Cope, 2014: Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves. Atmos. Chem. Phys., 14, 9481–9509, https://doi.org/10.5194/acp-14-9481-2014.
Grubišić, V., 2004: Bora-driven potential vorticity banners over the Adriatic. Quart. J. Roy. Meteor. Soc., 130, 2571–2603, https://doi.org/10.1256/qj.03.71.
Grubišić, V., and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic flows: Linear regime. J. Atmos. Sci., 54, 1943–1960, https://doi.org/10.1175/1520-0469(1997)054<1943:TEOCLO>2.0.CO;2.
Grubišić, V., and J. M. Lewis, 2004: Sierra Wave Project revisited: 50 years later. Bull. Amer. Meteor. Soc., 85, 1127–1142, https://doi.org/10.1175/BAMS-85-8-1127.
Grubišić, V., and Coauthors, 2008: The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 1513–1533, https://doi.org/10.1175/2008BAMS2487.1.
Grubišić, V., J. Sachsperger, and R. M. A. Caldeira, 2015: Atmospheric wake of Madeira: First aerial observations and numerical simulations. J. Atmos. Sci., 72, 4755–4776, https://doi.org/10.1175/JAS-D-14-0251.1.
Gutmann, E., I. Barstad, M. Clark, J. Arnold, and R. Rasmussen, 2016: The Intermediate Complexity Atmospheric Research Model (ICAR). J. Hydrometeor., 17, 957–973, https://doi.org/10.1175/JHM-D-15-0155.1.
Hamilton, K., Ed., 1997: Gravity Wave Processes: Their Parameterization in Global Climate Models. NATO ASI Series, Vol. 50, Springer, 404 pp., https://doi.org/10.1007/978-3-642-60654-0.
Han, J., N. M. Gasparini, and J. P. L. Johnson, 2015: Measuring the imprint of orographic rainfall gradients on the morphology of steady-state numerical fluvial landscapes. Earth Surf. Processes Landforms, 40, 1334–1350, https://doi.org/10.1002/esp.3723.
Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.
Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.
Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 2125–2144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.
Helman, A., 2005: The Finest Peaks: Prominence and Other Mountain Measures. Trafford Publishing, 300 pp.
Henn, B., A. J. Newman, B. Livneh, C. Daly, and J. D. Lundquist, 2018: An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol., 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008.
Hertenstein, R. F., and J. P. Kuettner, 2005: Rotor types associated with steep lee topography: Influence of the wind profile. Tellus, 57A, 117–135, https://doi.org/10.1111/j.1600-0870.2005.00099.x.
Hide, R., and P. W. White, 1980: Orographic Effects in Planetary Flows. GARP Publ. Series 23, WMO, 450 pp.
Hill, F. F., K. A. Browning, and M. J. Bader, 1981: Radar and raingauge observations of orographic rain over south Wales. Quart. J. Roy. Meteor. Soc., 107, 643–670, https://doi.org/10.1002/qj.49710745312.
Hills, M. O. G., D. R. Durran, and P. N. Blossey, 2016: The dissipation of trapped lee waves. Part II: The relative importance of the boundary layer and the stratosphere. J. Atmos. Sci., 73, 943–955, https://doi.org/10.1175/JAS-D-15-0175.1.
Hobbs, P. V., R. C. Easter, and A. B. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci., 30, 813–823, https://doi.org/10.1175/1520-0469(1973)030<0813:ATSOTF>2.0.CO;2.
Hoffmann, L., X. Xue, and M. J. Alexander, 2013: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos., 118, 416–434, https://doi.org/10.1029/2012JD018658.
Hoinka, K. P., 1984: Observations of a mountain-wave event over the Pyrenees. Tellus, 36A, 369–383, https://doi.org/10.1111/j.1600-0870.1984.tb00255.x.
Hoinka, K. P., 1985: Observation of the airflow over the Alps during a foehn event. Quart. J. Roy. Meteor. Soc., 111, 199–224, https://doi.org/10.1002/qj.49711146709.
Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791–799, https://doi.org/10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.
Hong, J.-S., C.-T. Fong, L.-F. Hsiao, Y.-C. Yu, and C.-Y. Tzeng, 2015: Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Wea. Forecasting, 30, 217–237, https://doi.org/10.1175/WAF-D-14-00037.1.
Hooke, R. L., 2005: Principles of Glacier Mechanics. 2nd ed. Cambridge University Press, https://doi.org/10.1017/CBO9780511614231.
Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001,https://doi.org/10.1029/2011RG000365.
