100 Years of Progress in Cloud Physics, Aerosols, and Aerosol Chemistry Research

Sonia M. Kreidenweis Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Sonia M. Kreidenweis in
Current site
Google Scholar
PubMed
Close
,
Markus Petters Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Markus Petters in
Current site
Google Scholar
PubMed
Close
, and
Ulrike Lohmann Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Ulrike Lohmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This chapter reviews the history of the discovery of cloud nuclei and their impacts on cloud microphysics and the climate system. Pioneers including John Aitken, Sir John Mason, Hilding Köhler, Christian Junge, Sean Twomey, and Kenneth Whitby laid the foundations of the field. Through their contributions and those of many others, rapid progress has been made in the last 100 years in understanding the sources, evolution, and composition of the atmospheric aerosol, the interactions of particles with atmospheric water vapor, and cloud microphysical processes. Major breakthroughs in measurement capabilities and in theoretical understanding have elucidated the characteristics of cloud condensation nuclei and ice nucleating particles and the role these play in shaping cloud microphysical properties and the formation of precipitation. Despite these advances, not all their impacts on cloud formation and evolution have been resolved. The resulting radiative forcing on the climate system due to aerosol–cloud interactions remains an unacceptably large uncertainty in future climate projections. Process-level understanding of aerosol–cloud interactions remains insufficient to support technological mitigation strategies such as intentional weather modification or geoengineering to accelerating Earth-system-wide changes in temperature and weather patterns.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This chapter was revised on 11 December 2019 to correct an attribution in the caption of Fig. 11-16.

Corresponding author: Sonia Kreidenweis, sonia@atmos.colostate.edu

Abstract

This chapter reviews the history of the discovery of cloud nuclei and their impacts on cloud microphysics and the climate system. Pioneers including John Aitken, Sir John Mason, Hilding Köhler, Christian Junge, Sean Twomey, and Kenneth Whitby laid the foundations of the field. Through their contributions and those of many others, rapid progress has been made in the last 100 years in understanding the sources, evolution, and composition of the atmospheric aerosol, the interactions of particles with atmospheric water vapor, and cloud microphysical processes. Major breakthroughs in measurement capabilities and in theoretical understanding have elucidated the characteristics of cloud condensation nuclei and ice nucleating particles and the role these play in shaping cloud microphysical properties and the formation of precipitation. Despite these advances, not all their impacts on cloud formation and evolution have been resolved. The resulting radiative forcing on the climate system due to aerosol–cloud interactions remains an unacceptably large uncertainty in future climate projections. Process-level understanding of aerosol–cloud interactions remains insufficient to support technological mitigation strategies such as intentional weather modification or geoengineering to accelerating Earth-system-wide changes in temperature and weather patterns.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This chapter was revised on 11 December 2019 to correct an attribution in the caption of Fig. 11-16.

Corresponding author: Sonia Kreidenweis, sonia@atmos.colostate.edu

Supplementary Materials

    • Supplemental Materials (ZIP 283 KB)
Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, https://doi.org/10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Crossref
    • Export Citation
  • Adachi, K., and P. R. Buseck, 2008: Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys., 8, 64696481, https://doi.org/10.5194/acp-8-6469-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, P. J., and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aitken, J., 1881: Dust, fog, and clouds. Nature, 23, 384385, https://doi.org/10.1038/023384a0.

  • Aitken, J., 1890: On improvements in the apparatus for counting the dust particles in the atmosphere. Proc. Roy. Soc. Edinburgh, 16, 135172, https://doi.org/10.1017/S0370164600006222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aitken, J., 1909: Atmospheric cloudy condensation. Nature, 82, 8, https://doi.org/10.1038/082008a0.

  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, and T. Reisin, 2007: Aerosols’ influence on the interplay between condensation, evaporation and rain in warm cumulus cloud. Atmos. Chem. Phys., 7, 12 68712 714, https://doi.org/10.5194/acpd-7-12687-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140–141, 3860, https://doi.org/10.1016/j.atmosres.2014.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., B. Kucienska, A. Kostinski, G. B. Raga, and I. Koren, 2017: Global association of aerosol with flash density of intense lightning. Environ. Res. Lett., 12, 114037, https://doi.org/10.1088/1748-9326/aa922b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

  • Andreae, M. O., D. A. Hegg, and U. Baltensperger, 2009: Sources and nature of atmospheric aerosols. Aerosol Pollution Impact on Precipitation, Z. Levin and W. R. Cotton, Eds., Springer, 45–89.

    • Crossref
    • Export Citation
  • Asa-Awuku, A., and A. Nenes, 2007: Effect of solute dissolution kinetics on cloud droplet formation: Extended Köhler theory. J. Geophys. Res., 112, D2220, https://doi.org/10.1029/2005JD006934.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 13421343, https://doi.org/10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • aufm Kampe, H. J., and H. K. Weickmann, 1957: Physics of Clouds. Meteor. Monogr., Vol. 3, No. 18, Amer. Meteor. Soc., 182–225, https://doi.org/10.1007/978-1-940033-31-0_1.

    • Crossref
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. W. Grabowski, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahadur, R., L. M. Russell, and K. Prather, 2010: Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements. Aerosol Sci. Technol., 44, 551562, https://doi.org/10.1080/02786821003786048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M., and R. J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142145, https://doi.org/10.1038/345142a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation—Monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369381, https://doi.org/10.5194/acp-9-369-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1987: Cloud and precipitation physics research 1983–1986. Rev. Geophys., 25, 357370, https://doi.org/10.1029/RG025i003p00357.

  • Beard, K. V., and H. T. Ochs, 1983: Measured collection efficiencies for cloud drops. J. Atmos. Sci., 40, 146153, https://doi.org/10.1175/1520-0469(1983)040<0146:MCEFCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., R. I. Durkee, and H. T. Ochs III, 2002: Coalescence efficiency measurements for minimally charged cloud drops. J. Atmos. Sci., 59, 233243, https://doi.org/10.1175/1520-0469(2002)059<0233:CEMFMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., V. N. Bringi, and M. Thurai, 2010: A new understanding of raindrop shape. Atmos. Res., 97, 396415, https://doi.org/10.1016/J.ATMOSRES.2010.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, A., J. Henneberger, J. P. Fugal, R. O. David, L. Lacher, and U. Lohmann, 2018: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations. Atmos. Chem. Phys., 18, 89098927, https://doi.org/10.5194/acp-18-8909-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. L., D. Rosenfeld, and K.-M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, https://doi.org/10.1029/2009GL040915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellamy, R., J. Chilvers, N. E. Vaughan, and T. M. Lenton, 2012: A review of climate geoengineering appraisals. Wiley Interdiscip. Rev.: Climate Change, 3, 597615, https://doi.org/10.1002/wcc.197.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Berg, W., T. L’Ecuyer, and S. van den Heever, 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res., 113, D14S23, https://doi.org/10.1029/2007JD009649.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation Proc. Fifth Assembly of U.G.G.I., Lisbon, Portugal, Proces Verbaux de l’Association de Météorologie, International Union of Geodesy and Geophysics, Vol. 2, 156–180.

  • Berry, E. X., and R. L. Reinhardt, 1974a: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974b: An analysis of cloud drop growth by collection Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974c: An analysis of cloud drop growth by collection: Part III. Accretion and self-collection. J. Atmos. Sci., 31, 21182126, https://doi.org/10.1175/1520-0469(1974)031<2118:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974d: An analysis of cloud drop growth by collection: Part IV. A new parameterization. J. Atmos. Sci., 31, 21272135, https://doi.org/10.1175/1520-0469(1974)031<2127:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beydoun, H., M. Polen, and R. C. Sullivan, 2017: A new multicomponent heterogeneous ice nucleation model and its application to Snomax bacterial particles and a Snomax–illite mineral particle mixture. Atmos. Chem. Phys., 17, 13 54513 557, https://doi.org/10.5194/acp-17-13545-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, Q., S. H. Jathar, J. K. Kodros, K. C. Barsanti, L. E. Hatch, A. A. May, S. M. Kreidenweis, and J. R. Pierce, 2017: Secondary organic aerosol formation in biomass-burning plumes: Theoretical analysis of lab studies and ambient plumes. Atmos. Chem. Phys., 17, 54595475, https://doi.org/10.5194/acp-17-5459-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1957: A new technique for counting ice-forming nuclei in aerosols. Tellus, 9, 394400, https://doi.org/10.3402/tellusa.v9i3.9101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1986: Discrepancy between observation and prediction of concentrations of cloud condensation nuclei. Atmos. Res., 20, 8186, https://doi.org/10.1016/0169-8095(86)90010-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., and M. Stevenson, 1970: Comparison of concentrations of ice nuclei in different parts of the world. J. Rech. Atmos., 4, 4158.

    • Search Google Scholar
    • Export Citation
  • Bilde, M., and B. Svenningsson, 2004: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase. Tellus, 56B, 128134, https://doi.org/10.1111/j.1600-0889.2004.00090.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 867–952.

  • Biskos, G., A. Malinowski, L. M. Russell, P. R. Buseck, and S. T. Martin, 2006: Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Sci. Technol., 40, 97106, https://doi.org/10.1080/02786820500484396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1950: The behavior of water drops at terminal velocity in air. Eos, Trans. Amer. Geophys. Union, 31, 836842, https://doi.org/10.1029/TR031i006p00836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.–Ocean, 22, 397429, https://doi.org/10.1080/07055900.1984.9649208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/JGRD.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 2767, https://doi.org/10.1080/02786820500421521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016a: Ice nucleating particles in the Saharan air layer. Atmos. Chem. Phys., 16, 90679087, https://doi.org/10.5194/acp-16-9067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016b: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 1: Immersion freezing. Atmos. Chem. Phys., 16, 15 07515 095, https://doi.org/10.5194/acp-16-15075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, M. A. Wetzel, F. Herrera, A. Gonzalez, and J. Harris, 1998: Chemical and microphysical properties of marine stratiform clouds in the North Atlantic. J. Geophys. Res., 103, 22 07322 085, https://doi.org/10.1029/98JD02087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationship among cloud microphysics, chemistry and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602, https://doi.org/10.1016/S1352-2310(99)00492-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, https://doi.org/10.1029/2002GL016855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus, 47B, 281300, https://doi.org/10.3402/TELLUSB.V47i3.16048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 571–657.

  • Braham, R. R., 1968: Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc., 49, 343353, https://doi.org/10.1175/1520-0477-49.4.343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1986: Precipitation Enhancement—A Scientific Challenge. Meteor. Monogr., No. 43, Amer. Meteor. Soc., 171 pp., https://doi.org/10.1175/0065-9401-21.43.1.

    • Crossref
    • Export Citation
  • Braham, R. R., and P. Spyers-Duran, 1974: Ice nucleus measurements in an urban atmosphere. J. Appl. Meteor., 13, 940945, https://doi.org/10.1175/1520-0450(1974)013<0940:INMIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., R. G. Semonin, A. H. Auer, S. A. Changnon Jr., and J. M. Hales, 1981: Summary of urban effects on clouds and rain. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 141–152.

