Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications

V. Ramaswamy NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by V. Ramaswamy in
Current site
Google Scholar
PubMed
Close
,
W. Collins Lawrence Berkeley National Laboratory, and University of California, Berkeley, Berkeley, California

Search for other papers by W. Collins in
Current site
Google Scholar
PubMed
Close
,
J. Haywood University of Exeter, and Met Office, Exeter, United Kingdom

Search for other papers by J. Haywood in
Current site
Google Scholar
PubMed
Close
,
J. Lean U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by J. Lean in
Current site
Google Scholar
PubMed
Close
,
N. Mahowald Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by N. Mahowald in
Current site
Google Scholar
PubMed
Close
,
G. Myhre Center for International Climate Research, Oslo, Norway

Search for other papers by G. Myhre in
Current site
Google Scholar
PubMed
Close
,
V. Naik NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by V. Naik in
Current site
Google Scholar
PubMed
Close
,
K. P. Shine Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by K. P. Shine in
Current site
Google Scholar
PubMed
Close
,
B. Soden Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by B. Soden in
Current site
Google Scholar
PubMed
Close
,
G. Stenchikov King Abdulla University of Science and Technology, Thuwal, Jeddah, Saudi Arabia

Search for other papers by G. Stenchikov in
Current site
Google Scholar
PubMed
Close
, and
T. Storelvmo University of Oslo, Oslo, Norway

Search for other papers by T. Storelvmo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We describe the historical evolution of the conceptualization, formulation, quantification, application, and utilization of “radiative forcing” (RF) of Earth’s climate. Basic theories of shortwave and longwave radiation were developed through the nineteenth and twentieth centuries and established the analytical framework for defining and quantifying the perturbations to Earth’s radiative energy balance by natural and anthropogenic influences. The insight that Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the nineteenth century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data, and analysis of well-mixed greenhouse gases and the global climate system through the twentieth century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification, including the first assessment of the effect of the forcing due to the doubling of carbon dioxide on climate (the “Charney” report). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs; carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO and IPCC international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From the 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system have proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change and the diversity of the forcing mechanisms have grown. This has led to the current situation where “effective radiative forcing” (ERF) is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature (e.g., precipitation). The forcing–response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m−2, with a range from 1.1 to 3.3 W m−2; 90% confidence interval). Further, except in the immediate aftermath of climatically significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth system science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system.

Retired.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. Ramaswamy, v.ramaswamy@noaa.gov

Abstract

We describe the historical evolution of the conceptualization, formulation, quantification, application, and utilization of “radiative forcing” (RF) of Earth’s climate. Basic theories of shortwave and longwave radiation were developed through the nineteenth and twentieth centuries and established the analytical framework for defining and quantifying the perturbations to Earth’s radiative energy balance by natural and anthropogenic influences. The insight that Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the nineteenth century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data, and analysis of well-mixed greenhouse gases and the global climate system through the twentieth century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification, including the first assessment of the effect of the forcing due to the doubling of carbon dioxide on climate (the “Charney” report). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs; carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO and IPCC international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From the 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system have proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change and the diversity of the forcing mechanisms have grown. This has led to the current situation where “effective radiative forcing” (ERF) is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature (e.g., precipitation). The forcing–response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m−2, with a range from 1.1 to 3.3 W m−2; 90% confidence interval). Further, except in the immediate aftermath of climatically significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth system science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system.

Retired.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. Ramaswamy, v.ramaswamy@noaa.gov
Save
  • Aamaas, B., T. K. Berntsen, J. S. Fuglestvedt, K. P. Shine, and W. J. Collins, 2017: Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models. Atmos. Chem. Phys., 17, 10 79510 809, https://doi.org/10.5194/acp-17-10795-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbott, C. G., and F. E. Fowle, 1908: Recent determination of the solar constant of radiation. Terr. Magn. Atmos. Electr., 13, 7982, https://doi.org/10.1029/TE013i002p00079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Achakulwisut, P., L. J. Mickley, L. T. Murray, A. P. K. Tai, J. O. Kaplan, and B. Alexander, 2015: Uncertainties in isoprene photochemistry and emissions: Implications for the oxidative capacity of past and present atmospheres and for climate forcing agents. Atmos. Chem. Phys., 15, 79777998, https://doi.org/10.5194/acp-15-7977-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, https://doi.org/10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, P. J., J. H. Seinfeld, D. Koch, L. Mickley, and D. Jacob, 2001: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system. J. Geophys. Res., 106, 10971111, https://doi.org/10.1029/2000JD900512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlm, L., A. Jones, W. C. Stjern, H. Muri, B. Kravitz, and J. E. Kristjánsson, 2017: Marine cloud brightening—As effective without clouds. Atmos. Chem. Phys., 17, 13 07113 087, https://doi.org/10.5194/acp-17-13071-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and Coauthors, 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, https://doi.org/10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., Y. Balkanski, N. Mahowald, G. Winckler, V. Maggi, and B. Delmonte, 2018: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Climate Change Rep., 4, 99114, https://doi.org/10.1007/s40641-018-0100-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, B., and L. J. Mickley, 2015: Paleo-perspectives on potential future changes in the oxidative capacity of the atmosphere due to climate change and anthropogenic emissions. Curr. Pollut. Rep., 1, 5769, https://doi.org/10.1007/s40726-015-0006-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 82198246, https://doi.org/10.1175/JCLI-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alterskjær, K., and J. E. Kristjánsson, 2013: The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. Geophys. Res. Lett., 40, 210215, https://doi.org/10.1029/2012GL054286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alterskjær, K., J. E. Kristjánsson, and Ø. Seland, 2012: Sensitivity to deliberate sea salt seeding of marine clouds—Observations and model simulations. Atmos. Chem. Phys., 12, 27952807, https://doi.org/10.5194/acp-12-2795-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altshuller, A. P., and J. J. Bufalini, 1965: Photochemical aspects of air pollution: A review. Photochem. Photobiol., 4, 97146, https://doi.org/10.1111/j.1751-1097.1965.tb05731.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, C., G. Meehl, W. Washington, and C. Zender, 2003: A monthly and latitudinally varying forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, https://doi.org/10.1029/2010GL044843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andela, N., and Coauthors, 2017: A human-driven decline in global burned area. Science, 356, 13561362, https://doi.org/10.1126/science.aal4108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. R., E. Hawkins, and P. D. Jones, 2016: CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth system models. Endeavour, 40, 178187, https://doi.org/10.1016/j.endeavour.2016.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, S., B. Martinsson, J.-P. Vernier, J. Friberg, C. A. M. Brenninkmeijer, M. Hermann, P. van Velhoven, and A. Zahn, 2014: Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun., 6, 7692, https://doi.org/10.1038/ncomms8692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955966, https://doi.org/10.1029/2000GB001382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., C. D. Jones, and P. M. Cox, 2005: Strong present-day aerosol cooling implies a hot future. Nature, 435, 11871190, https://doi.org/10.1038/nature03671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, https://doi.org/10.1029/2007GL032273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619635, https://doi.org/10.1007/s10712-011-9152-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., R. A. Betts, B. B. Booth, C. D. Jones, and G. S. Jones, 2017: Effective radiative forcing from historical land use change. Climate Dyn., 48, 34893505, https://doi.org/10.1007/s00382-016-3280-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antico, A., and M. E. Torres, 2015: Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett., 42, 10 78210 787, https://doi.org/10.1002/2015GL066089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña, J. C., A. Robock, G. L. Stenchikov, J. Zhou, C. David, J. Barnes, and L. Thomason, 2003: Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption. J. Geophys. Res., 108, 4624, https://doi.org/10.1029/2003JD003722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aquila, V., L. D. Oman, R. S. Stolarski, P. R. Colarco, and P. A. Newman, 2012: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J. Geophys. Res., 117, D06216, https://doi.org/10.1029/2011JD016968.

