Adames, Á. F., and J. M. Wallace, 2017: On the tropical atmospheric signature of El Niño. J. Atmos. Sci., 74, 1923–1939, https://doi.org/10.1175/JAS-D-16-0309.1.
Alexander, M. A., 1992: Midlatitude atmosphere ocean interaction during El Nino. Part 1: The North Pacific Ocean. J. Climate, 5, 944–958, https://doi.org/10.1175/1520-0442(1992)005<0944:MAIDEN>2.0.CO;2.
Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122–137, https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.
Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901, https://doi.org/10.1175/2010JCLI3205.1.
Amaya, D. J., M. J. DeFlorio, A. J. Miller, and S.-P. Xie, 2017: WES feedback and the Atlantic Meridional Mode: Observations and CMIP5 comparisons. Climate Dyn., 49, 1665–1679, https://doi.org/10.1007/s00382-016-3411-1.
An, S. I., and F. F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 2399–2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.
Anderson, B. T., 2003: Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res., 108, 4732, https://doi.org/10.1029/2003JD003805.
Anderson, W., A. Gnanadesikan, and A. T. Wittenberg, 2009: Regional impacts of ocean color on tropical Pacific variability. Ocean Sci., 5, 313–327, https://doi.org/10.5194/os-5-313-2009.
Atwood, A. R., D. S. Battisti, A. T. Wittenberg, W. H. G. Roberts, and D. J. Vimont, 2017: Characterizing unforced multi-decadal variability of ENSO: A case study with the GFDL CM2.1 coupled GCM. Climate Dyn., 49, 2845–2862, https://doi.org/10.1007/s00382-016-3477-9.
Ba, J., and Coauthors, 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 2333–2348, https://doi.org/10.1007/s00382-014-2056-1.
Back, L. E., and C. S. Bretherton, 2009a: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 6477–6497, https://doi.org/10.1175/2009JCLI2393.1.
Back, L. E., and C. S. Bretherton, 2009b: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 4182–4196, https://doi.org/10.1175/2009JCLI2392.1.
Balmaseda, M. A., D. L. T. Anderson, and M. K. Davey, 1994: ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus, 46A, 497–511, https://doi.org/10.3402/tellusa.v46i4.15495.
Barnett, T. P., N. Graham, S. Pazan, W. White, M. Latif, and M. Flügel, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6, 1545–1566, https://doi.org/10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2.
Barnston, A. G., and Coauthors, 1994: Long-lead seasonal forecasts—Where do we stand? Bull. Amer. Meteor. Soc., 75, 2097–2114, https://doi.org/10.1175/1520-0477(1994)075<2097:LLSFDW>2.0.CO;2.
Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477–493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.
Batstone, C., and H. H. Hendon, 2005: Characteristics of stochastic variability associated with ENSO and the role of the MJO. J. Climate, 18, 1773–1789, https://doi.org/10.1175/JCLI3374.1.
Battisti, D. S., 1988: Dynamics and theromdynamics of a warming event in a coupled tropical atmosphere ocean model. J. Atmos. Sci., 45, 2889–2919, https://doi.org/10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.
Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere ocean model: influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.
Battisti, D. S., U. S. Bhatt, and M. A. Alexander, 1995: A modeling study of the interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8, 3067–3083, https://doi.org/10.1175/1520-0442(1995)008<3067:AMSOTI>2.0.CO;2.
Battisti, D. S., E. S. Sarachik, and A. C. Hirst, 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12, 2956–2964, https://doi.org/10.1175/1520-0442(1999)012<2956:ACMFTL>2.0.CO;2.
Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 1688–1705, https://doi.org/10.1175/JCLI3797.1.
Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, https://doi.org/10.1007/s00382-013-1783-z.
Bellomo, K., A. C. Clement, L. N. Murphy, L. M. Polvani, and M. A. Cane, 2016: New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 43, 9852–9859, https://doi.org/10.1002/2016GL069961.
Berlage, H., 1966: Fluctuations in the general atmospheric circulation of more than one year, their nature and prognostic value. Mededelingen en Verhandelingen 88, Koninklijk Nederlands Meteorologisch Instituut, 152 pp.other
Berner, J., F. Doblas-Reyes, T. Palmer, G. Shutts, and A. Weisheimer, 2008: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos. Trans. Roy. Soc. London, 366A, 2559–2577, https://doi.org/10.1098/rsta.2008.0033.