    • Crossref
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broadley, S. L., and Coauthors, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307, https://doi.org/10.5194/acp-12-287-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2016: Sir (Basil) John Mason CB. 18 August 1923–6 January 2015. Biogr. Mem. Fellows Roy. Soc., 62, 359380, https://doi.org/10.1098/rsbm.2015.0028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 2016: Report from expert team on weather modification research for 2015/2016. WMO, 8 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WMO_weather_mod_2015_2016.pdf.

  • Bzdek, B. R., M. R. Pennington, and M. V. Johnston, 2012: Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci., 52, 109120, https://doi.org/10.1016/j.jaerosci.2012.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, C., D. J. Stewart, J. P. Reid, Y.-H. Zhang, P. Ohm, C. S. Dutcher, and S. L. Clegg, 2015: Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers. J. Phys. Chem., 119A, 704718, https://doi.org/10.1021/jp510525r.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, W., G. Shaw, G. R. Cass, Z. Chowdhury, L. S. Hughe, K. A. Prather, S. A. Guazzotti, and K. R. Coffee, 2001: Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory. J. Geophys. Res., 106, 28 71128 718, https://doi.org/10.1029/2000JD900781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., J. C. Chow, F. S. C. Lee, and J. G. Watson, 2013: Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China. Aerosol Air Qual. Res., 13, 11971211, https://doi.org/10.4209/aaqr.2012.11.0302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson, 2011: Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res., 116, D15204, https://doi.org/10.1029/2011JD015918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 25572567, https://doi.org/10.5194/acp-11-2557-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., S. C. van den Heever, and W. R. Cotton, 2007: Impacts of nucleating aerosol on anvil-cirrus clouds: A modeling study. Atmos. Res., 84, 111131, https://doi.org/10.1016/j.atmosres.2006.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., W. R. Cotton, and Y. Y. Cheng, 2010: Urban growth and aerosol effects on convection over Houston. Part I: The August 2000 case. Atmos. Res., 96, 560574, https://doi.org/10.1016/j.atmosres.2010.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerully, K. M., and Coauthors, 2015: On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmos. Chem. Phys., 15, 86798694, https://doi.org/10.5194/acp-15-8679-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 23432358, https://doi.org/10.1175/BAMS-D-15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, R. Y. W., and Coauthors, 2010: The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: Relationship to degree of aerosol oxidation. Atmos. Chem. Phys., 10, 50475064, https://doi.org/10.5194/acp-10-5047-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1975: The paradox of planned weather modification. Bull. Amer. Meteor. Soc., 56, 2737, https://doi.org/10.1175/1520-0477(1975)056<0027:TPOPWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

    • Crossref
    • Export Citation
  • Changnon, S. A., 1992: Inadvertent weather modification in urban areas: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619627, https://doi.org/10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and F. A. Huff, 1997: Atmospheric sciences at the Illinois State Water Survey: Five decades of diverse activities and achievements. Bull. Amer. Meteor. Soc., 78, 229238, https://doi.org/10.1175/1520-0477(1997)078<0229:ASATIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655, https://doi.org/10.1038/326655a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, and H. Rodhe, 1990: Sulfate aerosol and climate. Nature, 348, 22–22, https://doi.org/10.1038/348022a0.

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, https://doi.org/10.1126/science.255.5043.423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D.-R., D. Y. H. Pui, D. Hummes, H. Fissan, F. R. Quant, and G. J. Sem, 1998: Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci., 29, 497509, https://doi.org/10.1016/S0021-8502(97)10018-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and Coauthors, 2018: Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. Atmos. Chem. Phys., 18, 311326, https://doi.org/10.5194/acp-18-311-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and Coauthors, 2018: Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys., 18, 35233539, https://doi.org/10.5194/acp-18-3523-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25, 13911394, https://doi.org/10.1029/97GL03261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, https://doi.org/10.1038/ngeo2214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol–cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 28192833, https://doi.org/10.1002/2014JD022736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, G., B. Tyagi, J. Singh, C. Sarangi, and S. N. Tripathi, 2019: Aerosol-orography-precipitation—A critical assessment. Atmos. Environ., 214, https://doi.org/10.1016/j.atmosenv.2019.116831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, J. C., 1995: Measurement methods to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manage. Assoc., 45, 320382, https://doi.org/10.1080/10473289.1995.10467369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, J. C., and J. G. Watson, 2007: Review of measurement methods and compositions for ultrafine particles. Aerosol Air Qual. Res., 7, 121173, https://doi.org/10.4209/aaqr.2007.05.0029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, https://doi.org/10.1029/2010JD014638.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, 69706977, https://doi.org/10.1002/2014GL061320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., R. J. Charlson, and J. H. Seinfeld, 1997: Kinetic limitations on droplet formation in clouds. Nature, 390, 594, https://doi.org/10.1038/37576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., A. Nenes, J. N. Smith, R. C. Flagan, and J. H. Seinfeld, 2000: Design of a CCN instrument for airborne measurement. J. Atmos. Oceanic Technol., 17, 10051019, https://doi.org/10.1175/1520-0426(2000)017<1005:DOACIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cicerone, R. J., 2006: Geoengineering: Encouraging research and overseeing implementation. Climatic Change, 77, 221226, https://doi.org/10.1007/s10584-006-9102-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, W. E., and K. T. Whitby, 1967: Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions. J. Atmos. Sci., 24, 677687, https://doi.org/10.1175/1520-0469(1967)024<0677:CASDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., V. N. Kapustin, F. L. Eisele, R. J. Weber, and P. H. McMurry, 1999: Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation. Geophys. Res. Lett., 26, 24252428, https://doi.org/10.1029/1999GL900438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clavner, M., W. R. Cotton, S. C. van den Heever, J. R. Pierce, and S. M. Saleeby, 2018a: The response of a simulated mesoscale convective system to increased aerosol pollution. Part I: Precipitation intensity, distribution and efficiency. Atmos. Res., 199, 193208, https://doi.org/10.1016/j.atmosres.2017.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clavner, M., L. D. Grasso, W. R. Cotton, and S. C. van den Heever, 2018b: The response of a simulated mesoscale convective system to increased aerosol pollution. Part II: Derecho characteristics and intensity in response to increased pollution. Atmos. Res., 199, 209223, https://doi.org/10.1016/j.atmosres.2017.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 10201022, https://doi.org/10.1126/science.237.4818.1020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., J.-P. Pinty, and C. Bedos, 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 33483357, https://doi.org/10.1175/1520-0469(1998)055<3348:ETSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, M., R. Flagan, and J. Seinfeld, 1987: Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem., 91, 45634574, https://doi.org/10.1021/j100301a029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conant, W. C., and Coauthors, 2004: Aerosol–cloud drop concentration closure in warm cumulus. J. Geophys. Res., 109, D13204, https://doi.org/10.1029/2003JD004324.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1979: Cloud physics: A review for 1975–1978 IUGG Quadrennial Report. Rev. Geophys., 17, 18401851, https://doi.org/10.1029/RG017i007p01840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 2003: Cloud models: Their evolution and future challenges. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 95–105, https://doi.org/10.1175/0065-9401(2003)029<0095:CCMTEA>2.0.CO;2.

    • Crossref
    • Export Citation
  • Cotton, W. R., and R. A. Pielke, 1976: weather modification and three-dimensional mesoscale models. Bull. Amer. Meteor. Soc., 57, 788796, https://doi.org/10.1175/1520-0477(1976)057<0788:WMATDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39, 7073.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. M. Krall, and G. G. Carrió, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Trop. Cyclone Res. Rev., 1, 293306, https://doi.org/10.5194/ACPD-12-351-2012.

    • Search Google Scholar
    • Export Citation
  • Covert, D. S., J. L. Gras, A. Wiedensohler, and F. Stratmann, 1998: Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania. J. Geophys. Res., 103, 16 59716 608, https://doi.org/10.1029/98JD01093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cozic, J., and Coauthors, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113, D15209, https://doi.org/10.1029/2007JD009266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., A. P. Ault, A. B. White, P. J. Neiman, F. M. Ralph, P. Minnis, and K. A. Prather, 2015: Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California’s central Sierra Nevada. Atmos. Chem. Phys., 15, 65356548, https://doi.org/10.5194/acp-15-6535-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211, https://doi.org/10.1007/s10584-006-9101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, C. N., and S. N. Pandis, 1998: The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J. Geophys. Res., 103, 13 11113 123, https://doi.org/10.1029/98JD00979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320, https://doi.org/10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., L. Ladino-Moreno, Y. Boose, Z. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0008.1.

    • Crossref
    • Export Citation
  • Delene, D. J., and T. Deshler, 2000: Calibration of a photometric cloud condensation nucleus counter designed for deployment on a balloon package. J. Atmos. Oceanic Technol., 17, 459467, https://doi.org/10.1175/1520-0426(2000)017<0459:COAPCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, https://doi.org/10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, https://doi.org/10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 5797–5803, https://doi.org/10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2017: Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmos. Chem. Phys., 17, 11 22711 245, https://doi.org/10.5194/acp-17-11227-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2018: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018.

    • Crossref
    • Export Citation
  • DeMott, P. J., W. G. Finnegan, and L. O. Grant, 1983: An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used for weather modification. J. Climate Appl. Meteor, 22, 11901203, https://doi.org/10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 7790, https://doi.org/10.1175/1520-0469(1994)051<0077:PAIOII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 24292432, https://doi.org/10.1029/1999GL900580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessens, H., 1949: The use of spiders’ threads in the study of condensation nuclei. Quart. J. Roy. Meteor. Soc., 75, 2326, https://doi.org/10.1002/qj.49707532305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, M., 1948: Messungen der Grösse von Wolkenelementen. Meteor. Rundsch., 11, 261273.

  • Dietlicher, R., D. Neubauer, and U. Lohmann, 2019: Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2. Atmos. Chem. Phys., 19, 90619080, https://doi.org/10.5194/acp-19-9061-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1949: Ice in the atmosphere. Quart. J. Roy. Meteor. Soc., 75, 117130, https://doi.org/10.1002/qj.49707532402.

  • Doyle, G. J., 1961: Self-nucleation in the sulfuric acid-water system. J. Chem. Phys., 35, 795799, https://doi.org/10.1063/1.1701218.

  • Dunion, J. P., and C. S. Veldon, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, E. A., and Coauthors, 2016: Global atmospheric particle formation from CERN CLOUD measurements. Science, 345, 11191124, https://doi.org/10.1126/science.aaf2649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duplissy, J., and Coauthors, 2009: Intercomparison study of six HTDMAs: Results and recommendations. Atmos. Meas. Tech., 2, 363378, https://doi.org/10.5194/amt-2-363-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, https://doi.org/10.1029/2005GL024175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., and Coauthors, 2000b: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypothesis 1i and 1ii. J. Atmos. Sci., 57, 25542569, https://doi.org/10.1175/1520-0469(2000)057<2554:TIOSPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., K. J. Noone, and R. T. Bluth, 2000a: The Monterey Area Ship Track Experiment. J. Atmos. Sci., 57, 25232539, https://doi.org/10.1175/1520-0469(2000)057<2523:TMASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24172436, https://doi.org/10.1175/2010JAS3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekman, A., A. Engström, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133B, 14391452, https://doi.org/10.1002/QJ.108.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. J. Connolly, S. Boult, M. Campana, and Z. Li, 2015: Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles. Atmos. Chem. Phys., 15, 11 31111 326, https://doi.org/10.5194/acp-15-11311-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Facchini, M. C., and Coauthors, 2008: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett., 35, L17814, https://doi.org/10.1029/2008GL034210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010a: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, https://doi.org/10.1088/1748-9326/5/4/044005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, M. Ovchinnikov, S. A. McFarlane, G. McFarquhar, and G. Allen, 2010b: Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations. J. Geophys. Res., 115, D12201, https://doi.org/10.1029/2009JD012696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrington, R. J., and Coauthors, 2016: Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign. Atmos. Chem. Phys., 16, 49454966, https://doi.org/10.5194/acp-16-4945-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The Impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117, https://doi.org/10.1175/1520-0469(1999)056<4100:TIOGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, T. Yamaguchi, and J. Kazil, 2015: On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15, 73517367, https://doi.org/10.5194/acp-15-7351-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y., V. Ramanathan, and V. R. Kotamarthi, 2013: Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys., 13, 86078621, https://doi.org/10.5194/acp-13-8607-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung (Colloidal meteorological processes in the formation of precipitation). Meteor. Z., 55, 121–133.