    • Search Google Scholar
    • Export Citation
  • Aquila, V., C. I. Garfinkel, P. A. Newman, L. D. Oman, and D. W. Waugh, 2014: Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett., 41, 17381744, https://doi.org/10.1002/2013GL058818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, D., and S. Rahmstorf, 2010: The Climate Crisis. Cambridge University Press, 250 pp.

    • Crossref
    • Export Citation
  • Arfeuille, F., and Coauthors, 2013: Modeling the stratospheric warming following the Mt. Pinatubo eruption: Uncertainties in aerosol extinctions. Atmos. Chem. Phys., 13, 11 22111 234, https://doi.org/10.5194/acp-13-11221-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525532, https://doi.org/10.1038/ngeo905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci., 41, 237276, https://doi.org/10.1080/14786449608620846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., P. B. Duffy, and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 105, 76647669, https://doi.org/10.1073/pnas.0711648105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, https://doi.org/10.1007/s00382-009-0583-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G., L. Cao, G. Bala, and K. Caldeira, 2011: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 38, 897911, https://doi.org/10.1007/s00382-011-1052-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, A., A. C. Maycock, A. T. Archibald, N. L. Abraham, P. Telford, P. Braesicke, and J. A. Pyle, 2016: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos. Chem. Phys., 16, 27272746, https://doi.org/10.5194/acp-16-2727-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and J. S. Foot, 1994: New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption. J. Geophys. Res., 99, 25 67325 679, https://doi.org/10.1029/94JD02044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardeen, C. G., O. B. Toon, E. J. Jensen, D. R. Marsh, and V. L. Harvey, 2008: Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res., 113, D17202, https://doi.org/10.1029/2007JD009515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. E., and D. J. Hofmann, 1997: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory. Geophys. Res. Lett., 24, 19231926, https://doi.org/10.1029/97GL01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. Garcıa-Herrera, and R. Huth, 2008: Solar modulation of Northern Hemisphere winter blocking. J. Geophys. Res., 113, D14118, https://doi.org/10.1029/2008JD009789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301327, https://doi.org/10.1029/JZ055i003p00301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and A. E. Witherspoon, 1952: The photochemistry of some minor constituents of the Earth’s atmosphere (CO2, CO, CH4, N2O). Geophys. J. Int., 6, 324, https://doi.org/10.1111/j.1365-246X.1952.tb03020.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., J. E. Dye, R. G. Knollenberg, and B. W. Gandrud, 1992: Interpretation of measurements made by the FSSP-300X during the Airborne Arctic Stratospheric Expedition. J. Geophys. Res., 97, 80358046, https://doi.org/10.1029/91JD02728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., O. Boucher, J. M. Haywood, and M. S. Reddy, 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 11381141, https://doi.org/10.1038/nature04348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Rae, A. Jones, C. Johnson, J. M. Haywood, and O. Boucher, 2011: Aerosol forcing in the CMIP5 simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res., 116, D20206, https://doi.org/10.1029/2011JD016074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berdahl, M., A. Robock, D. Ji, J. C. Moore, A. Jones, B. Kravitz, and S. Watanabe, 2014: Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios. J. Geophys. Res. Atmos., 119, 13081321, https://doi.org/10.1002/2013JD020627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berntsen, T. K., I. S. A. Isaksen, G. Myhre, J. S. Fuglestvedt, F. Stordal, T. A. Larsen, R. S. Freckleton, and K. P. Shine, 1997: Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res., 102, 28 10128 126, https://doi.org/10.1029/97JD02226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Bingen, C., D. Fussen, and F. Vanhellemont, 2004a: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations. J. Geophys. Res., 109, D06201, https://doi.org/10.1029/2003JD003518.