Bhatt, U. S., M. A. Alexander, D. S. Battisti, D. D. Houghton, and L. M. Keller, 1998: Atmosphere–ocean interaction in the North Atlantic: Near-surface climate variability. J. Climate, 11, 1615–1632, https://doi.org/10.1175/1520-0442(1998)011<1615:AOIITN>2.0.CO;2.
Bigg, G. R., and J. R. Blundell, 1989: The equatorial Pacific Ocean prior to and during El Niño of 1982/83—A normal mode model view. Quart. J. Roy. Meteor. Soc., 115, 1039–1069, https://doi.org/10.1002/qj.49711548904.
Bjerknes, J. F., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 2087–2106, https://doi.org/10.1175/1520-0442(1997)010<2087:TIOMOA>2.0.CO;2.
Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10, 1473–1486, https://doi.org/10.1175/1520-0442(1997)010<1473:ETEOSW>2.0.CO;2.
Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218–222, https://doi.org/10.1038/nature08707.
Booth, B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012a: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, https://doi.org/10.1038/nature10946.
Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012b: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 1241–1256, https://doi.org/10.1175/MWR-D-11-00195.1.
Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515–519, https://doi.org/10.1038/ngeo248.
Boucharel, J., A. Timmermann, A. Santoso, M. H. England, F.-F. Jin, and M. A. Balmaseda, 2015: A surface layer variance heat budget for ENSO. Geophys. Res. Lett., 42, 3529–3537, https://doi.org/10.1002/2015GL063843.
Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27, 767–770, https://doi.org/10.1029/1999GL010910.
Brown, P. T., M. S. Lozier, R. Zhang, and W. Li, 2016: The necessity of cloud feedback for a basin-scale Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 43, 3955–3963, https://doi.org/10.1002/2016GL068303.
Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493.
Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2014: Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Climate, 27, 4996–5018, https://doi.org/10.1175/JCLI-D-13-00316.1.
Burgman, R. J., P. S. Schopf, and B. P. Kirtman, 2008: Decadal modulation of ENSO in a hybrid coupled model. J. Climate, 21, 5482–5500, https://doi.org/10.1175/2008JCLI1933.1.
Burls, N. J., C. J. C. Reason, P. Penven, and S. G. Philander, 2012: Energetics of the tropical Atlantic zonal mode. J. Climate, 25, 7442–7466, https://doi.org/10.1175/JCLI-D-11-00602.1.
Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 77–90, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.
Busalacchi, A. J., K. Takeuchi, and J. J. O’Brien, 1983: Interannual variability of the equatorial Pacific—Revisited. J. Geophys. Res., 88, 7551–7562, https://doi.org/10.1029/JC088iC12p07551.
Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 1200–1205, https://doi.org/10.1002/grl.50208.
Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849–859, https://doi.org/10.1038/nclimate2743.
Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/SCIENCE.AAV4236.
Cane, M. A., and E. S. Sarachik, 1977: Forced baroclinic ocean motions. II-The linear equatorial bounded case. J. Mar. Res., 35, 395–432.
Cane, M. A., and E. S. Sarachik, 1981: The response of a linear baroclinic equatorial ocean to periodic forcing. J. Mar. Res., 39 (4), 651–693.
Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Nino. Nature, 321, 827, https://doi.org/10.1038/321827a0.
Cane, M. A., M. Münnich, and S. F. Zebiak, 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis. J. Atmos. Sci., 47, 1562–1577, https://doi.org/10.1175/1520-0469(1990)047<1562:ASOSEO>2.0.CO;2.
Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 9952–9960, https://doi.org/10.1002/2015GL066171.
Capotondi, A., Y.-G. Ham, A. Wittenberg, and J.-S. Kug, 2015a: Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Variations, Vol. 13, No. 1, US CLIVAR Program, Washington, DC, 21–25, https://usclivar.org/sites/default/files/documents/2015/Variations2015Winter_0.pdf.
Capotondi, A., and Coauthors, 2015b: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Capotondi, A., P. D. Sardeshmukh, and L. Ricciardulli, 2018: The nature of the stochastic wind forcing of ENSO. J. Climate, 31, 8081–8099, https://doi.org/10.1175/JCLI-D-17-0842.1.