  • Fitzgerald, J. W., 1973: Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition. J. Atmos. Sci., 30, 628634, https://doi.org/10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flagan, R. C., 1998: History of electrical aerosol measurements. Aerosol Sci. Technol., 28, 301380, https://doi.org/10.1080/02786829808965530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, J. R., 2010: Fixing the Sky: The Checkered History of Weather and Climate Control. Columbia University Press, 352 pp.

  • Fletcher, N. H., 1958: Size effect in heterogeneous nucleation. J. Chem. Phys., 29, 572576, https://doi.org/10.1063/1.1744540.

  • Fletcher, N. H., 1959: Entropy effect in ice crystal nucleation. J. Chem. Phys., 30, 14761482, https://doi.org/10.1063/1.1730221.

  • Fletcher, N. H., 1961: Freezing nuclei, meteors, and rainfall. Science, 134, 361367, https://doi.org/10.1126/science.134.3476.361.

  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fletcher, N. H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 12661271, https://doi.org/10.1175/1520-0469(1969)026<1266:ASAICN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., V. Levizzani, and P. K. Wang, 2010: On the fundamental role of Hans Pruppacher for cloud physics and cloud chemistry. Atmos. Res., 97, 393395, https://doi.org/10.1016/J.ATMOSRES.2010.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, https://doi.org/10.1029/2009JD011958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Radiative forcing of climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Ed., Cambridge University Press, Cambridge, 129–234.

  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 11391150, https://doi.org/10.1002/JGRD.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fountoukis, C., and Coauthors, 2007: Aerosol–cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. J. Geophys. Res., 112, D10S30, https://doi.org/10.1029/2006JD007272.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated cloud microphysical processes. J. Climate, 9, 489529, https://doi.org/10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 24512466, https://doi.org/10.1175/JAS3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 115, 11681173, https://doi.org/10.1073/pnas.1716995115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722, https://doi.org/10.1126/science.1094947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., B. van Diedenhoven, A. S. Ackerman, A. Avramov, A. Mrowiec, H. Morrison, P. Zuidema, and M. D. Shupe, 2012: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365389, https://doi.org/10.1175/JAS-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlander, S. K., 1960a: On the particle-size spectrum of atmospheric aerosols. J. Meteor., 17, 373374, https://doi.org/10.1175/1520-0469(1960)017<0373:OTPSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlander, S. K., 1960b: Similarity considerations for the particle-size spectrum of a coagulating, sedimenting aerosol. J. Meteor., 17, 479483, https://doi.org/10.1175/1520-0469(1960)017<0479:SCFTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich-Nowoisky, J., and Coauthors, 2016: Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res., 182, 346376, https://doi.org/10.1016/j.atmosres.2016.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frossard, A. A., L. M. Russell, S. M. Burrows, S. M. Elliott, T. S. Bates, and P. K. Quinn, 2014: Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res., 119, 12 97713 003, https://doi.org/10.1002/2014JD021913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., 1966: Experimental studies of organic ice nuclei. J. Atmos. Sci., 23, 191196, https://doi.org/10.1175/1520-0469(1966)023<0191:ESOOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and V. K. Saxena, 1979: A horizontal thermal gradient cloud condensation nucleus spectrometer. J. Appl. Meteor., 18, 13521362, https://doi.org/10.1175/1520-0450(1979)018<1352:AHTGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparini, B., A. Meyer, D. Neubauer, S. Münch, and U. Lohmann, 2018: Cirrus cloud properties as seen by the CALIPSO satellite and ECHAM-HAM global climate model. J. Climate, 31, 19832003, https://doi.org/10.1175/JCLI-D-16-0608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavish, M., R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, 1990: Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science, 250, 973975, https://doi.org/10.1126/science.250.4983.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavish, M., J. L. Wang, M. Eisenstein, M. Lahav, and L. Leiserowitz, 1992: The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice. Science, 256, 815, https://doi.org/10.1126/science.1589763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhart, J., 1993: Optical direct-reading techniques: Light intensity systems Aerosol Measurement: Principles, Techniques, and Applications, K. Willeke and P. A. Baron, Eds., Van Norstrand Reinhold, 313–344.

  • Gelbard, F., and J. H. Seinfeld, 1979: The general dynamic equation for aerosols. Theory and application to aerosol formation and growth. J. Colloid Interface Sci., 68, 363382, https://doi.org/10.1016/0021-9797(79)90289-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., 1981: Some diagnostics of the cloud radiation interaction on ECMWF forecasting model. Workshop on Radiation and Cloud Radiation Interaction in Numerical Modeling, Reading, UK, ECMWF, 135162, https://www.ecmwf.int/sites/default/files/elibrary/1980/9525-some-diagnostics-cloud-radiation-interaction-ecmwf-forecasting-model.pdf.

  • Georgii, H.-W., 1959: Neue Untersuchungen über den Zusammenhang zwischen atmosphärischen Gefrierkernen und Kondensationskernen. Geofis. Pura Appl., 42, 6272, https://doi.org/10.1007/BF02113390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. C. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J. Climate, 21, 36603679, https://doi.org/10.1175/2008JCLI2116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, https://doi.org/10.1029/2012JD017950.

    • Search Google Scholar
    • Export Citation
  • Gong, S., and L. A. Barrie, 2009: The distribution of atmospehric aerosols: Transport, transformation, and removal. Aerosol Pollution Impact on Precipitation, Z. Levin and W. R. Cotton, Eds., Springer, 91–141.

    • Crossref
    • Export Citation
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32, 199215, https://doi.org/10.1016/S0021-8502(00)00077-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goren, T., and D. Rosenfeld, 2012: Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J. Geophys. Res., 117, D17206, https://doi.org/10.1029/2012JD017981.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W.W., 2018: Can the impact of aerosols on deep convection be isolated from meteorological effects in atmospheric observations? J. Atmos. Sci., 75, 33473363, https://doi.org/10.1175/JAS-D-18-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: modulation by dry layers. J. Atmos. Sci., 72, 13981408, https://doi.org/10.1175/JAS-D-14-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gras, J. L., and G. P. Ayers, 1983: Marine aerosol at southern mid-latitudes. J. Geophys. Res., 88, 10 66110 666, https://doi.org/10.1029/JC088iC15p10661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, W. D., S. Patrick, and A. P. Rood, 1984: An aerodynamic particle size analyser tested with spheres, compact particles and fibres having a common settling rate under gravity. J. Aerosol Sci., 15, 491502, https://doi.org/10.1016/0021-8502(84)90045-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunthe, S. S., and Coauthors, 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: Size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys., 9, 75517575, https://doi.org/10.5194/acp-9-7551-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurganus, C. W., J. C. Charnawskas, A. B. Kostinski, and R. A. Shaw, 2014: Nucleation at the contact line observed on nanotextured surfaces. Phys. Rev. Lett., 113, 235701, https://doi.org/10.1103/PhysRevLett.113.235701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., 1983: Progress in cloud physics 1979–1982. Rev. Geophys., 21, 965984, https://doi.org/10.1029/RG021i005p00965.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hämeri, K., and Coauthors, 2001: Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, 53B, 359379, https://doi.org/10.3402/tellusb.v53i4.16609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, J. L., and S. M. Kreidenweis, 2002: A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol., 36, 10121026, https://doi.org/10.1080/02786820290092276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, P. C., 2000: The L-curve and its use in the numerical treatment of inverse problems. Advances in Computational Bioengineering, WIT Press, 119–142.

  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M. Fragomeni, N. Debbage, and B. Johnson, 2019b: 100 years of progress in applied meteorology. Part II: Applications that address growing populations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0007.1.

    • Crossref
    • Export Citation
  • Heal, M. R., P. Kumar, and R. M. Harrison, 2012: Particles, air quality, policy and health. Chem. Soc. Rev., 41, 66066630, https://doi.org/10.1039/c2cs35076a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heiblum, R. H., I. Koren, and O. Altaratz, 2012: New evidence of cloud invigoration from TRMM measurements of rain center of gravity. Geophys. Res. Lett., 39, L08803, https://doi.org/10.1029/2012GL051158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikenfeld, M., B. White, L. Labbouz, and P. Stier, 2019: Aerosol effects on deep convection: The propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys., 19, 26012627, https://doi.org/10.5194/acp-19-2601-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennig, T., A. Massling, F. J. Brechtel, and A. Wiedensohler, 2005: A tandem DMA for highly temperature-stabilized hygroscopic particle growth measurements between 90% and 98% relative humidity. J. Aerosol Sci., 36, 12101223, https://doi.org/10.1016/j.jaerosci.2005.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, B. F., 2007: An adsorption model of insoluble particle activation: Application to black carbon. J. Geophys. Res., 112, D24S16, https://doi.org/10.1029/2007JD008549.

    • Search Google Scholar
    • Export Citation
  • Herbener, S. R., S. C. van den Heever, G. G. Carrió, S. M. Saleeby, and W. R. Cotton, 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71, 20402055, https://doi.org/10.1175/JAS-D-13-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbener, S. R., S. M. Saleeby, S. C. van den Heever, and C. H. Twohy, 2016: Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface. Geophys. Res. Lett., 43, 10 46310 471, https://doi.org/10.1002/2016GL070262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, G. W., 1957: The charging of small particles for electrostatic precipitation. Trans. Amer. Inst. Electr. Eng., 76, 300306, https://doi.org/10.1109/TCE.1957.6372672.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1

    • Crossref
    • Export Citation
  • Heyn, I., K. Block, J. Mulmenstadt, E. Gryspeerdt, P. Kuhne, M. Salzmann, and J. Quaas, 2017: Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum. Geophys. Res. Lett., 44, 10011007, https://doi.org/10.1002/2016GL071975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidy, G. M., 1967: Adventures in atmospheric simulation. Bull. Amer. Meteor. Soc., 48, 143161, https://doi.org/10.1175/1520-0477-48.3.143.

  • Hill, T. C. J., P. J. DeMott, F. Conen, and O. Möhler, 2017: Impacts of bioaerosols on atmospheric ice nucleation processes. Microbiology of Aerosols, A.-M. Delort and P. Amato, Eds., Wiley, 197–220, https://doi.org/10.1002/9781119132318.ch3a.