    • Search Google Scholar
    • Export Citation
  • Bingen, C., D. Fussen, and F. Vanhellemont, 2004b: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 2. Reference data. J. Geophys. Res., 109, D06202, https://doi.org/10.1029/2003JD003511.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 29973013, https://doi.org/10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., S. D. Doiron, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1992: Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys. Res. Lett., 19, 151154, https://doi.org/10.1029/91GL02792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1993: The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature, 366, 327329, https://doi.org/10.1038/366327a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, L., and U. Burkhardt, 2016: Reassessing properties and radiative forcing of contrail cirrus using a climate model. J. Geophys. Res. Atmos., 121, 97179736, https://doi.org/10.1002/2016JD025112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, L., and U. Burkhardt, 2019: Contrail cirrus radiative forcing for future air traffic. Atmos. Chem. Phys., 19, 81638174, https://doi.org/10.5194/acp-19-8163-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and climate state. Climate Dyn., 21, 167176, https://doi.org/10.1007/s00382-003-0323-7.

  • Bolin, B., and R. J. Charlson, 1976: On the role of the tropospheric sulfur cycle in the shortwave radiative climate of the Earth. Ambio, 5, 4754.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G., 2008: Forests and climate change: Forcings, feedbacks and the climate benefits of forests. Science, 320, 14441448, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borrman, S., and Coauthors, 2000: Stratospheric aerosol measurements in the Arctic winter of 1996/1997 with the M-55 Geophysika high-altitude research aircraft. Tellus, 52B, 10881103, https://doi.org/10.3402/tellusb.v52i4.17085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., 1995: GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii. J. Climate, 8, 14031409, https://doi.org/10.1175/1520-0442(1995)008<1403:GEOTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., 1999: Air traffic may increase cirrus cloudiness. Nature, 397, 3031, https://doi.org/10.1038/16169.

  • Boucher, O., and T. L. Anderson, 1995: General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res., 100, 26 11726 134, https://doi.org/10.1029/95JD02531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect. Tellus, 47B, 281300, https://doi.org/10.3402/tellusb.v47i3.16048.

  • Boucher, O., and D. Tanré, 2000: Estimation of the aerosol perturbation to the Earth’s radiative budget over oceans using POLDER satellite aerosol retrievals. Geophys. Res. Lett., 27, 11031106, https://doi.org/10.1029/1999GL010963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and J. Haywood, 2001: On summing the components of radiative forcing of climate change. Climate Dyn., 18, 297302, https://doi.org/10.1007/s003820100185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 1998: Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. J. Geophys. Res., 103, 16 97916 998, https://doi.org/10.1029/98JD00997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

    • Search Google Scholar
    • Export Citation
  • Bourassa, A. E., D. A. Degenstein, R. L. Gattinger, and E. J. Llewellyn, 2007: Stratospheric aerosol retrieval with OSIRIS limb scatter measurements. J. Geophys. Res., 112, D10217, https://doi.org/10.1029/2006JD008079.

    • Search Google Scholar
    • Export Citation
  • Bourassa, A. E., D. A. Degenstein, and E. J. Llewellyn, 2008: Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra. Atmos. Chem. Phys., 8, 63756380, https://doi.org/10.5194/acp-8-6375-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, P., D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais, 2005: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform. Atmos. Chem. Phys., 5, 26352656, https://doi.org/10.5194/acp-5-2635-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. W., and Coauthors, 2013: Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys., 13, 40574072, https://doi.org/10.5194/acp-13-4057-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., 2009: Implications of climate change for air quality. WMO Bull., 58, 1015.

  • Brasseur, G. P., and C. Granier, 1992: Mount Pinatubo aerosols, chlorofluorocarbons and ozone depletion. Science, 257, 12391242, https://doi.org/10.1126/science.257.5074.1239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., J. T. Kiehl, J.-F. Müller, T. Schneider, C. Granier, X. Tie, and D. Hauglustaine, 1998: Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophys. Res. Lett., 25, 38073810, https://doi.org/10.1029/1998GL900013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and Coauthors, 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B, 815827, https://doi.org/10.1034/j.1600-0889.2000.00047.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimblecombe, P., and C. Bowler, 1990: Air pollution history, York 1850–1900. The Silent Countdown, P. Brimblecombe and C. Pfister, Eds., Springer, 182–195.

    • Crossref
    • Export Citation
  • Broccoli, A., K. Dixon, T. Delworth, T. Knutson, and R. Stouffer, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res., 108, 4798, https://doi.org/10.1029/2003JD003812.

    • Search Google Scholar
    • Export Citation
  • Brock, C. A., P. Hamill, J. C. Wilson, H. H. Jonsson, and K. R. Chan, 1995: Particle formation in the upper tropical troposphere: A source of nuclei for the stratospheric aerosol. Science, 270, 16501653, https://doi.org/10.1126/science.270.5242.1650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brühl, C., J. Lelieveld, P. J. Crutzen, and H. Tost, 2012: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys., 12, 12391253, https://doi.org/10.5194/acp-12-1239-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brühl, C., J. Lelieveld, H. Tost, M. Höpfner, and N. Glatthor, 2015: Stratospheric sulphur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos., 120, 21032118, https://doi.org/10.1002/2014JD022430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., S. Manabe, and M. Spelman, 1988: Interhemispheric asymmetry in the transient response of a coupled ocean–atmosphere model to a CO2 forcing. J. Phys. Oceanogr., 18, 851867, https://doi.org/10.1175/1520-0485(1988)018<0851:IAITTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., and B. Kärcher, 2011: Global radiative forcing from contrail cirrus. Nat. Climate Change, 1, 5458, https://doi.org/10.1038/nclimate1068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, J. P., E. Hölzle, A. P. H. Goede, H. Visser, and W. Fricke, 1995: SCIAMACHY—Scanning Imaging Absorption Spectrometer for Atmospheric Chartography. Acta Astronaut., 35, 445451, https://doi.org/10.1016/0094-5765(94)00278-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadle, R. D., and E. R. Allen, 1970: Atmospheric photochemistry. Science, 167, 243263, https://doi.org/10.1126/science.167.3916.243.

