Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042.
Ackerman, S. A., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.
Adachi, K., and P. R. Buseck, 2008: Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys., 8, 6469–6481, https://doi.org/10.5194/acp-8-6469-2008.
Adams, P. J., and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010.
Aitken, J., 1881: Dust, fog, and clouds. Nature, 23, 384–385, https://doi.org/10.1038/023384a0.
Aitken, J., 1890: On improvements in the apparatus for counting the dust particles in the atmosphere. Proc. Roy. Soc. Edinburgh, 16, 135–172, https://doi.org/10.1017/S0370164600006222.
Aitken, J., 1909: Atmospheric cloudy condensation. Nature, 82, 8, https://doi.org/10.1038/082008a0.
Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227.
Altaratz, O., I. Koren, and T. Reisin, 2007: Aerosols’ influence on the interplay between condensation, evaporation and rain in warm cumulus cloud. Atmos. Chem. Phys., 7, 12 687–12 714, https://doi.org/10.5194/acpd-7-12687-2007.
Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009.
Altaratz, O., B. Kucienska, A. Kostinski, G. B. Raga, and I. Koren, 2017: Global association of aerosol with flash density of intense lightning. Environ. Res. Lett., 12, 114037, https://doi.org/10.1088/1748-9326/aa922b.
Andreae, M. O., and Coauthors, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779.
Andreae, M. O., D. A. Hegg, and U. Baltensperger, 2009: Sources and nature of atmospheric aerosols. Aerosol Pollution Impact on Precipitation, Z. Levin and W. R. Cotton, Eds., Springer, 45–89.
Asa-Awuku, A., and A. Nenes, 2007: Effect of solute dissolution kinetics on cloud droplet formation: Extended Köhler theory. J. Geophys. Res., 112, D2220, https://doi.org/10.1029/2005JD006934.
Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 1342–1343, https://doi.org/10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.
aufm Kampe, H. J., and H. K. Weickmann, 1957: Physics of Clouds. Meteor. Monogr., Vol. 3, No. 18, Amer. Meteor. Soc., 182–225, https://doi.org/10.1007/978-1-940033-31-0_1.
Ayala, O., B. Rosa, L.-P. Wang, and W. W. Grabowski, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.
Bahadur, R., L. M. Russell, and K. Prather, 2010: Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements. Aerosol Sci. Technol., 44, 551–562, https://doi.org/10.1080/02786821003786048.
Baker, M., and R. J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142–145, https://doi.org/10.1038/345142a0.
Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation—Monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369–381, https://doi.org/10.5194/acp-9-369-2009.
Beard, K. V., 1987: Cloud and precipitation physics research 1983–1986. Rev. Geophys., 25, 357–370, https://doi.org/10.1029/RG025i003p00357.
Beard, K. V., and H. T. Ochs, 1983: Measured collection efficiencies for cloud drops. J. Atmos. Sci., 40, 146–153, https://doi.org/10.1175/1520-0469(1983)040<0146:MCEFCD>2.0.CO;2.
Beard, K. V., R. I. Durkee, and H. T. Ochs III, 2002: Coalescence efficiency measurements for minimally charged cloud drops. J. Atmos. Sci., 59, 233–243, https://doi.org/10.1175/1520-0469(2002)059<0233:CEMFMC>2.0.CO;2.
Beard, K. V., V. N. Bringi, and M. Thurai, 2010: A new understanding of raindrop shape. Atmos. Res., 97, 396–415, https://doi.org/10.1016/J.ATMOSRES.2010.02.001.
Beck, A., J. Henneberger, J. P. Fugal, R. O. David, L. Lacher, and U. Lohmann, 2018: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations. Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018.
Bell, T. L., D. Rosenfeld, and K.-M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, https://doi.org/10.1029/2009GL040915.
Bellamy, R., J. Chilvers, N. E. Vaughan, and T. M. Lenton, 2012: A review of climate geoengineering appraisals. Wiley Interdiscip. Rev.: Climate Change, 3, 597–615, https://doi.org/10.1002/wcc.197.
Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Berg, W., T. L’Ecuyer, and S. van den Heever, 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res., 113, D14S23, https://doi.org/10.1029/2007JD009649.
Bergeron, T., 1935: On the physics of cloud and precipitation Proc. Fifth Assembly of U.G.G.I., Lisbon, Portugal, Proces Verbaux de l’Association de Météorologie, International Union of Geodesy and Geophysics, Vol. 2, 156–180.
Berry, E. X., and R. L. Reinhardt, 1974a: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 1814–1824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.
Berry, E. X., and R. L. Reinhardt, 1974b: An analysis of cloud drop growth by collection Part II. Single initial distributions. J. Atmos. Sci., 31, 1825–1831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.
Berry, E. X., and R. L. Reinhardt, 1974c: An analysis of cloud drop growth by collection: Part III. Accretion and self-collection. J. Atmos. Sci., 31, 2118–2126, https://doi.org/10.1175/1520-0469(1974)031<2118:AAOCDG>2.0.CO;2.
Berry, E. X., and R. L. Reinhardt, 1974d: An analysis of cloud drop growth by collection: Part IV. A new parameterization. J. Atmos. Sci., 31, 2127–2135, https://doi.org/10.1175/1520-0469(1974)031<2127:AAOCDG>2.0.CO;2.
Beydoun, H., M. Polen, and R. C. Sullivan, 2017: A new multicomponent heterogeneous ice nucleation model and its application to Snomax bacterial particles and a Snomax–illite mineral particle mixture. Atmos. Chem. Phys., 17, 13 545–13 557, https://doi.org/10.5194/acp-17-13545-2017.
Bian, Q., S. H. Jathar, J. K. Kodros, K. C. Barsanti, L. E. Hatch, A. A. May, S. M. Kreidenweis, and J. R. Pierce, 2017: Secondary organic aerosol formation in biomass-burning plumes: Theoretical analysis of lab studies and ambient plumes. Atmos. Chem. Phys., 17, 5459–5475, https://doi.org/10.5194/acp-17-5459-2017.
Bigg, E. K., 1957: A new technique for counting ice-forming nuclei in aerosols. Tellus, 9, 394–400, https://doi.org/10.3402/tellusa.v9i3.9101.
Bigg, E. K., 1986: Discrepancy between observation and prediction of concentrations of cloud condensation nuclei. Atmos. Res., 20, 81–86, https://doi.org/10.1016/0169-8095(86)90010-4.
Bigg, E. K., and M. Stevenson, 1970: Comparison of concentrations of ice nuclei in different parts of the world. J. Rech. Atmos., 4, 41–58.
Bilde, M., and B. Svenningsson, 2004: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase. Tellus, 56B, 128–134, https://doi.org/10.1111/j.1600-0889.2004.00090.x.
Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 867–952.
Biskos, G., A. Malinowski, L. M. Russell, P. R. Buseck, and S. T. Martin, 2006: Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Sci. Technol., 40, 97–106, https://doi.org/10.1080/02786820500484396.
Blanchard, D. C., 1950: The behavior of water drops at terminal velocity in air. Eos, Trans. Amer. Geophys. Union, 31, 836–842, https://doi.org/10.1029/TR031i006p00836.
Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.–Ocean, 22, 397–429, https://doi.org/10.1080/07055900.1984.9649208.
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 5380–5552, https://doi.org/10.1002/JGRD.50171.
Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 27–67, https://doi.org/10.1080/02786820500421521.
Boose, Y., and Coauthors, 2016a: Ice nucleating particles in the Saharan air layer. Atmos. Chem. Phys., 16, 9067–9087, https://doi.org/10.5194/acp-16-9067-2016.
Boose, Y., and Coauthors, 2016b: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 1: Immersion freezing. Atmos. Chem. Phys., 16, 15 075–15 095, https://doi.org/10.5194/acp-16-15075-2016.
Borys, R. D., D. H. Lowenthal, M. A. Wetzel, F. Herrera, A. Gonzalez, and J. Harris, 1998: Chemical and microphysical properties of marine stratiform clouds in the North Atlantic. J. Geophys. Res., 103, 22 073–22 085, https://doi.org/10.1029/98JD02087.
Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationship among cloud microphysics, chemistry and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 2593–2602, https://doi.org/10.1016/S1352-2310(99)00492-6.
Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, https://doi.org/10.1029/2002GL016855.
Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus, 47B, 281–300, https://doi.org/10.3402/TELLUSB.V47i3.16048.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 571–657.
Braham, R. R., 1968: Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc., 49, 343–353, https://doi.org/10.1175/1520-0477-49.4.343.
Braham, R. R., 1986: Precipitation Enhancement—A Scientific Challenge. Meteor. Monogr., No. 43, Amer. Meteor. Soc., 171 pp., https://doi.org/10.1175/0065-9401-21.43.1.
Braham, R. R., and P. Spyers-Duran, 1974: Ice nucleus measurements in an urban atmosphere. J. Appl. Meteor., 13, 940–945, https://doi.org/10.1175/1520-0450(1974)013<0940:INMIAU>2.0.CO;2.
Braham, R. R., Jr., R. G. Semonin, A. H. Auer, S. A. Changnon Jr., and J. M. Hales, 1981: Summary of urban effects on clouds and rain. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 141–152.
Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL027648.
Broadley, S. L., and Coauthors, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012.
Browning, K. A., 2016: Sir (Basil) John Mason CB. 18 August 1923–6 January 2015. Biogr. Mem. Fellows Roy. Soc., 62, 359–380, https://doi.org/10.1098/rsbm.2015.0028.
Bruintjes, R. T., 2016: Report from expert team on weather modification research for 2015/2016. WMO, 8 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WMO_weather_mod_2015_2016.pdf.
Bzdek, B. R., M. R. Pennington, and M. V. Johnston, 2012: Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci., 52, 109–120, https://doi.org/10.1016/j.jaerosci.2012.05.001.
Cai, C., D. J. Stewart, J. P. Reid, Y.-H. Zhang, P. Ohm, C. S. Dutcher, and S. L. Clegg, 2015: Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers. J. Phys. Chem., 119A, 704–718, https://doi.org/10.1021/jp510525r.
Cantrell, W., G. Shaw, G. R. Cass, Z. Chowdhury, L. S. Hughe, K. A. Prather, S. A. Guazzotti, and K. R. Coffee, 2001: Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory. J. Geophys. Res., 106, 28 711–28 718, https://doi.org/10.1029/2000JD900781.
Cao, J., J. C. Chow, F. S. C. Lee, and J. G. Watson, 2013: Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China. Aerosol Air Qual. Res., 13, 1197–1211, https://doi.org/10.4209/aaqr.2012.11.0302.
Cappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson, 2011: Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res., 116, D15204, https://doi.org/10.1029/2011JD015918.
Carrió, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 2557–2567, https://doi.org/10.5194/acp-11-2557-2011.
Carrió, G. G., S. C. van den Heever, and W. R. Cotton, 2007: Impacts of nucleating aerosol on anvil-cirrus clouds: A modeling study. Atmos. Res., 84, 111–131, https://doi.org/10.1016/j.atmosres.2006.06.002.
Carrió, G. G., W. R. Cotton, and Y. Y. Cheng, 2010: Urban growth and aerosol effects on convection over Houston. Part I: The August 2000 case. Atmos. Res., 96, 560–574, https://doi.org/10.1016/j.atmosres.2010.01.005.
Cerully, K. M., and Coauthors, 2015: On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmos. Chem. Phys., 15, 8679–8694, https://doi.org/10.5194/acp-15-8679-2015.
Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 2343–2358, https://doi.org/10.1175/BAMS-D-15-00203.1.
Chang, R. Y. W., and Coauthors, 2010: The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: Relationship to degree of aerosol oxidation. Atmos. Chem. Phys., 10, 5047–5064, https://doi.org/10.5194/acp-10-5047-2010.
Changnon, S. A., 1975: The paradox of planned weather modification. Bull. Amer. Meteor. Soc., 56, 27–37, https://doi.org/10.1175/1520-0477(1975)056<0027:TPOPWM>2.0.CO;2.
Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.
Changnon, S. A., 1992: Inadvertent weather modification in urban areas: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619–627, https://doi.org/10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2.
Changnon, S. A., and F. A. Huff, 1997: Atmospheric sciences at the Illinois State Water Survey: Five decades of diverse activities and achievements. Bull. Amer. Meteor. Soc., 78, 229–238, https://doi.org/10.1175/1520-0477(1997)078<0229:ASATIS>2.0.CO;2.
Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655, https://doi.org/10.1038/326655a0.
Charlson, R. J., J. Langner, and H. Rodhe, 1990: Sulfate aerosol and climate. Nature, 348, 22–22, https://doi.org/10.1038/348022a0.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423.
Chen, D.-R., D. Y. H. Pui, D. Hummes, H. Fissan, F. R. Quant, and G. J. Sem, 1998: Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci., 29, 497–509, https://doi.org/10.1016/S0021-8502(97)10018-0.
Chen, H., and Coauthors, 2018: Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. Atmos. Chem. Phys., 18, 311–326, https://doi.org/10.5194/acp-18-311-2018.
Chen, J., and Coauthors, 2018: Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys., 18, 3523–3539, https://doi.org/10.5194/acp-18-3523-2018.
Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25, 1391–1394, https://doi.org/10.1029/97GL03261.
Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643–646, https://doi.org/10.1038/ngeo2214.
Chen, Y.-C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol–cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 2819–2833, https://doi.org/10.1002/2014JD022736.
Choudhury, G., B. Tyagi, J. Singh, C. Sarangi, and S. N. Tripathi, 2019: Aerosol-orography-precipitation—A critical assessment. Atmos. Environ., 214, https://doi.org/10.1016/j.atmosenv.2019.116831.
Chow, J. C., 1995: Measurement methods to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manage. Assoc., 45, 320–382, https://doi.org/10.1080/10473289.1995.10467369.
Chow, J. C., and J. G. Watson, 2007: Review of measurement methods and compositions for ultrafine particles. Aerosol Air Qual. Res., 7, 121–173, https://doi.org/10.4209/aaqr.2007.05.0029.
Christensen, M. W., and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, https://doi.org/10.1029/2010JD014638.
Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, 6970–6977, https://doi.org/10.1002/2014GL061320.
Chuang, P. Y., R. J. Charlson, and J. H. Seinfeld, 1997: Kinetic limitations on droplet formation in clouds. Nature, 390, 594, https://doi.org/10.1038/37576.
Chuang, P. Y., A. Nenes, J. N. Smith, R. C. Flagan, and J. H. Seinfeld, 2000: Design of a CCN instrument for airborne measurement. J. Atmos. Oceanic Technol., 17, 1005–1019, https://doi.org/10.1175/1520-0426(2000)017<1005:DOACIF>2.0.CO;2.
Cicerone, R. J., 2006: Geoengineering: Encouraging research and overseeing implementation. Climatic Change, 77, 221–226, https://doi.org/10.1007/s10584-006-9102-x.
Clark, W. E., and K. T. Whitby, 1967: Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions. J. Atmos. Sci., 24, 677–687, https://doi.org/10.1175/1520-0469(1967)024<0677:CASDMO>2.0.CO;2.
Clarke, A. D., V. N. Kapustin, F. L. Eisele, R. J. Weber, and P. H. McMurry, 1999: Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation. Geophys. Res. Lett., 26, 2425–2428, https://doi.org/10.1029/1999GL900438.
Clavner, M., W. R. Cotton, S. C. van den Heever, J. R. Pierce, and S. M. Saleeby, 2018a: The response of a simulated mesoscale convective system to increased aerosol pollution. Part I: Precipitation intensity, distribution and efficiency. Atmos. Res., 199, 193–208, https://doi.org/10.1016/j.atmosres.2017.08.010.
Clavner, M., L. D. Grasso, W. R. Cotton, and S. C. van den Heever, 2018b: The response of a simulated mesoscale convective system to increased aerosol pollution. Part II: Derecho characteristics and intensity in response to increased pollution. Atmos. Res., 199, 209–223, https://doi.org/10.1016/j.atmosres.2017.06.002.
Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 1020–1022, https://doi.org/10.1126/science.237.4818.1020.
Cohard, J.-M., J.-P. Pinty, and C. Bedos, 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 3348–3357, https://doi.org/10.1175/1520-0469(1998)055<3348:ETSAEO>2.0.CO;2.
Cohen, M., R. Flagan, and J. Seinfeld, 1987: Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem., 91, 4563–4574, https://doi.org/10.1021/j100301a029.
Conant, W. C., and Coauthors, 2004: Aerosol–cloud drop concentration closure in warm cumulus. J. Geophys. Res., 109, D13204, https://doi.org/10.1029/2003JD004324.
Cotton, W. R., 1979: Cloud physics: A review for 1975–1978 IUGG Quadrennial Report. Rev. Geophys., 17, 1840–1851, https://doi.org/10.1029/RG017i007p01840.
Cotton, W. R., 2003: Cloud models: Their evolution and future challenges. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 95–105, https://doi.org/10.1175/0065-9401(2003)029<0095:CCMTEA>2.0.CO;2.
Cotton, W. R., and R. A. Pielke, 1976: weather modification and three-dimensional mesoscale models. Bull. Amer. Meteor. Soc., 57, 788–796, https://doi.org/10.1175/1520-0477(1976)057<0788:WMATDM>2.0.CO;2.
Cotton, W. R., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39, 70–73.
Cotton, W. R., G. M. Krall, and G. G. Carrió, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Trop. Cyclone Res. Rev., 1, 293–306, https://doi.org/10.5194/ACPD-12-351-2012.
Covert, D. S., J. L. Gras, A. Wiedensohler, and F. Stratmann, 1998: Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania. J. Geophys. Res., 103, 16 597–16 608, https://doi.org/10.1029/98JD01093.
Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114–118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.
Cozic, J., and Coauthors, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113, D15209, https://doi.org/10.1029/2007JD009266.
Creamean, J. M., A. P. Ault, A. B. White, P. J. Neiman, F. M. Ralph, P. Minnis, and K. A. Prather, 2015: Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California’s central Sierra Nevada. Atmos. Chem. Phys., 15, 6535–6548, https://doi.org/10.5194/acp-15-6535-2015.
Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211, https://doi.org/10.1007/s10584-006-9101-y.
Cruz, C. N., and S. N. Pandis, 1998: The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J. Geophys. Res., 103, 13 111–13 123, https://doi.org/10.1029/98JD00979.
Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320, https://doi.org/10.1126/science.1234145.
Cziczo, D. J., L. Ladino-Moreno, Y. Boose, Z. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0008.1.
Delene, D. J., and T. Deshler, 2000: Calibration of a photometric cloud condensation nucleus counter designed for deployment on a balloon package. J. Atmos. Oceanic Technol., 17, 459–467, https://doi.org/10.1175/1520-0426(2000)017<0459:COAPCC>2.0.CO;2.
DeMott, P. J., and Coauthors, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 655–14 660, https://doi.org/10.1073/pnas.2532677100.
DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 217–11 222, https://doi.org/10.1073/pnas.0910818107.
DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 1623–1635, https://doi.org/10.1175/2011BAMS3119.1.
DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 5797–5803, https://doi.org/10.1073/pnas.1514034112.
DeMott, P. J., and Coauthors, 2017: Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmos. Chem. Phys., 17, 11 227–11 245, https://doi.org/10.5194/acp-17-11227-2017.
DeMott, P. J., and Coauthors, 2018: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018.
DeMott, P. J., W. G. Finnegan, and L. O. Grant, 1983: An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used for weather modification. J. Climate Appl. Meteor, 22, 1190–1203, https://doi.org/10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2.
DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 77–90, https://doi.org/10.1175/1520-0469(1994)051<0077:PAIOII>2.0.CO;2.
DeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 2429–2432, https://doi.org/10.1029/1999GL900580.
Dessens, H., 1949: The use of spiders’ threads in the study of condensation nuclei. Quart. J. Roy. Meteor. Soc., 75, 23–26, https://doi.org/10.1002/qj.49707532305.