    • Crossref
    • Export Citation
  • Hindman, E. E., II, P. V. Hobbs, and L. F. Radke, 1977a: Cloud condensation nuclei from a paper mill. Part I: Measured effects on clouds. J. Appl. Meteor., 16, 745752, https://doi.org/10.1175/1520-0450(1977)016<0745:CCNFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., II, P. M. Tag, B. A. Silverman, and P. V. Hobbs, 1977b: Cloud condensation nuclei from a paper mill. Part II: Calculated effects on rainfall. J. Appl. Meteor., 16, 753755, https://doi.org/10.1175/1520-0450(1977)016<0753:CCNFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 24892518, https://doi.org/10.5194/acp-15-2489-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1991: Research on clouds and precipitation: Past, present and future, part II. Bull. Amer. Meteor. Soc., 72, 184191, https://doi.org/10.1175/1520-0477(1991)072<0184:ROCAPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., L. F. Radke, and S. E. Shumway, 1970: Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington State. J. Atmos. Sci., 27, 8189, https://doi.org/10.1175/1520-0469(1970)027<0091:CCNFIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., M. K. Politovich, and L. F. Radke, 1980: The structures of summer convective clouds in eastern Montana. I: Natural clouds. J. Appl. Meteor., 19, 645663, https://doi.org/10.1175/1520-0450(1980)019<0645:TSOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev., 11, 369408, https://doi.org/10.5194/gmd-11-369-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, https://doi.org/10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, https://doi.org/10.1088/1748-9326/3/2/025003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, R. J., L. Mitchem, A. D. Ward, and J. P. Reid, 2004: Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap. Phys. Chem. Chem. Phys., 6, 49244927, https://doi.org/10.1039/b414459g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, W. E., 1949: The growth of cloud drops in uniformly cooled air. J. Meteor., 6, 134149, https://doi.org/10.1175/1520-0469(1949)006<0134:TGOCDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1984: Cloud condensation nuclei measurements within clouds. J. Climate Appl. Meteor., 23, 4251, https://doi.org/10.1175/1520-0450(1984)023<0042:CCNMWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and P. Squires, 1976: An improved continuous flow diffusion cloud chamber. J. Appl. Meteor., 15, 776782, https://doi.org/10.1175/1520-0450(1976)015<0776:AICFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. S. Yum, 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J. Geophys. Res., 107, 8022, https://doi.org/10.1029/2001JD000829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., S. Noble, and V. Jha, 2011: On the relative role of sea salt cloud condensation nuclei (CCN). J. Atmos. Chem., 68, 7188, https://doi.org/10.1007/s10874-011-9210-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatius, K., and Coauthors, 2016: Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene. Atmos. Chem. Phys., 16, 64956509, https://doi.org/10.5194/acp-16-6495-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isono, K., and T. Tanaka, 1966: Sudden increase of ice nucleus concentration associated with thunderstorm. J. Meteor. Soc. Japan, 44, 255258, https://doi.org/10.2151/JMSJ1965.44.5_255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 1999: Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res., 104, 35273542, https://doi.org/10.1029/1998JD100054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M. C., H. C. Hansson, K. J. Noone, and R. J. Charlson, 2000: Organic atmospheric aerosols: Review and state of the science. Rev. Geophys., 38, 267294, https://doi.org/10.1029/1998RG000045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaenicke, R., and C. N. Davies, 1976: The mathematical expression of the size distribution of atmospheric aerosols. J. Aerosol Sci., 7, 255259, https://doi.org/10.1016/0021-8502(76)90040-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., and P. H. Austin, 1997: Homogeneous nucleation of supercooled water: Results from a new equation of state. J. Geophys. Res., 102, 25 26925 279, https://doi.org/10.1029/97JD02243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and Pratt, A., 2008: Saharan dust, lightning and tropical cyclones in the eastern tropical Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L12804, https://doi.org/10.1029/2008GL033979.

    • Search Google Scholar
    • Export Citation
  • Ji, Q., G. E. Shaw, and W. Cantrell, 1998: A new instrument for measuring cloud condensation nuclei: Cloud condensation nucleus “remover.” J. Geophys. Res., 103, 28 01328 019, https://doi.org/10.1029/98JD01884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., H. Xue, A. Teller, G. Feingold, and Z. Levin, 2006: Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett., 33, L14806, https://doi.org/10.1029/2006GL026024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, J. L., and Coauthors, 2003: Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res., 108, 8425, https://doi.org/10.1029/2001JD001213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 15251529, https://doi.org/10.1126/science.1180353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, M., J. M. Shepherd, and M. D. King, 2005: Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res., 110, D10S20, https://doi.org/10.1029/2004JD005081.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., and W. R. Cotton, 2006: Effect of air pollution on precipitation along the Front Range of the Rocky Mountains. J. Appl. Meteor. Climatol., 45, 236245, https://doi.org/10.1175/JAM2328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370, 450453, https://doi.org/10.1038/370450a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, C., 1952: Die Konstitution des Atmosphärischen Aerosols. Deutscher Wetterdienst, 55 pp.

  • Junge, C. H. R., 1953: Die Rolle der Aerosole und der gasförmigen Beimengungen der Luft im Spurenstoffhaushalt der Troposphäre. Tellus, 5, 126, https://doi.org/10.3402/tellusa.v5i1.8567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, H. Morrison, and G. H. Bryan, 2014: Aerosol effects on idealized supercell thunderstorms in different environments. J. Atmos. Sci., 71, 45584580, https://doi.org/10.1175/JAS-D-14-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kammermann, L., and Coauthors, 2010: Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei. J. Geophys. Res., 115, D04202, https://doi.org/10.1029/2009JD012447.

    • Search Google Scholar
    • Export Citation
  • Kandlikar, M., and G. Ramachandran, 1999: Inverse methods for analysing aaerosol spectrometer measurement: A critical review. J. Aerosol Sci., 30, 413437, https://doi.org/10.1016/S0021-8502(98)00066-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., A. Welti, C. Chou, O. Stetzer, and U. Lohmann, 2013: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys., 13, 90979118, https://doi.org/10.5194/acp-13-9097-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., R. C. Sullivan, M. Niemand, P. J. DeMott, A. J. Prenni, C. Chou, H. Saathoff, and O. Möhler, 2019: Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol. Atmos. Chem. Phys., 19, 50915110, https://doi.org/10.5194/acp-19-5091-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., 2017: Cirrus clouds and their response to anthropogenic activities. Curr. Climate Change Rep., 3, 4557, https://doi.org/10.1007/s40641-017-0060-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2002: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107, 4010–4010, https://doi.org/10.1029/2001JD000470.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 111, D01205, https://doi.org/10.1029/2005JD006219.

    • Search Google Scholar
    • Export Citation
  • Katz, J. L., and P. Mirabel, 1975: Calculation of supersaturation profiles in thermal diffusion cloud chambers. J. Atmos. Sci., 32, 646652, https://doi.org/10.1175/1520-0469(1975)032<0646:COSPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and T. Nakajima, 1993: Effect of Amazon smoke on cloud microphysics and albedo-analysis from satellite imagery. J. Appl. Meteor., 32, 729744, https://doi.org/10.1175/1520-0450(1993)032<0729:EOASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, L., C. Marcolli, B. Luo, and T. Peter, 2017: Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory. Atmos. Chem. Phys., 17, 35253552, https://doi.org/10.5194/acp-17-3525-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keith, D. W., D. K. Weisenstein, J. A. Dykema, and F. N. Keutsch, 2016: Stratospheric solar geoengineering without ozone loss. Proc. Natl. Acad. Sci. USA, 113, 14 91014 914, https://doi.org/10.1073/pnas.1615572113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114, D19209, https://doi.org/10.1029/2009JD011827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 29833001, https://doi.org/10.1175/JAS-3281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365384, https://doi.org/10.1175/2009JAS3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311, https://doi.org/10.1126/science.260.5106.311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, and B. P. Briegleb, 1994: The simulated Earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99, 2081520827, https://doi.org/10.1029/94JD00941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and Coauthors, 2016: Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmos. Chem. Phys., 16, 293304, https://doi.org/10.5194/acp-16-293-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, S. M., T. Rosenoern, J. E. Shilling, Q. Chen, and S. T. Martin, 2007: Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate. Geophys. Res. Lett., 34, L24806, https://doi.org/10.1029/2007GL030390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, https://doi.org/10.5194/acp-6-1815-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiselev, A., F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen, and T. Leisner, 2017: Active sites in heterogeneous ice nucleation—The example of K-rich feldspars. Science, 355, 367, https://doi.org/10.1126/science.aai8034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 1979: Ice nucleation in the atmosphere. Adv. Colloid Interface Sci., 10, 369395, https://doi.org/10.1016/0001-8686(79)87011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 2012: Ice growth from the vapor at −5°C. J. Atmos. Sci., 69, 20312040, https://doi.org/10.1175/JAS-D-11-0287.1.

  • Knopf, D. A., P. A. Alpert, and B. Wang, 2018: The role of organic aerosol in atmospheric ice nucleation: A review. ACS Earth Space Chem., 2, 168202, https://doi.org/10.1021/acsearthspacechem.7b00120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, E. O., and K. T. Whitby, 1975: Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci., 6, 443451, https://doi.org/10.1016/0021-8502(75)90060-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G.-K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416, 719723, https://doi.org/10.1038/416719a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2011: Soot microphysical effects on liquid clouds, a multi-model investigation. Atmos. Chem. Phys., 11, 10511064, https://doi.org/10.5194/acp-11-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, https://doi.org/10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhler, H., 1936: The nucleus in and the growth of atmospheric droplets. Trans. Faraday Soc., 32, 11521161, https://doi.org/10.1039/tf9363201152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolb, C. E., and D. R. Worsnop, 2012: Chemistry and composition of atmospheric aerosol particles. Annu. Rev. Phys. Chem., 63, 471491, https://doi.org/10.1146/annurev-physchem-032511-143706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., B. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611, https://doi.org/10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Feingold, and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys., 10, 88558872, https://doi.org/10.5194/acp-10-8855-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Dagan, and O. Altaratz, 2014: From aerosol-limited to invigoration of warm convective clouds. Science, 344, 11431146, https://doi.org/10.1126/science.1252595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korhonen, H., K. S. Carslaw, and S. Romakkaniemi, 2010: Enhancement of marine cloud albedo via controlled sea spray injections: A global model study of the influence of emission rates, microphysics and transport. Atmos. Chem. Phys., 10, 41334143, https://doi.org/10.5194/acp-10-4133-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, https://doi.org/10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967973, https://doi.org/10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, https://doi.org/10.5194/acp-9-3505-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kramer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 34633483, https://doi.org/10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravitz, B., A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov, and M. Schulz, 2011: The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett., 12, 162167, https://doi.org/10.1002/asl.316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreidenweis, S. M., and A. Asa-Awuku, 2014: Aerosol hygroscopicity: Particle water content and its role in atmospheric processes. Treatise on Geochemistry, 2nd ed. H. D. Holland and K. K. Turekian, Eds., Elsevier, 331–361.