  • Caldeira, K., G. Bala, and L. Cao, 2013: The science of geoengineering. Annu. Rev. Earth Planet. Sci., 41, 231256, https://doi.org/10.1146/annurev-earth-042711-105548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223240, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1941: Infra-red absorption by carbon dioxide, with special reference to atmospheric radiation. Quart. J. Roy. Meteor. Soc., 67, 263275, https://doi.org/10.1002/qj.49706729105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carn, S. A., A. J. Krueger, G. J. S. Bluth, S. J. Schaefer, N. A. Krotkov, I. M. Watson, and S. Datta, 2003: Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: A 22-year record of sulfur dioxide and ash emissions. Volcanic Degassing, C. Oppenheimer, D. M. Pyle, and J. Barclay, Eds., Geological Society, 177–202.

    • Crossref
    • Export Citation
  • Carn, S. A., L. Clarisse, and A. J. Prata, 2016: Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res., 311, 99134, https://doi.org/10.1016/j.jvolgeores.2016.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., O. Boucher, D. Spracklen, G. Mann, J. G. Rae, S. Woodward, and M. Kumala, 2010: A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys., 10, 17011737, https://doi.org/10.5194/acp-10-1701-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., H. Gordon, D. S. Hamilton, J. S. Johnson, L. A. Regayre, M. Yoshioka, and K. J. Pringle, 2017: Aerosols in the pre-Industrial atmosphere. Curr. Climate Change Rep., 3, 115, https://doi.org/10.1007/s40641-017-0061-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., 1976: Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology. J. Atmos. Sci., 33, 18311843, https://doi.org/10.1175/1520-0469(1976)033<1831:CCAAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, https://doi.org/10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1993: Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models. Science, 262, 12521255, https://doi.org/10.1126/science.262.5137.1252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, J. W., H. M. Foley, G. J. MacDonald, and M. A. Ruderman, 1982: Climate effects of minor atmospheric constituents. Carbon Dioxide Review: 1982, W. Clark, Ed., Oxford University Press, 255–277.

  • Chameides, W., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 87518760, https://doi.org/10.1029/JC078i036p08751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chameides, W., and R. J. Cicerone, 1978: Effects of nonmethane hydrocarbons in the atmosphere. J. Geophys. Res., 83, 947952, https://doi.org/10.1029/JC083iC02p00947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanin, M.-L., and Coauthors, 1998: Trends in stratospheric temperatures. Scientific assessment of ozone depletion: 1998, WMO Global Ozone Research and Monitoring Project Rep. 44, 5.1–5.59.

  • Chapman, S., 1930: On ozone and atomic oxygen in the upper atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci., 10, 369383, https://doi.org/10.1080/14786443009461588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152163, https://doi.org/10.3402/tellusa.v43i4.11944.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. J. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, https://doi.org/10.1126/science.255.5043.423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chédin, A., N. Husson, and N. A. Scott, 1982: Une banque de données pour l’étude des phénomènes de transfert radiatif dans les atmosphères planétaires: La banque GEISA. Bull. Inf. Cent. Données Stellaires, 22, 121124.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., and A. Gettelman, 2016: Simulated 2050 aviation radizforcing from contrails and aerosols. Atmos. Chem. Phys., 16, 73177333, https://doi.org/10.5194/acp-16-7317-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and V. Ramaswamy, 1996: Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. Part II: Spatially localized perturbations. J. Climate, 9, 27882801, https://doi.org/10.1175/1520-0442(1996)009<2788:SOSGCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, https://doi.org/10.1038/ngeo2214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 28192833, https://doi.org/10.1002/2014JD022736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodo, G., L. M. Polvani, D. R. Marsh, A. Stenke, W. Ball, E. Rozanov, S. Muthers, and K. Tsigaridis, 2018: The response of the ozone layer to quadrupled CO2 concentrations. J. Climate, 31, 38933907, https://doi.org/10.1175/JCLI-D-17-0492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiou, E. W., L. W. Thomason, and W. P. Chu, 2006: Variability of stratospheric water vapor inferred from SAGE II, HALOE, and Boulder (Colorado) balloon measurements. J. Climate, 19, 41214133, https://doi.org/10.1175/JCLI3841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, 69706977, https://doi.org/10.1002/2014GL061320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., Y. C. Chen, and G. L. Stephens, 2016: Aerosol indirect effect dictated by liquid clouds. J. Geophys. Res. Atmos., 121, 14 63614 650, https://doi.org/10.1002/2016JD025245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christoforou, P., and S. Hameed, 1997: Solar cycle and the Pacific ‘centers of action.’ Geophys. Res. Lett., 24, 293296, https://doi.org/10.1029/97GL00017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, C. C., J. E. Penner, K. E. Taylor, and J. J. Walton, 1993: Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model. Lawrence Livermore National Laboratory Rep. UCRL-JC-114078, 5 pp., http://inis.iaea.org/search/search.aspx?orig_q=RN:25046956.

  • Chung, C. E., and V. Ramanathan, 2006: Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 19, 20362045, https://doi.org/10.1175/JCLI3820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. E., V. Ramanathan, D. Kim, and I. A. Podgorny, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res., 110, D24207, https://doi.org/10.1029/2005JD006356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2015: An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models. J. Climate, 28, 41524170, https://doi.org/10.1175/JCLI-D-14-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566571, https://doi.org/10.1038/NGEO2988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., and J. A. Coakley, 1974: Aerosols and climate. Science, 183, 7577, https://doi.org/10.1126/science.183.4120.75.