Diem, M., 1948: Messungen der Grösse von Wolkenelementen. Meteor. Rundsch., 11, 261–273.
Dietlicher, R., D. Neubauer, and U. Lohmann, 2019: Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2. Atmos. Chem. Phys., 19, 9061–9080, https://doi.org/10.5194/acp-19-9061-2019.
Dobson, G. M. B., 1949: Ice in the atmosphere. Quart. J. Roy. Meteor. Soc., 75, 117–130, https://doi.org/10.1002/qj.49707532402.
Doyle, G. J., 1961: Self-nucleation in the sulfuric acid-water system. J. Chem. Phys., 35, 795–799, https://doi.org/10.1063/1.1701218.
Dunion, J. P., and C. S. Veldon, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353–366, https://doi.org/10.1175/BAMS-85-3-353.
Dunne, E. A., and Coauthors, 2016: Global atmospheric particle formation from CERN CLOUD measurements. Science, 345, 1119–1124, https://doi.org/10.1126/science.aaf2649.
Duplissy, J., and Coauthors, 2009: Intercomparison study of six HTDMAs: Results and recommendations. Atmos. Meas. Tech., 2, 363–378, https://doi.org/10.5194/amt-2-363-2009.
Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, https://doi.org/10.1029/2005GL024175.
Durkee, P. A., and Coauthors, 2000b: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypothesis 1i and 1ii. J. Atmos. Sci., 57, 2554–2569, https://doi.org/10.1175/1520-0469(2000)057<2554:TIOSPA>2.0.CO;2.
Durkee, P. A., K. J. Noone, and R. T. Bluth, 2000a: The Monterey Area Ship Track Experiment. J. Atmos. Sci., 57, 2523–2539, https://doi.org/10.1175/1520-0469(2000)057<2523:TMASTE>2.0.CO;2.
Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 2417–2436, https://doi.org/10.1175/2010JAS3266.1.
Ekman, A., A. Engström, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133B, 1439–1452, https://doi.org/10.1002/QJ.108.
Emersic, C., P. J. Connolly, S. Boult, M. Campana, and Z. Li, 2015: Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles. Atmos. Chem. Phys., 15, 11 311–11 326, https://doi.org/10.5194/acp-15-11311-2015.
Facchini, M. C., and Coauthors, 2008: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett., 35, L17814, https://doi.org/10.1029/2008GL034210.
Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 9351–9378, https://doi.org/10.1002/2017JD026622.
Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.
Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.
Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010a: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, https://doi.org/10.1088/1748-9326/5/4/044005.
Fan, J., J. M. Comstock, M. Ovchinnikov, S. A. McFarlane, G. McFarquhar, and G. Allen, 2010b: Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations. J. Geophys. Res., 115, D12201, https://doi.org/10.1029/2009JD012696.
Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581–E4590, https://doi.org/10.1073/pnas.1316830110.
Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1.
Farrington, R. J., and Coauthors, 2016: Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign. Atmos. Chem. Phys., 16, 4945–4966, https://doi.org/10.5194/acp-16-4945-2016.
Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The Impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 4100–4117, https://doi.org/10.1175/1520-0469(1999)056<4100:TIOGCC>2.0.CO;2.
Feingold, G., I. Koren, T. Yamaguchi, and J. Kazil, 2015: On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15, 7351–7367, https://doi.org/10.5194/acp-15-7351-2015.
Feng, Y., V. Ramanathan, and V. R. Kotamarthi, 2013: Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013.
Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.
Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung (Colloidal meteorological processes in the formation of precipitation). Meteor. Z., 55, 121–133.
Fitzgerald, J. W., 1973: Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition. J. Atmos. Sci., 30, 628–634, https://doi.org/10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.
Flagan, R. C., 1998: History of electrical aerosol measurements. Aerosol Sci. Technol., 28, 301–380, https://doi.org/10.1080/02786829808965530.
Fleming, J. R., 2010: Fixing the Sky: The Checkered History of Weather and Climate Control. Columbia University Press, 352 pp.