    • Crossref
    • Export Citation
  • Kreidenweis, S. M., M. D. Petters, and P. J. DeMott, 2008: Single-parameter estimates of aerosol water content. Environ. Res. Lett., 3, 035002, https://doi.org/10.1088/1748-9326/3/3/035002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and Coauthors, 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci., 35, 143176, https://doi.org/10.1016/j.jaerosci.2003.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and Coauthors, 2007: The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. J. Aerosol Sci., 38, 289304, https://doi.org/10.1016/j.jaerosci.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and Coauthors, 2013: Direct observations of atmospheric aerosol nucleation. Science, 339, 943, https://doi.org/10.1126/science.1227385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., A. Laaksonen, R. J. Charlson, and P. Korhonen, 1997: Clouds without supersaturation. Nature, 388, 336, https://doi.org/10.1038/41000.

  • Kumai, M., 1951: Electron-microscope study of snow-crystal nuclei. J. Meteor., 8, 151156, https://doi.org/10.1175/1520-0469(1951)008<0151:EMSOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laaksonen, A., and J. Malila, 2016: An adsorption theory of heterogeneous nucleation of water vapour on nanoparticles. Atmos. Chem. Phys., 16, 135143, https://doi.org/10.5194/acp-16-135-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A., J. Hansen, and M. Sato, 1992: Climate forcing by stratospheric aerosols. Geophys. Res. Lett., 19, 16071610, https://doi.org/10.1029/92GL01620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., H. T. Ochs, R. M. Rauber, and L. J. Miller, 2000: Initial precipitation formation in warm Florida cumulus. J. Atmos. Sci., 57, 37403751, https://doi.org/10.1175/1520-0469(2000)057<3740:IPFIWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lala, G. G., and J. E. Jiusto, 1977: An automatic light scattering CCN counter. J. Appl. Meteor., 16, 413418, https://doi.org/10.1175/1520-0450(1977)016<0413:AALSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambe, A. T., and Coauthors, 2011: Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos. Chem. Phys., 11, 89138928, https://doi.org/10.5194/acp-11-8913-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., A. Nenes, J. Medina, and J. N. Smith, 2006: Mapping the operation of the DMT continuous flow CCN counter. Aerosol Sci. Technol., 40, 242254, https://doi.org/10.1080/02786820500543290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsberg, H. E., and Coauthors, 1957: Meteorological Research Reviews. Summaries of Progress from 1951 to 1955. Meteor. Monogr., Vol. 3, No. 12–20, Amer. Meteor. Soc., 283 pp., https://doi.org/10.1007/978-1-940033-33-4.

    • Crossref
    • Export Citation
  • Langer, G., 1973: Evaluation of NCAR ice nucleus counter. Part I: Basic operation. J. Appl. Meteor., 12, 10001011, https://doi.org/10.1175/1520-0450(1973)012<1000:EONINC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langer, G., J. Pierrard, and G. Yamate, 1964: Further development of an electrostatic classifier for submicron airborne particles. Air Water Pollut., 8, 167176.

    • Search Google Scholar
    • Export Citation
  • Langer, G., G. Morgan, C. T. Nagamoto, M. Solak, and J. Rosinski, 1979: Generation of ice nuclei in the surface outflow of thunderstorms in northeast Colorado. J. Atmos. Sci., 36, 24842494, https://doi.org/10.1175/1520-0469(1979)036<2484:GOINIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langham, E. J., and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc. London, 247A, 493, https://doi.org/10.1098/rspa.1958.0207.

    • Search Google Scholar
    • Export Citation
  • Laskin, A., T. W. Wietsma, B. J. Krueger, and V. H. Grassian, 2005: Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP-MS study. J. Geophys. Res., 110, D10208, https://doi.org/10.1029/2004JD005206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laskin, A., J. Laskin, and S. A. Nizkorodov, 2015: Chemistry of atmospheric brown carbon. Chem. Rev., 115, 43354382, https://doi.org/10.1021/cr5006167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., and Coauthors, 2012: Marine cloud brightening. Philos. Trans. Roy. Soc., 370A, 42174262, https://doi.org/10.1098/rsta.2012.0086.

  • Latham, J., A. Gadian, J. Fournier, B. Parkes, P. Wadhams, and J. Chen, 2014: Marine cloud brightening: regional applications. Philos. Trans. Roy. Soc., 372A, 20140053, https://doi.org/10.1098/rsta.2014.0053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 30, 2290, https://doi.org/10.1029/2003GL018567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauber, A., A. Kiselev, T. Pander, P. Handmann, and T. Leisner, 2018: Secondary ice formation during freezing of levitated droplets. J. Atmos. Sci., 75, 28152826, https://doi.org/10.1175/JAS-D-18-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawler, M. J., J. Whitehead, C. O’Dowd, C. Monahan, G. McFiggans, and J. N. Smith, 2014: Composition of 15–85 nm particles in marine air. Atmos. Chem. Phys., 14, 11 55711 569, https://doi.org/10.5194/acp-14-11557-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., 2014: The sensitivity of a numerically simulated idealized squall line to the vertical distribution of aerosols. J. Atmos. Sci., 71, 45814596, https://doi.org/10.1175/JAS-D-14-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., 2018: A numerical investigation of the potential effects of aerosol-induced warming and updraft width and slope on updraft intensity in deep convective clouds. J. Atmos. Sci., 75, 535554, https://doi.org/10.1175/JAS-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, https://doi.org/10.5194/acp-11-5407-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142, 9911009, https://doi.org/10.1175/MWR-D-13-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, https://doi.org/10.5194/acp-12-9941-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., Y. Noh, S. Raasch, T. Riechelmann, and L.-P. Wang, 2014: Investigation of droplet dynamics in a convective cloud using a Lagrangian cloud model. Meteor. Atmos. Phys., 124, 121, https://doi.org/10.1007/s00703-014-0311-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., H. Gordon, H. Yu, K. Lehtipalo, R. Haley, Y. Li, and R. Zhang, 2019: New particle formation in the atmosphere: From molecular clusters to global climate. J. Geophys. Res. Atmos., 124, 70987146, https://doi.org/10.1029/2018JD029356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, and V. T. J. Phillips, 2009: Sensitivity of aerosol and cloud effects on radiation to cloud types: Comparison between deep convective clouds and warm stratiform clouds over one-day period. Atmos. Chem. Phys., 9, 25552575, https://doi.org/10.5194/acp-9-2555-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisner, T., T. Pander, P. Handmann, and A. Kiselev, 2014: Secondary ice processes upon heterogeneous freezing of cloud droplets. 14th Conf. on Cloud Physics and Atmospheric Radiation, Amer. Meteor. Soc, Boston, MA, 2.3, https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250221.html.

  • Lerach, D. G., and W. R. Cotton, 2012: Comparing aerosol and low-level moisture influences on supercell tornadogenesis: Three-dimensional idealized simulations. J. Atmos. Sci., 69, 969987, https://doi.org/10.1175/JAS-D-11-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerach, D. G., and W. R. Cotton, 2018: Simulating southwestern U.S. desert dust influences on supercell thunderstorms. Atmos. Res., 204, 7893, https://doi.org/10.1016/j.atmosres.2017.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerach, D. G., B. J. Gaudet, and W. R. Cotton, 2008: Idealized simulations of aerosol influences on tornadogenesis. Geophys. Res. Lett., 35, L23806, https://doi.org/10.1029/2008GL035617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, E. J. T., and Coauthors, 2014: Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmos. Chem. Phys., 14, 26572667, https://doi.org/10.5194/acp-14-2657-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation. Springer, 386 pp.

    • Crossref
    • Export Citation
  • Levin, Z., N. Sandlerman, A. Moshe, T. Bertold, and S. A. Yankofsky, 1980: Citrus derived bacteria active as freezing nuclei at −2.5°C. Proc. Eighth Int. Conf. on Cloud Physics, Clermont-Ferrand, France, Amer. Meteor. Soc., 45–47.

  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523, https://doi.org/10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, and R. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol–cloud interaction. J. Geophys. Res., 113, D15211, https://doi.org/10.1029/2007JD009361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang, 2009: Impacts of aerosols on the development and precipitation of a mesoscale squall line. J. Geophys. Res., 114, D17205, https://doi.org/10.1029/2008JD011581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W.-K. Tao, H. Masunaga, G. Gu, and X. Zeng, 2013: Aerosol effects on cumulus congestus population over the tropical Pacific: A cloud-resolving modeling study. J. Meteor. Soc. Japan, 91, 817833, https://doi.org/10.2151/jmsj.2013-607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., A. L. Williams, and M. J. Rood, 1998: Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J. Atmos. Sci., 55, 18591866, https://doi.org/10.1175/1520-0469(1998)055<1859:IOSSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, https://doi.org/10.1038/ngeo1313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res., 111, D19204, https://doi.org/10.1029/2005JD006884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindow, S. E., D. C. Arny, and C. D. Upper, 1978: Erwinia herbicola: A bacterial ice nucleus active in increasing frost injury to corn. Phytopathology, 68, 523527, https://doi.org/10.1094/Phyto-68-523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., 1966: A hail tunnel with pressure control. J. Atmos. Sci., 23, 6166, https://doi.org/10.1175/1520-0469(1966)023<0061:AHTWPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., 2006: The 1954 International Conference on Experimental Meteorology in Zurich, Switzerland. Atmos. Res., 82, 190193, https://doi.org/10.1016/j.atmosres.2005.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., J. Hallett, J. Warner, and R. Reinking, 1986: The future of laboratory research and facilities for cloud physics and cloud chemistry: Report on a technical workshop held in Boulder, Colorado, 20–22 March 1985. Bull. Amer. Meteor. Soc., 67, 13891397, https://doi.org/10.1175/1520-0477-67.11.1389.

    • Search Google Scholar
    • Export Citation
  • Liu, B. Y. H., and D. Y. H. Pui, 1974: A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. J. Colloid Interface Sci., 47, 155171, https://doi.org/10.1016/0021-9797(74)90090-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, https://doi.org/10.1127/0941-2948/2005/0059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, https://doi.org/10.5194/acp-15-12953-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014: Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics. Atmos. Res., 147–148, 183204, https://doi.org/10.1016/j.atmosres.2014.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 1052, https://doi.org/10.1029/2001GL014357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2017a: Why does knowledge of past aerosol forcing matter for future climate change? J. Geophys. Res., 122, 50215023, https://doi.org/10.1002/2017JD026962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2017b: Anthropogenic aerosol influences on mixed-phase clouds. Curr. Climate Change Rep., 3, 3244, https://doi.org/10.1007/S40641-017-0059-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2001: Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28, 159161, https://doi.org/10.1029/2000GL012051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, https://doi.org/10.5194/acp-5-715-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and B. Gasparini, 2017: A cirrus cloud climate dial? Science, 357, 248249, https://doi.org/10.1126/science.aan3325.

  • Lohmann, U., B. Kärcher, and C. Timmreck, 2003: Impact of the Mt. Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM GCM. J. Geophys. Res., 108, 4568, https://doi.org/10.1029/2002JD003185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., F. Lüönd, and F. Mahrt, 2016a: An Introduction to Clouds: From the Microscale to Climate. Cambridge University Press, 399 pp., https://doi.org/10.1017/CBO9781139087513.