  • Chylek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929931, https://doi.org/10.1029/95GL00800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2013a: Attributing the increase in atmospheric CO2 to emitters and absorbers. Nat. Climate Change, 3, 926930, https://doi.org/10.1038/nclimate1942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2013b: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465570, https://doi.org/10.1017/CBO9781107415324.015.

    • Crossref
    • Export Citation
  • Clark, W. C., Ed., 1982: Carbon Dioxide Review: 1982. Oxford University Press, 469 pp., https://www.osti.gov/biblio/5963903-carbon-dioxide-review.

  • Clette, F., and L. Lefèvre, 2016: The new sunspot number: Assembling all corrections. Sol. Phys., 291, 26292651, https://doi.org/10.1007/s11207-016-1014-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, https://doi.org/10.1029/92JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr., 1981: Stratospheric aerosols and the tropospheric energy budget: Theory versus observations. J. Geophys. Res., 86, 97619766, https://doi.org/10.1029/JC086iC10p09761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr, R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 10201022, https://doi.org/10.1126/science.237.4818.1020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coddington, O., J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, 2016: A solar irradiance climate data record. Bull. Amer. Meteor. Soc., 97, 12651282, https://doi.org/10.1175/BAMS-D-14-00265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole-Dai, J., 2010: Volcanoes and climate. Wiley Interdiscip. Rev.: Climate Change, 1, 824839, https://doi.org/10.1002/wcc.76.

  • Collins, J. W., and Coauthors, 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585607, https://doi.org/10.5194/gmd-10-585-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., D. R. Feldman, C. Kuo, and N. H. Nguyen, 2018: Large regional shortwave forcing by anthropogenic methane informed by Jovian observations. Sci. Adv., 4, eaas9593, https://doi.org/10.1126/sciadv.aas9593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., S. Sitch, and O. Boucher, 2010: How vegetation impacts affect climate metrics for ozone precursors. J. Geophys. Res., 115, D23308, https://doi.org/10.1029/2010JD014187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, 2013: Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys., 13, 24712485, https://doi.org/10.5194/acp-13-2471-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conover, J. H., 1966: Anomalous cloud lines. J. Atmos. Sci., 23, 778785, https://doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, W. F., and J. J. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19 39519 409, https://doi.org/10.1029/96JD00671.

  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1× 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104, 22 13722 162, https://doi.org/10.1029/1999JD900187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costantino, L., and F. M. Bréon, 2013: Aerosol indirect effect on warm clouds over south-east Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13, 6988, https://doi.org/10.5194/acp-13-69-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., L. S. Jackson, S. M. Osprey, P. M. Forster, 2015: A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys. Res. Atmos., 120, 93529373, https://doi.org/10.1002/2015JD023269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320325, https://doi.org/10.1002/qj.49709640815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1972a: SST’s: A threat to the Earth’s ozone shield. Ambio, 1, 4151. http://www.jstor.org/stable/4311946.

  • Crutzen, P. J., 1972b: Gas-phase nitrogen and methane chemistry in the atmosphere. Proc. Physics and Chemistry of Upper Atmospheres, Orléans, France, Summer Advanced Study Institute, 110–124, https://doi.org/10.1007/978-94-010-2542-3_12.

    • Crossref
    • Export Citation
  • Crutzen, P. J., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106, 13851399, https://doi.org/10.1007/BF00881092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1976: The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3, 7376, https://doi.org/10.1029/GL003i002p00073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211220, https://doi.org/10.1007/s10584-006-9101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., and P. H. Zimmermann, 1991: The changing photochemistry of the troposphere. Tellus, 43B, 136151, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00012.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., and J. Lelieveld, 2001: Human impacts on atmospheric chemistry. Annu. Rev. Earth Planet. Sci., 29, 1745, https://doi.org/10.1146/annurev.earth.29.1.17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., R. Voss, G. C. Hegerl, J. Waszkewitz, and T. J. Crowley, 1997: Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Climate Dyn., 13, 757767, https://doi.org/10.1007/s003820050196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damon, P., and J. Jirikowic, 1992: The sun as a low-frequency harmonic oscillator. Radiocarbon, 34, 199205, https://doi.org/10.1017/S003382220001362X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, J. S., and S. Solomon, 1998: On the climate forcing of carbon monoxide. J. Geophys. Res., 103, 13 24913 260, https://doi.org/10.1029/98JD00822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, M., L. G. Tilstra, P. Wang, and P. Stammes, 2012: Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry. J. Geophys. Res., 117, D07207, https://doi.org/10.1029/2011JD017160.

    • Search Google Scholar
    • Export Citation
  • de Graaf, M., N. Bellouin, L. G. Tilstra, J. M. Haywood, and P. Stammes, 2014: Aerosol direct radiative effect from episodic smoke emissions over the southeast Atlantic Ocean from 2006 to 2009. Geophys. Res. Lett., 41, 77237730, https://doi.org/10.1002/2014GL061103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., and R. P. Cebula, 1998: NOAA 11 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989–1994: 2. Results, validation, and comparisons. J. Geophys. Res., 103, 16 25116 273, https://doi.org/10.1029/98JD01204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., and R. P. Cebula, 2008: Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res., 113, A11103, https://doi.org/10.1029/2008JA013401.