Houze, R. A., Jr., C. N. James, and S. Medina, 2001: Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. Quart. J. Roy. Meteor. Soc., 127, 2537–2558, https://doi.org/10.1002/qj.49712757804.
Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235, https://doi.org/10.1126/science.1135650.
Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 2167–2188, https://doi.org/10.1175/BAMS-D-16-0182.1.
Hu, H., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, and F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking. J. Climate, 30, 3381–3399, https://doi.org/10.1175/JCLI-D-16-0386.1.
Hughes, M., and A. Hall, 2010: Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Climate Dyn., 34, 847–857, https://doi.org/10.1007/s00382-009-0650-4.
Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508–518, https://doi.org/10.1175/2008JAS2689.1.
Hughes, M., K. M. Mahoney, P. J. Neiman, B. J. Moore, M. Alexander, and F. M. Ralph, 2014: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. J. Hydrometeor., 15, 1954–1974, https://doi.org/10.1175/JHM-D-13-0176.1.
Huppert, H. E., and J. W. Miles, 1969: Lee waves in stratified flow, Part 3: Semi-elliptical obstacle. J. Fluid Mech., 35, 481–496, https://doi.org/10.1017/S0022112069001236.
Jackson, P. L., and D. G. Steyn, 1994a: Gap winds in a fjord. Part I: Observations and numerical simulation. Mon. Wea. Rev., 122, 2645–2665, https://doi.org/10.1175/1520-0493(1994)122<2645:GWIAFP>2.0.CO;2.
Jackson, P. L., and D. G. Steyn, 1994b: Gap winds in a fjord. Part II: Hydraulic analog. Mon. Wea. Rev., 122, 2666–2676, https://doi.org/10.1175/1520-0493(1994)122<2666:GWIAFP>2.0.CO;2.
Jackson, P. L., G. Mayr, and S. Vosper, 2013: Dynamically-driven winds. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. Chow et al., Eds., Springer, 121–218, https://doi.org/10.1007/978-94-007-4098-3_3.
Jackson, P. S., and J. C. R. Hunt, 1975: Turbulent wind flow over a low hill. Quart. J. Roy. Meteor. Soc., 101, 929–955, https://doi.org/10.1002/qj.49710143015.
Jarosch, A. H., F. S. Anslow, and G. K. C. Clarke, 2012: High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38, 391–409, https://doi.org/10.1007/s00382-010-0949-1.
Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Cámara, and F. Lott, 2015: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 3449–3468, https://doi.org/10.1175/JAS-D-14-0324.1.
Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301–316, https://doi.org/10.1034/j.1600-0870.2003.00025.x.
Jiang, Q., and R. B. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 1543–1559, https://doi.org/10.1175/2995.1.
Jiang, Q., R. B. Smith, and J. Doyle, 2003: The nature of the mistral: Observations and modelling of two MAP events. Quart. J. Roy. Meteor. Soc., 129, 857–875, https://doi.org/10.1256/qj.02.21.
Jiang, Q., J. D. Doyle, and R. B. Smith, 2005: Blocking, descent and gravity waves: Observations and modelling of a MAP northerly föhn event. Quart. J. Roy. Meteor. Soc., 131, 675–701, https://doi.org/10.1256/qj.03.176.
Jiang, Q., J. D. Doyle, A. Reinecke, R. B. Smith, and S. D. Eckermann, 2013: A modeling study of stratospheric waves over the Southern Andes and Drake Passage. J. Atmos. Sci., 70, 1668–1689, https://doi.org/10.1175/JAS-D-12-0180.1.
Justino, F., A. Timmermann, U. Merkel, and E. P. Souza, 2005: Synoptic reorganization of atmospheric flow during the Last Glacial Maximum. J. Climate, 18, 2826–2846, https://doi.org/10.1175/JCLI3403.1.
Kageyama, M., and P. J. Valdes, 2000: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett., 27, 1515–1518, https://doi.org/10.1029/1999GL011274.
Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts, 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett., 42, 9488–9494, https://doi.org/10.1002/2015GL066465.
Karoly, D. J., and B. J. Hoskins, 1983: The steady, linear response of the stratosphere to tropospheric forcing. Quart. J. Roy. Meteor. Soc., 109, 455–478, https://doi.org/10.1002/qj.49710946103.
Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596–2613, https://doi.org/10.1175/JAS-D-12-082.1.
Kerr, T., M. S. Srinivasan, and J. Rutherford, 2015: Stable water isotopes across a transect of the Southern Alps, New Zealand. J. Hydrometeor., 16, 702–715, https://doi.org/10.1175/JHM-D-13-0141.1.