    • Crossref
    • Export Citation
  • Lohmann, U., J. Henneberger, O. Henneberg, J. P. Fugal, J. Bühl, and Z. A. Kanji, 2016b: Persistence of orographic mixed-phase clouds. Geophys. Res. Lett., 43, 10 51210 519, https://doi.org/10.1002/2016GL071036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., and Coauthors, 2015: Light absorption properties and radiative effects of primary organic aerosol emissions. Environ. Sci. Technol., 49, 48684877, https://doi.org/10.1021/acs.est.5b00211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch, 2002: Did the eruption of the Mt. Pinatubo volcano affect cirrus properties? J. Climate, 15, 28062820, https://doi.org/10.1175/1520-0442(2002)015<2806:DTEOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMartin, D. G., B. Kravitz, J. C. S. Long, and P. J. Rasch, 2016: Geoengineering with stratospheric aerosols: What do we not know after a decade of research? Earth’s Future, 4, 543548, https://doi.org/10.1002/2016EF000418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335, http://hdl.handle.net/2115/8672.

    • Search Google Scholar
    • Export Citation
  • Mahata, P. C., and D. J. Alofs, 1975: Insoluble condensation nuclei: The effect of contact angle, surface roughness and adsorption. J. Atmos. Sci., 32, 116122, https://doi.org/10.1175/1520-0469(1975)032<0116:ICNTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, F., C. Marcolli, R. O. David, P. Grönquist, E. J. Barthazy Meier, U. Lohmann, and Z. A. Kanji, 2018: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber. Atmos. Chem. Phys., 18, 13 36313 392, https://doi.org/10.5194/acp-18-13363-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malavelle, F. F., and Coauthors, 2017: Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 546, 485491, https://doi.org/10.1038/nature22974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93, 769798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys., 14, 20712104, https://doi.org/10.5194/acp-14-2071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091, https://doi.org/10.5194/acp-7-5081-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, S. M. Kreidenweis, and P. J. DeMott, 2017: The microphysical roles of lower-tropospheric versus midtropospheric aerosol particles in mature-stage MCS precipitation. J. Atmos. Sci., 74, 36573678, https://doi.org/10.1175/JAS-D-16-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marple, V. A., 2004: History of impactors—The first 110 years. Aerosol Sci. Technol., 38, 247292, https://doi.org/10.1080/02786820490424347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1950: The nature of ice-forming nuclei in the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 5974, https://doi.org/10.1002/qj.49707632707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1957: The Physics of Clouds. Springer, 688 pp.

  • Mason, B. J., and F. H. Ludlam, 1951: The microphysics of clouds. Rep. Prog. Phys., 14, 147195, https://doi.org/10.1088/0034-4885/14/1/306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massling, A., and Coauthors, 2011: Results and recommendations from an intercomparison of six hygroscopicity-TDMA systems. Atmos. Meas. Tech., 4, 485497, https://doi.org/10.5194/amt-4-485-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massoli, P., and Coauthors, 2010: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophys. Res. Lett., 37, L24801, https://doi.org/10.1029/2010GL045258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, G. K., 1991: Coalescence enhancement in large multicell storms caused by the emissions from a Kraft paper mill. J. Appl. Meteor., 30, 11341146, https://doi.org/10.1175/1520-0450(1991)030<1134:CEILMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., V. N. Bringi, and M. Thurai, 2011: Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms? J. Atmos. Sci., 68, 19021910, https://doi.org/10.1175/2011JAS3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1953: Erroneous cloud physics application of Raoult’s law. J. Meteor., 10, 6870, https://doi.org/10.1175/1520-0469(1953)010<0068:ECPSAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J.-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5, 10131044, https://doi.org/10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, https://doi.org/10.1029/2007GL029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFiggans, G., and Coauthors, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 25932649, https://doi.org/10.5194/acp-6-2593-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeown, P. J., M. V. Johnston, and D. M. Murphy, 1991: On-line single-particle analysis by laser desorption mass spectrometry. Anal. Chem., 63, 20692073, https://doi.org/10.1021/ac00018a033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMurry, P. H., 2000a: The history of condensation nucleus counters. Aerosol Sci. Technol., 33, 297322, https://doi.org/10.1080/02786820050121512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMurry, P. H., 2000b: A review of atmospheric aerosol measurements. Atmos. Environ., 34, 19591999, https://doi.org/10.1016/S1352-2310(99)00455-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNutt, M., 2015: Planned weather modification. Climate Intervention: Reflecting Sunlight to Cool Earth, National Academies Press, 225–234.

  • McTaggart-Cowan, J. D., and R. List, 1975: Collision and breakup of water drops at terminal velocity. J. Atmos. Sci., 32, 14011411, https://doi.org/10.1175/1520-0469(1975)032<1401:CABOWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, F., A. Setyan, Q. Zhang, and J. Wang, 2013: CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmos. Chem. Phys., 13, 12 15512 169, https://doi.org/10.5194/acp-13-12155-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and J. H. Seinfeld, 1994: On the source of the submicrometer droplet mode of urban and regional aerosols. Aerosol Sci. Technol., 20, 253265, https://doi.org/10.1080/02786829408959681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertes, S., and Coauthors, 2007: Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study. Aerosol Sci. Technol., 41, 848864, https://doi.org/10.1080/02786820701501881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meskhidze, N., A. Nenes, W. C. Conant, and J. H. Seinfeld, 2005: Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL-FACE and CSTRIPE. J. Geophys. Res., 110, D16202, https://doi.org/10.1029/2004JD005703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, A., J. P. Vernier, B. Luo, U. Lohmann, and T. Peter, 2015: Did the 2011 Nabro eruption affect the optical properties of ice clouds? J. Geophys. Res. Atmos., 120, 95009513, https://doi.org/10.1002/2015JD023326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., and L. M. Russell, 2004: Organic aerosol effects on fog droplet spectra. J. Geophys. Res., 109, D10206, https://doi.org/10.1029/2003JD004427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and W. Finnegan, 2009: Modification of cirrus clouds to reduce global warming. Environ. Res. Lett., 4, 045102, https://doi.org/10.1088/1748-9326/4/4/045102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mochida, M., C. Nishita-Hara, Y. Kitamori, S. G. Aggarwal, K. Kawamura, K. Miura, and A. Takami, 2010: Size-segregated measurements of cloud condensation nucleus activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008. J. Geophys. Res., 115, D21207, https://doi.org/10.1029/2009JD013216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffet, R. C., T. Henn, A. Laskin, and M. K. Gilles, 2010: Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge. Anal. Chem., 82, 79067914, https://doi.org/10.1021/ac1012909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. G., P. J. Adams, and D. W. Keith, 2006: Elicitation of expert judgments of aerosol forcing. Climatic Change, 75, 195214, https://doi.org/10.1007/s10584-005-9025-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, C. E., D. G. Georgakopoulos, and D. C. Sands, 2004: Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV France, 121, 87103, https://doi.org/10.1051/jp4:2004121004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2012: On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys., 12, 76897705, https://doi.org/10.5194/acp-12-7689-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, https://doi.org/10.1175/JAS3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, https://doi.org/10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1963: Atmospheric ice nuclei. Z. Angew. Math. Phys., 14, 456486, https://doi.org/10.1007/BF01601253.

  • Mossop, S. C., 1970: concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, https://doi.org/10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2009: Sensitivity studies of aerosol–cloud interactions in mixed-phase orographic precipitation. J. Atmos. Sci., 66, 25172538, https://doi.org/10.1175/2009JAS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., and G. Feingold, 2018: The Radiative forcing of aerosol–cloud interactions in liquid clouds: Wrestling and embracing uncertainty. Curr. Climate Change Rep., 4, 23, https://doi.org/10.1007/s40641-018-0089-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, https://doi.org/10.1002/2015GL064604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, https://doi.org/10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 18531877, https://doi.org/10.5194/acp-13-1853-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagaya, U., 1954: Snow Crystals: Natural and Artificial. Harvard University Press, 510 pp.

  • Nakao, S., 2017: Why would apparent κ linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols. Aerosol Sci. Technol., 51, 13771388, https://doi.org/10.1080/02786826.2017.1352082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 1973: Weather & Climate Modification: Problems and Progress. National Academies Press, 281 pp., https://doi.org/10.17226/20418.

    • Crossref
    • Export Citation
  • National Research Council, 2003: Critical Issues in Weather Modification Research. National Academies Press, 143 pp., https://doi.org/10.17226/10829.

    • Crossref
    • Export Citation
  • Nazarenko, L., D. Rind, K. Tsigaridis, A. D. Del Genio, M. Kelley, and N. Tausnev, 2017: Interactive nature of climate change and aerosol forcing. J. Geophys. Res., 122, 34573480, https://doi.org/10.1002/2016JD025809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nenes, A., P. Y. Chuang, R. C. Flagan, and J. H. Seinfeld, 2001a: A theoretical analysis of cloud condensation nucleus (CCN) instruments. J. Geophys. Res., 106, 34493474, https://doi.org/10.1029/2000JD900614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nenes, A., S. Ghan, H. Abdul-Razzak, P. Y. Chuang, and J. H. Seinfeld, 2001b: Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, 53B, 133149, https://doi.org/10.3402/tellusb.v53i2.16569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehaus, J., J. G. Becker, A. Kostinski, and W. Cantrell, 2014: Laboratory measurements of contact freezing by dust and bacteria at temperatures of mixed-phase clouds. J. Atmos. Sci., 71, 36593667, https://doi.org/10.1175/JAS-D-14-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niemand, M., and Coauthors, 2012: A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci., 69, 30773092, https://doi.org/10.1175/JAS-D-11-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niemeier, U., and C. Timmreck, 2015: What is the limit of climate engineering by stratospheric injection of SO2? Atmos. Chem. Phys., 15, 91299141, https://doi.org/10.5194/acp-15-9129-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8, 235244, https://doi.org/10.1080/02786828808959186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novakov, T., and J. E. Penner, 1993: Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature, 365, 823–826, https://doi.org/10.1038/365823a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowottnick, E. P., P. R. Colarco, S. A. Braun, D. O. Barahona, A. da Silva, D. L. Hlavka, M. J. McGill, and J. R. Spackman, 2018: Dust impacts on the 2012 Hurricane Nadine track during the NASA HS3 field campaign. J. Atmos. Sci., 75, 24732489, https://doi.org/10.1175/JAS-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nozière, B., C. Baduel, and J.-L. Jaffrezo, 2014: The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation. Nat. Commun., 5, 3335, https://doi.org/10.1038/ncomms4335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and G. de Leeuw, 2007: Marine aerosol production: a review of the current knowledge. Philos. Trans. Roy. Soc., 365A, 1753, https://doi.org/10.1098/rsta.2007.2043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and Coauthors, 2004: Biogenically driven organic contribution to marine aerosol. Nature, 431, 676, https://doi.org/10.1038/nature02959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., and H. Kida, 2002: Local circulation developed in the vicinity of both coastal and inland urban areas: Numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 3045, https://doi.org/10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., R. Zhang, J. N. Gammon, D. Collins, B. Ely, and S. Steiger, 2001: Enhancement of cloud-to-ground lightening over Houston, Texas. Geophys. Res. Lett., 28, 25972600, https://doi.org/10.1029/2001GL012990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaite, J., and Coauthors, 2017: Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature, 546, 637, https://doi.org/10.1038/nature22806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K., and Coauthors, 2008: Tandem measurements of aerosol properties—A review of mobility techniques with extensions. Aerosol Sci. Technol., 42, 801816, https://doi.org/10.1080/02786820802339561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peckhaus, A., A. Kiselev, T. Hiron, M. Ebert, and T. Leisner, 2016: A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay. Atmos. Chem. Phys., 16, 11 47711 496, https://doi.org/10.5194/acp-16-11477-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., Y. Chen, M. Wang, and X. Liu, 2009: Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos. Chem. Phys., 9, 879896, https://doi.org/10.5194/acp-9-879-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K. D., and P. V. Hobbs, 1994: Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds. J. Geophys. Res., 99, 22 80322 818, https://doi.org/10.1029/94JD01926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, K., J. Quaas, and H. Grassl, 2011: A search for large-scale effects of ship emissions on clouds and radiation in satellite data. J. Geophys. Res., 116, D24205, https://doi.org/10.1029/2011JD016531.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, https://doi.org/10.5194/acp-7-1961-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2008: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility. Atmos. Chem. Phys., 8, 62736279, https://doi.org/10.5194/acp-8-6273-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2013: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 3: Including surfactant partitioning. Atmos. Chem. Phys., 13, 10811091, https://doi.org/10.5194/acp-13-1081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 87588766, https://doi.org/10.1002/2015GL065733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111, D02206, https://doi.org/10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., S. M. Kreidenweis, A. J. Prenni, R. C. Sullivan, C. M. Carrico, K. A. Koehler, and P. J. Ziemann, 2009a: Role of molecular size in cloud droplet activation. Geophys. Res. Lett., 36, L22801, https://doi.org/10.1029/2009GL040131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009b: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, https://doi.org/10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., S. M. Kreidenweis, and P. J. Ziemann, 2016: Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods. Geosci. Model Dev., 9, 111124, https://doi.org/10.5194/gmd-9-111-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, S. S., and M. D. Petters, 2016: Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols. J. Geophys. Res., 121, 18781895, https://doi.org/10.1002/2015JD024090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, S. S., D. Pagonis, M. S. Claflin, E. J. T. Levin, M. D. Petters, P. J. Ziemann, and S. M. Kreidenweis, 2017: Hygroscopicity of organic compounds as a function of carbon chain length and carboxyl, hydroperoxy, and carbonyl functional groups. J. Phys. Chem., 121A, 51645174, https://doi.org/10.1021/acs.jpca.7b04114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petzold, A., and Coauthors, 2013: In situ measurements of aerosol particles. Airborne Measurements for Environmental Research, A. Kokhanovsky, M. Wendisch, and J. Brenguier, Eds., Wiley, https://doi.org/10.1002/9783527653218.ch4.