    • Search Google Scholar
    • Export Citation
  • Delaygue, G., and E. Bard, 2011: An Antarctic view of beryllium-10 and solar activity for the past millennium. Climate Dyn., 36, 22012218, https://doi.org/10.1007/s00382-010-0795-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., V. Ramaswamy, and G. L. Stenchikov, 2005: The impact of aerosols on simulated ocean temperature, heat content, and sea level in the 20th century. Geophys. Res. Lett., 32, L24709, https://doi.org/10.1029/2005GL024457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

    • Search Google Scholar
    • Export Citation
  • Derwent, R. G., 1990: Trace gases and their relative contribution to the greenhouse effect. Atomic Energy Research Establishment Rep. AERE-R13716, 23 pp.

  • Deshler, T., 2008: A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmos. Res., 90, 223232, https://doi.org/10.1016/j.atmosres.2008.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshler, T., M. E. Hervig, D. J. Hofmann, J. M. Rosen, and J. B. Liley, 2003: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments. J. Geophys. Res., 108, 4167, https://doi.org/10.1029/2002JD002514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshler, T., and Coauthors, 2006: Trends in the nonvolcanic component of stratospheric aerosol over the period 1971-2004. J. Geophys. Res., 111, D01201, https://doi.org/10.1029/2005JD006089.

    • Search Google Scholar
    • Export Citation
  • Despres, V., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15598, https://doi.org/10.3402/tellusb.v64i0.15598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014: Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. Atmos., 119, 12 58812 598, https://doi.org/10.1002/2014JD021712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deuzé, J. L., and Coauthors, 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res., 106, 49134926, https://doi.org/10.1029/2000JD900364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhomse, S., and Coauthors, 2014: Aerosol microphysical simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model. Atmos. Chem. Phys., 14, 11 22111 246, https://doi.org/10.5194/acp-14-11221-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and R. J. Cicerone, 1986: Future global warming from atmospheric trace gases. Nature, 319, 109115, https://doi.org/10.1038/319109a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., S. C. Liu, and T. M. Donahue, 1978: Effect of chlorofluoromethane infrared radiation on zonal atmospheric temperatures. J. Atmos. Sci., 35, 21422152, https://doi.org/10.1175/1520-0469(1978)035<2142:EOCIRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dines, W. H., 1917: The heat balance of the atmosphere. Quart. J. Roy. Meteor. Soc., 43, 151158, https://doi.org/10.1002/qj.49704318203.

  • Dogar, M., G. Stenchikov, S. Osipov, B. Wyman, and M. Zhao, 2017: Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. J. Geophys. Res. Atmos., 122, 79227948, https://doi.org/10.1002/2017JD026783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and V. Ramanathan, 1980: Methane and nitrous oxide: Their effects on the terrestrial climate. J. Atmos. Sci., 37, 119124, https://doi.org/10.1175/1520-0469(1980)037<0119:MANOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorland, R., F. J. Dentener, and J. Lelieveld, 1997: Radiative forcing due to tropospheric ozone and sulfate aerosols. J. Geophys. Res., 102, 28 07928 100, https://doi.org/10.1029/97JD02499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, D. H., and B. D. Clader, 2002: Climate sensitivity of the Earth to solar irradiance. Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. Webb, J. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, https://doi.org/10.1029/2008GL036273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drayson, S. R., 1966: Atmospheric transmission in the CO2 bands between 12 μ and 18 μ. Appl. Opt., 5, 385391, https://doi.org/10.1364/AO.5.000385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drayson, S. R., 1976: Rapid computation of the Voigt profile. J. Quant. Spectrosc. Radiat. Transfer, 16, 611614, https://doi.org/10.1016/0022-4073(76)90029-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and M. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res., 105, 20 67320 696, https://doi.org/10.1029/2000JD900282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, D. P., S. T. Bedka, P. Minnis, D. Spangenberg, K. Khlopenkov, T. Chee, and W. L. Smith Jr., 2019: Northern Hemisphere contrail properties derived from Terra and Aqua MODIS data for 2006 and 2012. Atmos. Chem. Phys., 19, 53135330, https://doi.org/10.5194/acp-19-5313-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudok de Wit, T., G. Kopp, C. Fröhlich, and M. Schöll, 2017: Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys. Res. Lett., 44, 11961203, https://doi.org/10.1002/2016GL071866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., and J. R. Christy, 1992: Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo. Geophys. Res. Lett., 19, 23132316, https://doi.org/10.1029/92GL02495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eddy, J. A., 1976: The Maunder Minimum. Science, 192, 11891202, https://doi.org/10.1126/science.192.4245.1189.

  • Ekholm, N., 1901: On the variations of the climate of the geological and historical past and their causes. Quart. J. Roy. Meteor. Soc., 27, 162, https://doi.org/10.1002/qj.49702711702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., and Y. Fouquart, 1991: The intercomparison of radiation codes in climate models: An overview. J. Geophys. Res., 96, 89258927, https://doi.org/10.1029/90JD01618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., J. Ellis, and S. Fels, 1991: The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 96, 89298953, https://doi.org/10.1029/90JD01450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • English, J., O. Toon, and M. Mills, 2013: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J. Geophys. Res. Atmos., 118, 18801895, https://doi.org/10.1002/jgrd.50196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ensor, D. S., W. M. Porch, M. J. Pilat, and R. J. Charlson, 1971: Influence of the atmospheric aerosol on albedo. J. Appl. Meteor., 10, 13031306, https://doi.org/10.1175/1520-0450(1971)010<1303:IOTAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine, 2016: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett., 43, 12 61412 623, https://doi.org/10.1002/2016GL071930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., 2012: Atlantic hurricane activity following two major volcanic eruptions. J. Geophys. Res., 117, D06101, https://doi.org/10.1029/2011JD016716.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, https://doi.org/10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, https://doi.org/10.1002/jgrd.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabian, P., and P. G. Pruchniewicz, 1977: Meridional distribution of ozone in the troposphere and its seasonal variations. J. Geophys. Res., 82, 20632073, https://doi.org/10.1029/JC082i015p02063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W. U., and Coauthors, 1999: Aviation-produced aerosols and cloudiness. Aviation and the Global Atmosphere, J. E. Penner et al., Eds., Cambridge University Press, 65–120.