Fletcher, N. H., 1958: Size effect in heterogeneous nucleation. J. Chem. Phys., 29, 572–576, https://doi.org/10.1063/1.1744540.
Fletcher, N. H., 1959: Entropy effect in ice crystal nucleation. J. Chem. Phys., 30, 1476–1482, https://doi.org/10.1063/1.1730221.
Fletcher, N. H., 1961: Freezing nuclei, meteors, and rainfall. Science, 134, 361–367, https://doi.org/10.1126/science.134.3476.361.
Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.
Fletcher, N. H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 1266–1271, https://doi.org/10.1175/1520-0469(1969)026<1266:ASAICN>2.0.CO;2.
Flossmann, A. I., V. Levizzani, and P. K. Wang, 2010: On the fundamental role of Hans Pruppacher for cloud physics and cloud chemistry. Atmos. Res., 97, 393–395, https://doi.org/10.1016/J.ATMOSRES.2010.06.003.
Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, https://doi.org/10.1029/2009JD011958.
Forster, P., and Coauthors, 2007: Radiative forcing of climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Ed., Cambridge University Press, Cambridge, 129–234.
Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 1139–1150, https://doi.org/10.1002/JGRD.50174.
Fountoukis, C., and Coauthors, 2007: Aerosol–cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. J. Geophys. Res., 112, D10S30, https://doi.org/10.1029/2006JD007272.
Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated cloud microphysical processes. J. Climate, 9, 489–529, https://doi.org/10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.
Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 2451–2466, https://doi.org/10.1175/JAS3493.1.
French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 115, 1168–1173, https://doi.org/10.1073/pnas.1716995115.
Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718–722, https://doi.org/10.1126/science.1094947.
Fridlind, A. M., B. van Diedenhoven, A. S. Ackerman, A. Avramov, A. Mrowiec, H. Morrison, P. Zuidema, and M. D. Shupe, 2012: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365–389, https://doi.org/10.1175/JAS-D-11-052.1.
Friedlander, S. K., 1960a: On the particle-size spectrum of atmospheric aerosols. J. Meteor., 17, 373–374, https://doi.org/10.1175/1520-0469(1960)017<0373:OTPSSO>2.0.CO;2.
Friedlander, S. K., 1960b: Similarity considerations for the particle-size spectrum of a coagulating, sedimenting aerosol. J. Meteor., 17, 479–483, https://doi.org/10.1175/1520-0469(1960)017<0479:SCFTPS>2.0.CO;2.
Fröhlich-Nowoisky, J., and Coauthors, 2016: Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res., 182, 346–376, https://doi.org/10.1016/j.atmosres.2016.07.018.
Frossard, A. A., L. M. Russell, S. M. Burrows, S. M. Elliott, T. S. Bates, and P. K. Quinn, 2014: Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res., 119, 12 977–13 003, https://doi.org/10.1002/2014JD021913.
Fukuta, N., 1966: Experimental studies of organic ice nuclei. J. Atmos. Sci., 23, 191–196, https://doi.org/10.1175/1520-0469(1966)023<0191:ESOOIN>2.0.CO;2.
Fukuta, N., and V. K. Saxena, 1979: A horizontal thermal gradient cloud condensation nucleus spectrometer. J. Appl. Meteor., 18, 1352–1362, https://doi.org/10.1175/1520-0450(1979)018<1352:AHTGCC>2.0.CO;2.
Gasparini, B., A. Meyer, D. Neubauer, S. Münch, and U. Lohmann, 2018: Cirrus cloud properties as seen by the CALIPSO satellite and ECHAM-HAM global climate model. J. Climate, 31, 1983–2003, https://doi.org/10.1175/JCLI-D-16-0608.1.
Gavish, M., R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, 1990: Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science, 250, 973–975, https://doi.org/10.1126/science.250.4983.973.
Gavish, M., J. L. Wang, M. Eisenstein, M. Lahav, and L. Leiserowitz, 1992: The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice. Science, 256, 815, https://doi.org/10.1126/science.1589763.