Kim, J., and L. Mahrt, 1992: Momentum transport by gravity waves. J. Atmos. Sci., 49, 735–748, https://doi.org/10.1175/1520-0469(1992)049<0735:MTBGW>2.0.CO;2.
Kingsmill, D. E., P. J. Neiman, F. M. Ralph, and A. B. White, 2006: Synoptic and topographic variability of Northern California precipitation characteristics in landfalling winter storms observed during CALJET. Mon. Wea. Rev., 134, 2072–2094, https://doi.org/10.1175/MWR3166.1.
Kingsmill, D. E., P. J. Neiman, B. J. Moore, M. Hughes, S. E. Yuter, and F. M. Ralph, 2013: Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in Northern California. Mon. Wea. Rev., 141, 2015–2036, https://doi.org/10.1175/MWR-D-12-00277.1.
Kingsmill, D. E., P. J. Neiman, and A. B. White, 2016: Microphysics regime impacts on the relationship between orographic rain and orographic forcing in the coastal mountains of Northern California. J. Hydrometeor., 17, 2905–2922, https://doi.org/10.1175/JHM-D-16-0103.1.
Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682–698, https://doi.org/10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.
Kirshbaum, D. J., and D. R. Durran, 2005: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 3758–3774, https://doi.org/10.1175/JAS3568.1.
Kirshbaum, D. J., and R. B. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 1183–1199, https://doi.org/10.1002/qj.274.
Kirshbaum, D. J., and R. B. Smith, 2009: Orographic precipitation in the tropics: Large-eddy simulations and theory. J. Atmos. Sci., 66, 2559–2578, https://doi.org/10.1175/2009JAS2990.1.
Kirshbaum, D. J., and A. L. M. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 2136–2150, https://doi.org/10.1002/qj.1954.
Klemp, J. B., and D. R. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–339, https://doi.org/10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.
Kondo, J., T. Kuwagata, and S. Haginoya, 1989: Heat budget analysis of nocturnal cooling and daytime heating in a basin. J. Atmos. Sci., 46, 2917–2933, https://doi.org/10.1175/1520-0469(1989)046<2917:HBAONC>2.0.CO;2.
Körner, C., 2012: Alpine Treeline: Functional Ecology of the Global High Elevation Tree Limits. Springer, 220 pp., https://doi.org/10.1007/978-3-0348-0396-0.
Kruse, C. G., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 4372–4392, https://doi.org/10.1175/JAS-D-15-0079.1.
Kruse, C. G., and R. B. Smith, 2018: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments. J. Atmos. Sci., 75, 2721–2740, https://doi.org/10.1175/JAS-D-17-0350.1.
Kruse, C. G., R. B. Smith, and S. D. Eckermann, 2016: The midlatitude lower-stratospheric mountain wave “valve layer”. J. Atmos. Sci., 73, 5081–5100, https://doi.org/10.1175/JAS-D-16-0173.1.
Kuettner, J., and T. H. R. O’Neill, 1981: ALPEX: The GARP mountain subprogram. Bull. Amer. Meteor. Soc., 62, 793–805, https://doi.org/10.1175/1520-0477-62.6.793.
Kunz, M., and C. Kottmeier, 2006: Orographic enhancement of precipitation over low mountain ranges. Part II: Simulations of heavy precipitation events over southwest Germany. J. Appl. Meteor. Climatol., 45, 1041–1055, https://doi.org/10.1175/JAM2390.1.
Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan Area Mesoscale Experiment (TAMEX): An overview. Bull. Amer. Meteor. Soc., 71, 488–503, https://doi.org/10.1175/1520-0477(1990)071<0488:TTAMEA>2.0.CO;2.
Lackmann, G. M., and J. E. Overland, 1989: Atmospheric structure and momentum balance during a gap-wind event in Shelikof Strait, Alaska. Mon. Wea. Rev., 117, 1817–1833, https://doi.org/10.1175/1520-0493(1989)117<1817:ASAMBD>2.0.CO;2.
Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 600 pp.
Laprise, R., and W. R. Peltier, 1989: The linear stability of nonlinear mountain waves: Implications for the understanding of severe downslope windstorms. J. Atmos. Sci., 46, 545–564, https://doi.org/10.1175/1520-0469(1989)046<0545:TLSONM>2.0.CO;2.
Lareau, N. P., E. Crosman, C. D. Whiteman, J. D. Horel, S. W. Hoch, W. O. J. Brown, and T. W. Horst, 2013: The Persistent Cold-Air Pool Study. Bull. Amer. Meteor. Soc., 94, 51–63, https://doi.org/10.1175/BAMS-D-11-00255.1.
Lawrence