  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310, 16741678, https://doi.org/10.1126/science.1118160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feichter, J., U. Lohmann, and I. Schult, 1997: The atmospheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation. Climate Dyn., 13, 235246, https://doi.org/10.1007/s003820050163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. T. Kiehl, A. A. Lacis, and M. D. Schwarzkopf, 1991: Infrared cooling rate calculations in operational general circulation models: Comparisons with benchmark computations. J. Geophys. Res., 96, 91059120, https://doi.org/10.1029/91JD00516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, C. B., and Coauthors, 2014: Technical summary. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 35–94.

    • Crossref
    • Export Citation
  • Fiocco, G., and G. Grams, 1964: Observations of the aerosol layer at 20 km by optical radar. J. Atmos. Sci., 21, 323324, https://doi.org/10.1175/1520-0469(1964)021<0323:OOTALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiore, A. M., and Coauthors, 2012: Global air quality and climate. Chem. Soc. Rev., 41, 66636683, https://doi.org/10.1039/c2cs35095e.

  • Fiore, A. M., V. Naik, and E. M. Leibensperger, 2015: Air quality and climate connections. J. Air Waste Manage. Assoc., 65, 645685, https://doi.org/10.1080/10962247.2015.1040526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, D. A., C. H. Hales, W.-C. Wang, M. K. W. Ko, and N. D. Sze, 1990: Model-calculations of the relative effects of CFCs and their replacements on global warming. Nature, 344, 513516, https://doi.org/10.1038/344513a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishman, J., and P. J. Crutzen, 1978: The origin of ozone in the troposphere. Nature, 274, 855858, https://doi.org/10.1038/274855a0.

  • Fishman, J., V. Ramanathan, P. J. Crutzen, and S. C. Liu, 1979a: Tropospheric ozone and climate. Nature, 282, 818820, https://doi.org/10.1038/282818a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishman, J., S. Solomon, and P. J. Crutzen, 1979b: Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 31, 432446, https://doi.org/10.3402/tellusa.v31i5.10458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, J. R., 1998: Historical Perspectives on Climate Change. Oxford University Press, 208 pp.

    • Crossref
    • Export Citation
  • Fleming, J. R., 2007: The Callendar Effect: The Life and Work of Guy Stewart Callendar (1898–1964). Amer. Meteor. Soc., 176 pp.

    • Crossref
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901-85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., 1999: Radiative forcing due to stratospheric ozone changes 1979–1997, using updated trend estimates. J. Geophys. Res., 104, 24 39524 399, https://doi.org/10.1029/1999JD900770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., 2016: Inference of climate sensitivity from analysis of Earth’s energy budget. Annu. Rev. Earth Planet. Sci., 44, 85106, https://doi.org/10.1146/annurev-earth-060614-105156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 84110 855, https://doi.org/10.1029/96JD03510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, https://doi.org/10.1029/1999GL010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 130–234.

  • Forster, P. M., and Coauthors, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, https://doi.org/10.1002/jgrd.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2016: Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J. Geophys. Res. Atmos., 121, 12 46012 475, https://doi.org/10.1002/2016JD025320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsyth, P. Y., 1988: In the wake of Etna, 44 B.C. Classical Antiq., 7, 4957, https://doi.org/10.2307/25010878.

  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, https://doi.org/10.1088/1748-9326/6/4/044022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foukal, P., 1981: Sunspots and changes in the global output of the sun. Proc. Physics of Sunspots, Sunspot, NM, Sacramento Peak Observatory, 391–423.

  • Foukal, P., and J. Lean, 1988: Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J., 328, 347357, https://doi.org/10.1086/166297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foukal, P., and J. Lean, 1990: An empirical model of total solar irradiance variations between 1874 and 1988. Science, 247, 556558, https://doi.org/10.1126/science.247.4942.556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foukal, P., P. E. Mack, and J. E. Vernazza, 1977: The effect of sunspots and faculae on the solar constant. Astrophys. J., 215, 952959, https://doi.org/10.1086/155431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foukal, P., G. North, and T. Wigley, 2004: A stellar view on solar variations and climate. Science, 306, 6869, https://doi.org/10.1126/science.1101694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., B. Bonnel, and V. Ramaswamy, 1991: Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 89558968, https://doi.org/10.1029/90JD00290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fourier, J. B., 1824: Mémoire sur les températures du globe terrestre et des espaces planétaires. Mem. Acad. Sci. Inst. Fr., 7, 569604.

    • Search Google Scholar
    • Export Citation
  • Fowler, D., and Coauthors, 2013: The global nitrogen cycle in the twenty-first century. Philos. Transa. Roy. Soc., 368B, 20130165, https://doi.org/10.1098/rstb.2013.0164.

    • Search Google Scholar
    • Export Citation
  • Franklin, B., 1784: Meteorological imaginations and conjectures. Mem. Lit. Philos. Soc. Manchester, 2, 373377.