Gebhart, J., 1993: Optical direct-reading techniques: Light intensity systems Aerosol Measurement: Principles, Techniques, and Applications, K. Willeke and P. A. Baron, Eds., Van Norstrand Reinhold, 313–344.
Gelbard, F., and J. H. Seinfeld, 1979: The general dynamic equation for aerosols. Theory and application to aerosol formation and growth. J. Colloid Interface Sci., 68, 363–382, https://doi.org/10.1016/0021-9797(79)90289-3.
Geleyn, J.-F., 1981: Some diagnostics of the cloud radiation interaction on ECMWF forecasting model. Workshop on Radiation and Cloud Radiation Interaction in Numerical Modeling, Reading, UK, ECMWF, 135–162, https://www.ecmwf.int/sites/default/files/elibrary/1980/9525-some-diagnostics-cloud-radiation-interaction-ecmwf-forecasting-model.pdf.
Georgii, H.-W., 1959: Neue Untersuchungen über den Zusammenhang zwischen atmosphärischen Gefrierkernen und Kondensationskernen. Geofis. Pura Appl., 42, 62–72, https://doi.org/10.1007/BF02113390.
Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 1268–1287, https://doi.org/10.1175/JCLI-D-14-00102.1.
Gettelman, A., and S. C. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179, https://doi.org/10.1007/s40641-016-0052-8.
Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J. Climate, 21, 3660–3679, https://doi.org/10.1175/2008JCLI2116.1.
Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, https://doi.org/10.1029/2012JD017950.
Gong, S., and L. A. Barrie, 2009: The distribution of atmospehric aerosols: Transport, transformation, and removal. Aerosol Pollution Impact on Precipitation, Z. Levin and W. R. Cotton, Eds., Springer, 91–141.
Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32, 199–215, https://doi.org/10.1016/S0021-8502(00)00077-X.
Goren, T., and D. Rosenfeld, 2012: Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J. Geophys. Res., 117, D17206, https://doi.org/10.1029/2012JD017981.
Grabowski, W.W., 2018: Can the impact of aerosols on deep convection be isolated from meteorological effects in atmospheric observations? J. Atmos. Sci., 75, 3347–3363, https://doi.org/10.1175/JAS-D-18-0105.1.
Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293–324, https://doi.org/10.1146/annurev-fluid-011212-140750.
Grabowski, W. W., H. Morrison, S. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655–672, https://doi.org/10.1175/BAMS-D-18-0005.1.
Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: modulation by dry layers. J. Atmos. Sci., 72, 1398–1408, https://doi.org/10.1175/JAS-D-14-0260.1.
Gras, J. L., and G. P. Ayers, 1983: Marine aerosol at southern mid-latitudes. J. Geophys. Res., 88, 10 661–10 666, https://doi.org/10.1029/JC088iC15p10661.
Griffiths, W. D., S. Patrick, and A. P. Rood, 1984: An aerodynamic particle size analyser tested with spheres, compact particles and fibres having a common settling rate under gravity. J. Aerosol Sci., 15, 491–502, https://doi.org/10.1016/0021-8502(84)90045-4.
Gunthe, S. S., and Coauthors, 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: Size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009.
Gurganus, C. W., J. C. Charnawskas, A. B. Kostinski, and R. A. Shaw, 2014: Nucleation at the contact line observed on nanotextured surfaces. Phys. Rev. Lett., 113, 235701, https://doi.org/10.1103/PhysRevLett.113.235701.
Hallett, J., 1983: Progress in cloud physics 1979–1982. Rev. Geophys., 21, 965–984, https://doi.org/10.1029/RG021i005p00965.
Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, https://doi.org/10.1038/249026a0.
Hämeri, K., and Coauthors, 2001: Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, 53B, 359–379, https://doi.org/10.3402/tellusb.v53i4.16609.
Hand, J. L., and S. M. Kreidenweis, 2002: A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol., 36, 1012–1026, https://doi.org/10.1080/02786820290092276.
Hansen, P. C., 2000: The L-curve and its use in the numerical treatment of inverse problems. Advances in Computational Bioengineering, WIT Press, 119–142.
Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, https://doi.org/10.1029/96JD03436.
Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.
Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M.