Carranza, L., 1892: Contra-corriente maritime, observada en Paita y Pacasmayo. Bol. Soc. Geogr. Lima, 1, 344–345.
Carrillo, C. N., 1893: Hidrografia Oceánica: Disertación sobre las corrientes oceánicas y estudios de la corriente peruana ó de Humboldt. Bol. Soc. Geogr. Lima, 2, 72–110.
Cayan, D. R., 1992a: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881, https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.
Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354–369, https://doi.org/10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.
Cessi, P., 2000: Thermal feedback on wind stress as a contributing cause of climate variability. J. Climate, 13, 232–244, https://doi.org/10.1175/1520-0442(2000)013<0232:TFOWSA>2.0.CO;2.
Chang, C.-Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 2540–2555, https://doi.org/10.1175/2010JCLI4065.1.
Chang, P., and S. G. Philander, 1994: A coupled ocean–atmosphere instability of relevance to the seasonal cycle. J. Atmos. Sci., 51, 3627–3648, https://doi.org/10.1175/1520-0469(1994)051<3627:ACOIOR>2.0.CO;2.
Chang, P., and D. S. Battisti, 1998: The physics of El Niño. Phys. World, 11, 41, https://doi.org/10.1088/2058-7058/11/8/31.
Chang, P., L. Ji, B. Wang, and T. Li, 1995: Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model. J. Atmos. Sci., 52, 2353–2372, https://doi.org/10.1175/1520-0469(1995)052<2353:IBTSCA>2.0.CO;2.
Chang, P., H. Ji, H. Li, and M. F. Lugel, 1996: Chaotic dynamics versus stochastic processes in El Niño-Southern Oscillation in coupled ocean-atmosphere models. Physica D, 98, 301–320, https://doi.org/10.1016/0167-2789(96)00116-9.
Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516–518, https://doi.org/10.1038/385516a0.
Chang, P., R. Saravanan, L. Ji, G. C. Hegerl, P. Chang, R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 2195–2216, https://doi.org/10.1175/1520-0442(2000)013<2195:TEOLSS>2.0.CO;2.
Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14, 361–390, https://doi.org/10.1175/1520-0442(2001)013<0361:AHCMSO>2.0.CO;2.
Chang, P., R. Saravanan, T. DelSole, and F. M. Wang, 2004a: Predictability of linear coupled systems. Part I: Theoretical analyses. J. Climate, 17, 1474–1486, https://doi.org/10.1175/1520-0442(2004)017<1474:POLCSP>2.0.CO;2.
Chang, P., R. Saravanan, F. Wang, and L. Ji, 2004b: Predictability of linear coupled systems. Part II: An application to a simple model of tropical Atlantic variability. J. Climate, 17, 1487–1503, https://doi.org/10.1175/1520-0442(2004)017<1487:POLCSP>2.0.CO;2.
Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled systems: The role of ocean dynamics. J. Climate, 19, 5122–5174, https://doi.org/10.1175/JCLI3903.1.
Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific Meridional Mode and El Niño-Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.
Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234–238, https://doi.org/10.1126/science.272.5259.234.
Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 52–69, https://doi.org/10.5670/oceanog.2010.05.
Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983, https://doi.org/10.1126/science.1091901.
Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for EI Nino forecasting: Implications for predictability. Science, 269, 1699–1702, https://doi.org/10.1126/science.269.5231.1699.
Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339–345, https://doi.org/10.1038/ngeo2399.
Chen, X., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 9623–9641, https://doi.org/10.1175/JCLI-D-15-0322.1.
Chen, Y.-Y., and F.-F. Jin, 2017: Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: Part II analysis of CMIP5 simulations. Climate Dyn., 49, 3923–3936, https://doi.org/10.1007/s00382-017-3550-z.
Chhak, K. C., A. M. Moore, R. F. Milliff, G. Branstator, W. R. Holland, and M. Fisher, 2006: Stochastic forcing of the North Atlantic wind-driven ocean circulation. Part I: A diagnostic analysis of the ocean response to stochastic forcing. J. Phys. Oceanogr., 36, 300–315, https://doi.org/10.1175/JPO2852.1.
Chhak, K. C., A. M. Moore, and R. F. Milliff, 2009: Stochastic forcing of ocean variability by the North Atlantic Oscillation. J. Phys. Oceanogr., 39, 162–184, https://doi.org/10.1175/2008JPO3972.1.