    • Crossref
    • Export Citation
  • Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham, 2002: The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud. Quart. J. Roy. Meteor. Soc., 128, 951971, https://doi.org/10.1256/0035900021643601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, https://doi.org/10.1175/2007JAS2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piens, D. S., and Coauthors, 2016: Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging. Environ. Sci. Technol., 50, 51725180, https://doi.org/10.1021/acs.est.6b00793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., B. Croft, J. K. Kodros, S. D. D’Andrea, and R. V. Martin, 2015: The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol–climate effects. Atmos. Chem. Phys., 15, 61476158, https://doi.org/10.5194/acp-15-6147-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podzimek, J., 1989: John Aitken’s contribution to atmospheric and aerosol sciences—One hundred years of condensation nuclei counting. Bull. Amer. Meteor. Soc., 70, 15381545, https://doi.org/10.1175/1520-0477(1989)070<1538:JACTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pósfai, M., J. R. Anderson, P. R. Buseck, T. W. Shattuck, and N. W. Tindale, 1994: Constituents of a remote Pacific marine aerosol: A TEM study. Atmos. Environ., 28, 17471756, https://doi.org/10.1016/1352-2310(94)90137-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., S. van den Heever, G. Stephens, and M. R. Igel, 2012: Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. J. Climate, 25, 557571, https://doi.org/10.1175/2011JCLI4167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2008: Influence of giant CCN on warm rain processes in the ECHAM5 GCM. Atmos. Chem. Phys., 8, 37693788, https://doi.org/10.5194/acp-8-3769-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Possner, A., E. Zubler, U. Lohmann, and C. Schär, 2016: The resolution dependence of cloud effects and ship-induced aerosol–cloud interactions in marine stratocumulus. J. Geophys. Res., 121, 48104829, https://doi.org/10.1002/2015JD024685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Possner, A., A. M. L. Ekman, and U. Lohmann, 2017: Cloud response and feedback processes in stratiform mixed-phase clouds perturbed by ship exhaust. Geophys. Res. Lett., 44, 19641972, https://doi.org/10.1002/2016GL071358.

    • Search Google Scholar
    • Export Citation
  • Power, R. M., and J. P. Reid, 2014: Probing the micro-rheological properties of aerosol particles using optical tweezers. Rep. Prog. Phys., 77, 074601, https://doi.org/10.1088/0034-4885/77/7/074601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, K. A., T. Nordmeyer, and K. Salt, 1994: Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. Anal. Chem., 66, 14031407, https://doi.org/10.1021/ac00081a007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398, https://doi.org/10.1038/ngeo521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann, 2007: Cloud droplet activation of secondary organic aerosol. J. Geophys. Res., 112, D10223, https://doi.org/10.1029/2006JD007963.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009a: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436448, https://doi.org/10.1111/j.1600-0889.2009.00415.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2009b: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci., 2, 402, https://doi.org/10.1038/ngeo517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. 2nd ed. Springer, 954 pp., https://doi.org/10.1007/978-0-306-48100-0.

    • Crossref
    • Export Citation
  • Pueschel, R. F., 1996: Stratospheric aerosols: Formation, properties, effects. J. Aerosol Sci., 27, 383402, https://doi.org/10.1016/0021-8502(95)00557-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pummer, B. G., and Coauthors, 2015: Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys., 15, 40774091, https://doi.org/10.5194/acp-15-4077-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., and Coauthors, 2014: Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci., 7, 228, https://doi.org/10.1038/ngeo2092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raatikainen, T., R. H. Moore, T. L. Lathem, and A. Nenes, 2012: A coupled observation–modeling approach for studying activation kinetics from measurements of CCN activity. Atmos. Chem. Phys., 12, 42274243, https://doi.org/10.5194/acp-12-4227-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rader, D. J., and P. H. McMurry, 1986: Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J. Aerosol Sci., 17, 771787, https://doi.org/10.1016/0021-8502(86)90031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radke, L. F., and P. V. Hobbs, 1969: An automatic cloud condensation nuclei counter. J. Appl. Meteor., 8, 105109, https://doi.org/10.1175/1520-0450(1969)008<0105:AACCNC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2019: 100 years of Earth system model development. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0018.1.

    • Crossref
    • Export Citation
  • Rasch, P. J., and Coauthors, 2008: An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. Roy. Soc., 366A, 4007, https://doi.org/10.1098/rsta.2008.0131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., 1995: A review of theoretical and observational studies in cloud and precipitation physics: 1991–1994. Rev. Geophys., 33, 795809, https://doi.org/10.1029/95RG00744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc., 73, 951976, https://doi.org/10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rau, W., 1954: Die Grefrierkerngehalte der verschiedenen Luftmassen. Meteor. Rundsch., 7, 205211.

  • Raymond, T. M., and S. N. Pandis, 2002: Cloud activation of single-component organic aerosol particles. J. Geophys. Res., 107, 4787, https://doi.org/10.1029/2002JD002159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickards, A. M. J., R. E. H. Miles, J. F. Davies, F. H. Marshall, and J. P. Reid, 2013: Measurements of the sensitivity of aerosol hygroscopicity and the κ parameter to the O/C ratio. J. Phys. Chem., 117A, 14 12014 131, https://doi.org/10.1021/jp407991n.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rissler, J., A. Vestin, E. Swietlicki, G. Fisch, J. Zhou, P. Artaxo, and M. O. Andreae, 2006: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys., 6, 471491, https://doi.org/10.5194/acp-6-471-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, P., and J. Hallett, 1968: A laboratory study of the ice nucleating properties of some mineral particulates. Quart. J. Roy. Meteor. Soc., 94, 2534, https://doi.org/10.1002/qj.49709439904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, https://doi.org/10.1080/027868290913988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2008: 20 reasons why geoengineering may be a bad idea. Bull. At. Sci., 64, 1418, https://doi.org/10.1080/00963402.2008.11461140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., L. Oman, and G. L. Stenchikov, 2008: Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res., 113, D16101, https://doi.org/10.1029/2008JD010050.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and P. J. DeMott, 1991: Advances in laboratory cloud physics 1987–1990. Rev. Geophys., 29, 8087, https://doi.org/10.1002/rog.1991.29.s1.80.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, and S. M. Kreidenweis, 2001: Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106, 15 05315 063, https://doi.org/10.1029/2000JD900790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, D., S. S. Gunthe, E. Mikhailov, G. P. Frank, U. Dusek, M. O. Andreae, and U. Pöschl, 2008: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys., 8, 11531179, https://doi.org/10.5194/acp-8-1153-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, https://doi.org/10.1029/1999GL006066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796, https://doi.org/10.1126/science.287.5459.1793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and R. Nirel, 1996: Seeding effectiveness—The interaction of the desert dust and the southern margins of rain cloud systems in Israel. J. Appl. Meteor., 35, 15021510, https://doi.org/10.1175/1520-0450(1996)035<1502:SEIODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, https://doi.org/10.1038/35013030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Lahav, A. P. Khain, and M. Pinsky, 2002: The role of sea-spray in cleansing air pollution over ocean via cloud processes. Science, 297, 16671670, https://doi.org/10.1126/science.1073869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7, 34113424, https://doi.org/10.5194/acp-7-3411-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008a: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, D. Axisa, E. Freud, J. G. Hudson, and A. Givati, 2008b: Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res., 113, D15203, https://doi.org/10.1029/2007JD009544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclones intensities. Atmos. Res., 102, 6676, https://doi.org/10.1016/j.atmosres.2011.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2014: Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys., 52, 750808, https://doi.org/10.1002/2013RG000441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruehl, C. R., J. F. Davies, and K. R. Wilson, 2016: An interfacial mechanism for cloud droplet formation on organic aerosols. Science, 351, 14471450, https://doi.org/10.1126/science.aad4889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M., 2014: Carbonaceous particles: Source-based characterization of their formation, composition, and structures. Treatise on Geochemistry, 2nd ed. K. K. Turekian, Ed., Elsevier, 291–316.

    • Crossref
    • Export Citation
  • Russell, L. M., and Y. Ming, 2002: Deliquescence of small particles. J. Chem. Phys., 116, 311321, https://doi.org/10.1063/1.1420727.