Chiang, J. C. H., 2002: Deconstructing Atlantic intertropical convergence zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, https://doi.org/10.1029/2000JD000307.
Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Climate, 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1.
Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383–412, https://doi.org/10.1146/annurev-earth-042711-105545.
Chiang, J. C. H., S. E. Zebiak, and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58, 1371–1394, https://doi.org/10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2.
Chiang, J. C. H., C.-Y. Chang, and M. F. Wehner, 2013: Long-term behavior of the Atlantic interhemispheric SST gradient in the CMIP5 historical simulations. J. Climate, 26, 8628–8640, https://doi.org/10.1175/JCLI-D-12-00487.1.
Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 9462–9476, https://doi.org/10.1175/JCLI-D-13-00045.1.
Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2015: Nonlinear zonal wind response to ENSO in the CMIP5 models: Roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J. Climate, 28, 8556–8573, https://doi.org/10.1175/JCLI-D-15-0211.1.
Clarke, A. J., 1983: The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 13, 1193–1207, https://doi.org/10.1175/1520-0485(1983)013<1193:TROEWF>2.0.CO;2.
Clarke, A. J., 1991: On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J. Geophys. Res., 96, 3289–3305, https://doi.org/10.1029/90JC00985.
Clarke, A. J., 1992: Low-frequency reflection from a nonmeridional eastern ocean boundary and the use of coastal sea level to monitor eastern Pacific equatorial Kelvin waves. J. Phys. Oceanogr., 22, 163–183, https://doi.org/10.1175/1520-0485(1992)022<0163:LFRFAN>2.0.CO;2.
Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 324 pp.
Clarke, A. J., and X. Liu, 1994: Interannual sea-level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 1224–1235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.
Clement, A. C., and P. DiNezio, 2014: The tropical Pacific Ocean—Back in the driver’s seat? Science, 343, 976–978, https://doi.org/10.1126/science.1248115.
Clement, A. C., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Raedel, and B. Stevens, 2015: The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 350, 320–324, https://doi.org/10.1126/science.aab3980.
Collins, M., 2000: The El Niño–Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse warming. J. Climate, 13, 1299–1312, https://doi.org/10.1175/1520-0442(2000)013<1299:TENOSO>2.0.CO;2.
Crétat, J., P. Terray, S. Masson, K. Sooraj, and M. K. Roxy, 2017: Indian Ocean and Indian summer monsoon: Relationships without ENSO in ocean–atmosphere coupled simulations. Climate Dyn., 49, 1429–1448, https://doi.org/10.1007/s00382-016-3387-x.
Curry, R. G., and M. S. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31, 3374–3400, https://doi.org/10.1175/1520-0485(2001)031<3374:OGCCAW>2.0.CO;2.
Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15 835–15 847, https://doi.org/10.1029/95JC01502.
Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26, 2969–2972, https://doi.org/10.1029/1999GL900613.
Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606–623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.
Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 3280–3290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.
Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 65–90, https://doi.org/10.1016/j.ocemod.2015.11.007.
Davis, R. E., 1976: Predictability of sea-surface temperature and sea level pressure over North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
Delecluse, P., M. K. Davey, Y. Kitamura, S. Philander, M. Suarez, and L. Bengtsson, 1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103, 14 357–14 373, https://doi.org/10.1029/97JC02546.
Delworth, T. L., and S. Manabe, 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2, 1447–1462, https://doi.org/10.1175/1520-0442(1989)002<1447:TIOSWO>2.0.CO;2.
Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481–1495, https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.
Delworth, T. L., and F. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Climate, 29, 941–962, https://doi.org/10.1175/JCLI-D-15-0396.1.
Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 1993–2011, https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.
Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509–512, https://doi.org/10.1038/ngeo2738.
Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 3789–3805, https://doi.org/10.1175/JCLI-D-16-0358.1.
DeMott, C. A., J. J. Benedict, N. P. Klingaman, S. J. Woolnough, and D. A. Randall, 2016: Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 121, 8350–8373, https://doi.org/10.1002/2016JD025098.
Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 1697–1706, https://doi.org/10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.
Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453.
Deshayes, J., and C. Frankignoul, 2008: Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J. Climate, 21, 4919–4933, https://doi.org/10.1175/2008JCLI1882.1.
DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon. Wea. Rev., 133, 2972–2995, https://doi.org/10.1175/MWR3016.1.
Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 9440–9448, https://doi.org/10.1002/2015GL066281.
DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 7399–7420, https://doi.org/10.1175/JCLI-D-11-00494.1.
Doblas-Reyes, F. J., R. Hagedorn, and T. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus, 57A, 234–252, https://doi.org/10.3402/TELLUSA.V57i3.14658.
Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766.
Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 3597–3618, https://doi.org/10.1175/JCLI-D-12-00467.1.
Drosdowsky, W., 1994: Analog (nonlinear) forecasts of the Southern Oscillation index time series. Wea. Forecasting, 9, 78–84, https://doi.org/10.1175/1520-0434(1994)009<0078:AFOTSO>2.0.CO;2.
Du Penhoat, Y., and M. A. Cane, 1991: Effect of low-latitude western boundary gaps on the reflection of equatorial motions. J. Geophys. Res., 96, 3307–3322, https://doi.org/10.1029/90JC01798.
Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676–691, https://doi.org/10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2.
Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 2266–2280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.
Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 5224–5238, https://doi.org/10.1175/JCLI3588.1.
Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 1529–1534, https://doi.org/10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.
Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea-level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557–578, https://doi.org/10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.
Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12, 2719–2733, https://doi.org/10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2.
Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science, 324, 778–781, https://doi.org/10.1126/science.1167404.
Evan, A. T., G. R. Foltz, D. Zhang, and D. J. Vimont, 2011: Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nat. Geosci., 4, 762–765, https://doi.org/10.1038/ngeo1276.
Evan, A. T., R. J. Allen, R. Bennartz, and D. J. Vimont, 2013: The modification of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. J. Climate, 26, 3619–3630, https://doi.org/10.1175/JCLI-D-12-00370.1.
Farneti, R., 2017: Modelling interdecadal climate variability and the role of the ocean. Wiley Interdiscip. Rev.: Climate Change, 8, e441, https://doi.org/10.1002/wcc.441.
Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 1997–2002, https://doi.org/10.1126/science.288.5473.1997.
Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 4430–4440, https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.
Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602–607, https://doi.org/10.1038/320602a0.
Foussard, A., G. Lapeyre, and R. Plougonven, 2019: Storm track response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445–463, https://doi.org/10.1175/JCLI-D-18-0415.1.
Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air-sea feedback in the midlatitudes. Rev. Geophys., 23, 357–390, https://doi.org/10.1029/RG023i004p00357.
Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models Part 2: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, https://doi.org/10.3402/tellusa.v29i4.11362.
Frankignoul, C., and P. Müller, 1979: Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere. J. Phys. Oceanogr., 9, 104–127, https://doi.org/10.1175/1520-0485(1979)009<0104:QGROAI>2.0.CO;2.
Frankignoul, C., and E. Kestenare, 2005: Air–sea interactions in the tropical Atlantic: A view based on lagged rotated maximum covariance analysis. J. Climate, 18, 3874–3890, https://doi.org/10.1175/JCLI3498.1.
Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762–777, https://doi.org/10.1175/2010JCLI3731.1.
Frankignoul, C., G. Gastineau, and Y.-O. Kwon, 2013: The influence of the AMOC variability on the atmosphere in CCSM3. J. Climate, 26, 9774–9790, https://doi.org/10.1175/JCLI-D-12-00862.1.
Frankignoul, C., G. Gastineau, and Y.-O. Kwon, 2017: Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Climate, 30, 9871–9895, https://doi.org/10.1175/JCLI-D-17-0009.1.
Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329–346, https://doi.org/10.1002/qj.768.
Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 1396–1416, https://doi.org/10.1175/JCLI-D-14-00424.1.
Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 3281–3295, https://doi.org/10.1175/JAS4029.1.
Giannini, A., Y. Kushnir, M. A. Cane, A. Giannini, Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311, https://doi.org/10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.
Giese, B. S., and J. A. Carton, 1994: The seasonal cycle in coupled ocean–atmosphere model. J. Climate, 7, 1208–1217, https://doi.org/10.1175/1520-0442(1994)007<1208:TSCICO>2.0.CO;2.
Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905.
Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805–807, https://doi.org/10.1126/science.275.5301.805.