  • Russell, L. M., R. C. Flagan, and J. H. Seinfeld, 1995: Asymmetric instrument response resulting from mixing effects in accelerated DMA-CPC measurements. Aerosol Sci. Technol., 23, 491509, https://doi.org/10.1080/02786829508965332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M., S. Zhang, R. C. Flagan, J. H. Seinfeld, M. R. Stolzenburg, and R. Caldow, 1996: Radially classified aerosol detector for aircraft-based submicron aerosol measurements. J. Atmos. Oceanic Technol., 13, 598609, https://doi.org/10.1175/1520-0426(1996)013<0598:RCADFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M., and Coauthors, 1999: Aerosol dynamics in ship tracks. J. Geophys. Res., 104, 31 07731 095, https://doi.org/10.1029/1999JD900985.

  • Russell, L. M., S. F. Maria, and S. C. B. Myneni, 2002: Mapping organic coatings on atmospheric particles. Geophys. Res. Lett., 29, 2002, https://doi.org/10.1029/2002GL014874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M., L. N. Hawkins, A. A. Frossard, P. K. Quinn, and T. S. Bates, 2010: Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc. Natl. Acad. Sci. USA, 107, 6652, https://doi.org/10.1073/pnas.0908905107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M., and Coauthors, 2012: Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio, 41, 350369, https://doi.org/10.1007/s13280-012-0258-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M., and Coauthors, 2013: Eastern Pacific Emitted Aerosol Cloud Experiment. Bull. Amer. Meteor. Soc., 94, 709729, https://doi.org/10.1175/BAMS-D-12-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, W. J., 1885: On the impurities in London air. Monthly Weather Reports of the Meteorological Office, Rep. 65.

  • Salam, A., U. Lohmann, and G. Lesins, 2007: Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles. Atmos. Chem. Phys., 7, 39233931, https://doi.org/10.5194/acp-7-3923-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, and J. Messina, 2013: Aerosol impacts on the microphysical growth processes of orographic snowfall. J. Appl. Meteor. Climatol., 52, 834852, https://doi.org/10.1175/JAMC-D-12-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., S. C. van den Heever, P. J. Marinescu, S. M. Kreidenweis, and P. J. DeMott, 2016: Aerosol effects on the anvil characteristics of mesoscale convective systems. J. Geophys. Res. Atmos., 121, 10 88010 901, https://doi.org/10.1002/2016JD025082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, M., Y. Ming, J.-C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer, and L. J. Donner, 2010: Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: Description, evaluation, and sensitivity tests. Atmos. Chem. Phys., 10, 80378064, https://doi.org/10.5194/acp-10-8037-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez, K. J., and Coauthors, 2016: Meteorological and aerosol effects on marine cloud microphysical properties. J. Geophys. Res., 121, 41424161, https://doi.org/10.1002/2015JD024595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez, K. J., and Coauthors, 2017: Top-down and bottom-up aerosol–cloud closure: Towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmos. Chem. Phys., 17, 97979814, https://doi.org/10.5194/acp-17-9797-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez, K. J., and Coauthors, 2018: Substantial seasonal contribution of observed biogenic sulfate particles to cloud condensation nuclei. Sci. Rep., 8, 3235, https://doi.org/10.1038/s41598-018-21590-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanz, E., C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, 2013: Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Amer. Chem. Soc., 135, 15 00815 017, https://doi.org/10.1021/ja4028814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and V. I. Khvorostyanov, 2008: Cloud effects from boreal forest fire smoke: Evidence for ice nucleation from polarization lidar data and cloud model simulations. Environ. Res. Lett., 3, 025006, https://doi.org/10.1088/1748-9326/3/2/025006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457, https://doi.org/10.1126/science.104.2707.457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1950: Section of oceanography and meteorology: Induced precipitation and experimental meteorology. Trans. N. Y. Acad. Sci., 12, 260264, https://doi.org/10.1111/j.2164-0947.1950.tb01296.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1968: The early history of weather modification. Bull. Amer. Meteor. Soc., 49, 337342, https://doi.org/10.1175/1520-0477-49.4.337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, G. P., and Coauthors, 2016: Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust. Geophys. Res. Lett., 43, 55245531, https://doi.org/10.1002/2016GL069529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlamp, R. J., S. N. Grover, H. R. Pruppacher, and A. E. Hamielec, 1976: A numerical investigation of the effect of electric charges and vertical external electric fields on the collision efficiency of cloud drops. J. Atmos. Sci., 33, 17471755, https://doi.org/10.1175/1520-0469(1976)033<1747:ANIOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, S., and Coauthors, 2017: Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmos. Chem. Phys., 17, 575594, https://doi.org/10.5194/acp-17-575-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1972: Atmospheric ice nuclei from decomposing vegetation. Nature, 236, 163, https://doi.org/10.1038/236163a0.

  • Schnell, R. C., and G. Vali, 1975: Freezing nuclei in marine waters. Tellus, 27, 321323, https://doi.org/10.3402/tellusa.v27i3.9911.

  • Schreier, M., H. Mannstein, V. Eyring, and H. Bovensmann, 2007: Global ship track distribution and radiative forcing from 1 year of AATSR data. Geophys. Res. Lett., 34, L17814, https://doi.org/10.1029/2007GL030664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, T. E. W., 1940: Theoretical aspects of the size distribution of fog particles. Quart. J. Roy. Meteor. Soc., 66, 195208, https://doi.org/10.1002/qj.49706628508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sear, R. P., 2011: In a tight corner. Nat. Mater., 10, 809, https://doi.org/10.1038/nmat3157.

  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and T. Heus, 2013: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys., 13, 56315645, https://doi.org/10.5194/acp-13-5631-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., S. C. van den Heever, and S. M. Saleeby, 2013: Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos. Chem. Phys., 13, 44674485, https://doi.org/10.5194/acp-13-4467-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63, 983997, https://doi.org/10.1175/JAS3667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., A. J. Durant, and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B, 98659868, https://doi.org/10.1021/jp0506336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, A. M., S. M. Saleeby, and S. C. van den Heever, 2015: Aerosol-induced mechanisms for cumulus congestus growth. J. Geol. Res., 120, 89418952, https://doi.org/10.1002/2015JD023743.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, https://doi.org/10.1175/EI156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., and S. J. Burian, 2003: Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact., 7, https://doi.org/10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shulman, M. L., M. C. Jacobson, R. J. Carlson, R. E. Synovec, and T. E. Young, 1996: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys. Res. Lett., 23, 277280, https://doi.org/10.1029/95GL03810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, G. C., 1941: On the formation of cloud and rain. Quart. J. Roy. Meteor. Soc., 67, 99133, https://doi.org/10.1002/qj.49706729002.

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899927, https://doi.org/10.1002/qj.49711347710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1960: On the dynamical prediction of large-scale condensation by numerical methods. Physics of Precipitation: Proc. Cloud Physics Conf., Woods Hole, MA, Amer. Geophys. Union, 71–78 https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM005p0071.

    • Crossref
    • Export Citation
  • Small, J. D., P. Y. Chuang, G. Feingold, and H. Jiang, 2009: Can aerosol decrease cloud lifetime? Geophys. Res. Lett., 36, L16806, https://doi.org/10.1029/2009GL038888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. N., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snider, J. R., and J.-L. Brenguier, 2000: Cloud condensation nuclei and cloud droplet measurements during ACE-2. Tellus, 52B, 828842, https://doi.org/10.1034/j.1600-0889.2000.00044.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snider, J. R., S. Guibert, J.-L. Brenguier, and J. P. Putaud, 2003: Aerosol activation in marine stratocumulus clouds: 2. Köhler and parcel theory closure studies. J. Geophys. Res., 108, 8629, https://doi.org/10.1029/2002JD002692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snider, J. R., M. D. Petters, P. Wechsler, and P. S. K. Liu, 2006: Supersaturation in the Wyoming CCN instrument. J. Atmos. Oceanic Technol., 23, 13231339, https://doi.org/10.1175/JTECH1916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snider, J. R., and Coauthors, 2010: Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo). J. Geophys. Res., 115, D11205, https://doi.org/10.1029/2009JD012618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, https://doi.org/10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, P. A., D. Crumpler, J. B. Flanagan, R. K. M. Jayanty, E. E. Rickman, and C. E. McDade, 2014: U.S. National PM2.5 Chemical Speciation Monitoring Networks—CSN and IMPROVE: Description of networks. J. Air Waste Manage. Assoc., 64, 14101438, https://doi.org/10.1080/10962247.2014.956904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, M. Maahn, and C. Cox, 2018: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys., 18, 17 04717 059, https://doi.org/10.5194/acp-18-17047-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorjamaa, R., and A. Laaksonen, 2007: The effect of H2O adsorption on cloud drop activation of insoluble particles: A theoretical framework. Atmos. Chem. Phys., 7, 61756180, https://doi.org/10.5194/acp-7-6175-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorjamaa, R., B. Svenningsson, T. Raatikainen, S. Henning, M. Bilde, and A. Laaksonen, 2004: The role of surfactants in Köhler theory reconsidered. Atmos. Chem. Phys., 4, 21072117, https://doi.org/10.5194/acp-4-2107-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, R. E., H. M. Barnes, and R. Brown, 1997: An instrument for measuring the liquid water content of aerosols. Aerosol Sci. Technol., 27, 5061, https://doi.org/10.1080/02786829708965457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., and Coauthors, 2010: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos. Chem. Phys., 10, 47754793, https://doi.org/10.5194/acp-10-4775-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Chem., 5, 5986, https://doi.org/10.1071/CH9520059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1967: Cloud physics—Prose or poetry? Bull. Amer. Meteor. Soc., 48, 400403, https://doi.org/10.1175/1520-0477-48.6.400.

  • Squires, P., and S. Twomey, 1961: The relation between cloud drop numbers and the spectrum of cloud nuclei. Physics of Precipitation, Geophys. Monogr., Vol. 5, Amer. Geophys. Union, 211–219.

    • Crossref
    • Export Citation
  • Steiger, S. M., and R. E. Orville, 2003: Cloud-to-ground lightning enhancement over southern Louisiana. Geophys. Res. Lett., 30, 1975, https://doi.org/10.1029/2003GL017923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., J. Pelon, D. Winker, C. Treptke, D. Vane, C. Yuhas, T. L’Ecuyer, and M. Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Amer. Meteor. Soc., 99, 569581, https://doi.org/10.1175/BAMS-D-16-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2019: Cloud physics from space. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3589, in press.

  • Stevens, B., 2015: Rethinking the lower bound on aerosol radiative forcing. J. Climate, 28, 47944819, https://doi.org/10.1175/JCLI-D-14-00656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: Water in the atmosphere. Phys. Today, 66, 6, 29, https://doi.org/10.1063/PT.3.2009.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5158, https://doi.org/10.1175/BAMS-86-1-51.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, R. G., and Coauthors, 2018: A model intercomparison of CCN-limited tenuous clouds in the high Arctic. Atmos. Chem. Phys., 18, 11 04111 071, https://doi.org/10.5194/acp-18-11041-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stier, P., and Coauthors, 2005: The aerosol–climate model ECHAM5-HAM. Atmos. Chem. Phys., 5, 11251156, https://doi.org/10.5194/acp-5-1125-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., and Coauthors, 2019: 100 years of progress in atmospheric observing systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1.

    • Crossref
    • Export Citation
  • Stjern, C. W., and Coauthors, 2017: Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J. Geophys. Res., 122, 11 46211 481, https://doi.org/10.1002/2017JD027326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 62076231, https://doi.org/10.1002/2014JD023033.

    • Crossref