Guan, B., and S. Nigam, 2009: Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic multidecadal oscillation. J. Climate, 22, 4228–4240, https://doi.org/10.1175/2009JCLI2921.1.
Guilyardi, E., P. Braconnot, F.-F. Jin, S. T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22, 5698–5718, https://doi.org/10.1175/2009JCLI2815.1.
Guilyardi, E., A. Wittenberg, M. Balmaseda, W. Cai, M. Collins, M. J. McPhaden, M. Watanabe, and S.-W. Yeh, 2016: Fourth CLIVAR workshop on the evaluation of ENSO processes in climate models in a changing climate. Bull. Amer. Meteor. Soc., 97, 817–820, https://doi.org/10.1175/BAMS-D-15-00287.1.
Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219–233, https://doi.org/10.3402/TELLUSA.V57i3.14657.
Hasselmann, K., 1976: Stochastic climate models. 1: Theory. Tellus, 28, 473–485, https://doi.org/10.3402/tellusa.v28i6.11316.
Hastenrath, S., 1990: Decadal-scale changes of the circulation in the tropical Atlantic sector associated with Sahel drought. Int. J. Climatol., 10, 459–472, https://doi.org/10.1002/JOC.3370100504.
Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc., 103, 77–92, https://doi.org/10.1002/qj.49710343505.
Hastenrath, S., and L. Greischar, 1993: Circulation mechanisms related to northeast Brazil rainfall anomalies. J. Geophys. Res., 98, 5093–5102, https://doi.org/10.1029/92JD02646.
Hazeleger, W., M. Visbeck, M. Cane, A. Karspeck, and N. Naik, 2001: Decadal upper ocean temperature variability in the tropical Pacific. J. Geophys. Res., 106, 8971–8988, https://doi.org/10.1029/2000JC000536.
Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 1775–1790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.
Hirons, L. C., N. P. Klingaman, and S. J. Woolnough, 2018: The impact of air-sea interactions on the representation of tropical precipitation extremes. J. Adv. Model. Earth Syst., 10, 550–559, https://doi.org/10.1002/2017MS001252.
Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606–632, https://doi.org/10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2.
Hirst, A. C., 1988: Slow instabilities in tropical ocean basin–global atmosphere models. J. Atmos. Sci., 45, 830–852, https://doi.org/10.1175/1520-0469(1988)045<0830:SIITOB>2.0.CO;2.
Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 1041–1058, https://doi.org/10.1007/s00382-009-0571-2.
Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Nino, La Nina, and the nonlinearity of their teleconnections. J. Climate, 10, 1769–1786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.
Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076–1080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Houghton, R. W., and Y. M. Tourre, 1992: Characteristics of low-frequency sea surface temperature fluctuations in the tropical Atlantic. J. Climate, 5, 765–772, https://doi.org/10.1175/1520-0442(1992)005<0765:COLFSS>2.0.CO;2.
Hsu, H.-H., and J. M. Wallace, 1985: Vertical structure of wintertime teleconnection patterns. J. Atmos. Sci., 42, 1693–1710, https://doi.org/10.1175/1520-0469(1985)042<1693:VSOWTP>2.0.CO;2.
Huang, B., Y. Xue, A. Kumar, and D. W. Behringer, 2012: AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system. Climate Dyn., 38, 513–525, https://doi.org/10.1007/s00382-011-1035-z.
Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27, 3369–3372, https://doi.org/10.1029/2000GL011484.
Infanti, J. M., and B. P. Kirtman, 2016: North American rainfall and temperature prediction response to the diversity of ENSO. Climate Dyn., 46, 3007–3023, https://doi.org/10.1007/s00382-015-2749-0.
Ji, M., 1996: Coupled model forecasts of ENSO during the 1980s and 1990s at the National Meteorological Center. J. Climate, 9, 3105–3120, https://doi.org/10.1175/1520-0442(1996)009<3105:CMPOED>2.0.CO;2.
Ji, M., A. Kumar, and A. Leetmaa, 1994: An experimental coupled forecast system at the National Meteorological Center: Some early results. Tellus, 46A, 398–418, https://doi.org/10.3402/tellusa.v46i4.15488.
Ji, M., D. W. Behringer, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev., 126, 1022–1034, https://doi.org/10.1175/1520-0493(1998)126<1022:AICMFE>2.0.CO;2.
Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part 1: Conceptual model. J. Atmos. Sci., 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Jin, F.-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264, 70–72, https://doi.org/10.1126/science.264.5155.70.
Jin, F.-F., J. D. Neelin, and M. Ghil, 1996: El Nino/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D, 98, 442–465, https://doi.org/10.1016/0167-2789(96)00111-X.
Jin, F.-F., S. I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Nino events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.
Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.
Jungclaus, J., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023.
Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532, https://doi.org/10.1175/2007JCLI2146.1.
Keenlyside, N. S., and M. Latif, 2007: Understanding equatorial Atlantic interannual variability. J. Climate, 20, 131–142, https://doi.org/10.1175/JCLI3992.1.
Keppenne, C. L., and M. Ghil, 1992: Adaptive filtering and prediction of the Southern Oscillation index. J. Geophys. Res., 97, 20 449–20 454, https://doi.org/10.1029/92JD02219.
Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95, 5183–5217, https://doi.org/10.1029/JC095iC04p05183.
Kessler, W. S., 1991: Can reflected extra-equatorial Rossby waves drive ENSO? J. Phys. Oceanogr., 21, 444–452, https://doi.org/10.1175/1520-0485(1991)021<0444:CREERW>2.0.CO;2.
Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.
Kessler, W. S., and M. J. McPhaden, 1995: Oceanic equatorial waves and the 1991–93 El Nino. J. Climate, 8, 1757–1774, https://doi.org/10.1175/1520-0442(1995)008<1757:OEWATE>2.0.CO;2.
Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.
Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the Community Earth System Model large ensemble. J. Climate, 31, 787–813, https://doi.org/10.1175/JCLI-D-17-0193.1.
Kirtman, B. P., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131, 2324–2341, https://doi.org/10.1175/1520-0493(2003)131<2324:TCACME>2.0.CO;2.
Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29, 1367, https://doi.org/10.1029/2002GL014834.
Kirtman, B. P., and D. Min, 2009: Multimodel ensemble ENSO prediction with CCSM and CFS. Mon. Wea. Rev., 137, 2908–2930, https://doi.org/10.1175/2009MWR2672.1.
Kirtman, B. P., and A. Pirani, 2009: The state of the art of seasonal prediction: Outcomes and recommendations from the First World Climate Research Program Workshop on Seasonal Prediction. Bull. Amer. Meteor. Soc., 90, 455–458, https://doi.org/10.1175/2008BAMS2707.1.
Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal predictions with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125, 789–808, https://doi.org/10.1175/1520-0493(1997)125<0789:MPWACT>2.0.CO;2.
Kirtman, B. P., K. Pegion, and S. M. Kinter, 2005: Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J. Atmos. Sci., 62, 2220–2233, https://doi.org/10.1175/JAS3449.1.
Kirtman, B. P., T. Stockdale, and R. Burgman, 2013: The ocean’s role in modeling and predicting seasonal-to-interannual climate variations. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics, Vol. 103, Elsevier, 625–643, https://doi.org/10.1016/B978-0-12-391851-2.00024-6.
Kirtman, B. P., and Coauthors, 2014: The North American multimodel ensemble Phase 1: Seasonal-to-interannual prediction; Phase-2: Toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-D-12-00050.1.
Kirtman, B. P., V. Misra, R. J. Burgman, J. Infanti, and J. Obeysekera, 2017: Florida climate variability and prediction. Florida’s Climate: Changes, Variations, & Impacts, E. P. Chassignet et al., Eds., Florida Climate Institute, 511–532.
Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753–767, https://doi.org/10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2.
Kleeman, R., A. M. Moore, and N. R. Smith, 1995: Assimilation of subsurface thermal data into a simple ocean model for the initialization of an intermediate tropical coupled ocean–atmosphere forecast model. Mon. Wea. Rev., 123, 3103–3114, https://doi.org/10.1175/1520-0493(1995)123<3103:AOSTDI>2.0.CO;2.
Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.
Knaff, J. A., and C. W. Landsea, 1997: An El Niño–Southern Oscillation climatology and persistence (CLIPER) forecasting scheme. Wea. Forecasting, 12, 633–652, https://doi.org/10.1175/1520-0434(1997)012<0633:AENOSO>2.0.CO;2.
Knight, J. R.,