  • Free, M., and A. Robock, 1999: Global warming in the context of the Little Ice Age. J. Geophys. Res., 104, 19 05719 070, https://doi.org/10.1029/1999JD900233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Free, M., and J. Angell, 2002: Effect of volcanoes on the vertical temperature profile in radiosonde data. J. Geophys. Res., 107, 4101, https://doi.org/10.1029/2001JD001128.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Climate, 19, 33373353, https://doi.org/10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., Y.-T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, https://doi.org/10.1175/JCLI-D-12-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friis-Christensen, E., and K. Lassen, 1991: Length of the solar cycle: An indicator of solar activity closely associated with climate. Science, 254, 698700, https://doi.org/10.1126/science.254.5032.698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., 2013: Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev., 176, 237252, https://doi.org/10.1007/s11214-011-9780-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., and J. Lean, 2004: Solar radiative output and its variability: Evidence and mechanisms. Astron. Astrophys. Rev., 12, 273320, https://doi.org/10.1007/s00159-004-0024-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., and Coauthors, 1995: VIRGO: Experiment for helioseismology and solar irradiance monitoring. Sol. Phys., 162, 101128, https://doi.org/10.1007/BF00733428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fry, M. M., and Coauthors, 2012: The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. J. Geophys. Res., 117, D07306, https://doi.org/10.1029/2011JD017134.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. Manabe, and C. M. Johanson, 2011: On the tropical upper tropospheric warming: Models versus observations. Geophys. Res. Lett., 38, L15704, https://doi.org/10.1029/2011GL048101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and Coauthors, 2013: The relation between atmospheric humidity and temperature trends for stratospheric water. J. Geophys. Res. Atmos., 118, 1051074, https://doi.org/10.1002/jgrd.50157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuglestvedt, J. S., I. S. A. Isaksen, and W. Wang, 1996: Estimates of indirect global warming potentials for CH4, CO and NOX. Climatic Change, 34, 405437, https://doi.org/10.1007/BF00139300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuglestvedt, J. S., T. K. Berntsen, I. S. A. Isaksen, H. Mao, X.-Z. Liang, and W.-C. Wang, 1999: Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. Atmos. Environ., 33, 961977, https://doi.org/10.1016/S1352-2310(98)00217-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuglestvedt, J. S., and Coauthors, 2010: Transport impacts on atmosphere and climate: Metrics. Atmos. Environ., 44, 46484677, https://doi.org/10.1016/j.atmosenv.2009.04.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., K. von Salzen, J. N. S. Cole, N. P. Gillett, and J. P. Vernier, 2013: Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model. Geophys. Res. Lett., 40, 584588, https://doi.org/10.1002/grl.50156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganguly, D., P. J. Rasch, H. Wang, and J.-h. Yoon, 2012: Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett., 39, L18804, https://doi.org/10.1029/2012GL053043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasser, T., G. P. Peters, J. S. Fuglestvedt, W. J. Collins, D. T. Shindell, and P. Ciais, 2017: Accounting for the climate–carbon feedback in emission metrics. Earth Syst. Dyn., 8, 235253, https://doi.org/10.5194/esd-8-235-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassó, S., 2008: Satellite observations of the impact of weak volcanic activity on marine clouds. J. Geophys. Res., 113, D14S19, https://doi.org/10.1029/2007JD009106.

    • Search Google Scholar
    • Export Citation
  • Gauss, M., and Coauthors, 2006: Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys., 6, 575599, https://doi.org/10.5194/acp-6-575-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., A. Schmidt, and J. E. Kristjánsson, 2015: Icelandic volcanic emissions and climate. Nat. Geosci., 8, 243, https://doi.org/10.1038/ngeo2376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 99719974, https://doi.org/10.5194/acp-13-9971-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2001: A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106, 52795293, https://doi.org/10.1029/2000JD900503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2016: Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proc. Natl. Acad. Sci. USA, 113, 58045811, https://doi.org/10.1073/pnas.1514036113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gidden, M. J., and Coauthors, 2019: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12, 14431475, https://doi.org/10.5194/gmd-12-1443-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev. Geophys., 50, RG3005, https://doi.org/10.1029/2012RG000388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez Martin, J. C., J. S. Brooke, W. Feng, M. Hopfner, M. J. Mills, and J. M. C. Plane, 2017: Impacts of meteoric sulfur in the Earth’s atmosphere. J. Geophys. Res. Atmos., 122, 76787701, https://doi.org/10.1002/2017JD027218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Yung, 1995: Atmospheric Radiation: Theoretical Basis. 2nd ed. Oxford University Press, 519 pp.

  • Gordon, I. E., and Coauthors, 2017: The HITRAN2016 molecular spectroscopic database. J.Quant. Spectrosc. Radiat. Transfer, 203, 369, https://doi.org/10.1016/j.jqsrt.2017.06.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., and K. Caldeira, 2000: Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 27, 21412144, https://doi.org/10.1029/1999GL006086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., J. Feichter, and B. Langmann, 1997: Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res., 102, 10 72710 738, https://doi.org/10.1029/96JD03265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, B., and Coauthors, 2003: Composition and diurnal variability of the natural Amazonian aerosol. J. Geophys. Res., 108, 4765, https://doi.org/10.1029/2003JD004049.

    • Search Google Scholar
    • Export Citation
  • Granier, C., K. P. Shine, J. S. Daniel, I. E. Hansen, S. Lal, and F. Stordal, 1999: Climate effects of ozone and halocarbon changes. Scientific assessment of ozone depletion: 1998, WMO Global Ozone Research and Monitoring Project Rep. 44, 10.1–10.38.

  • Granier, C., and Coauthors, 2011: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climate Change, 109, 163190, https://doi.org/10.1007/s10584-011-0154-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grattan, J., M. Brayshay, and J. Sadler, 1998: Modelling the distal impacts of past volcanic gas emissions: evidence of Europewide environmental impacts from gases emitted during the eruption of Italian and Icelandic volcanoes in 1783. Quaternaire, 9, 2535, https://doi.org/10.3406/quate.1998.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.

  • Greene, M. T., 2000: High achiever. Nature, 407, 947, https://doi.org/10.1038/35039642.

  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250, https://doi.org/10.1175/2009JCLI2949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2013: Climate models without pre-industrial volcanic forcing underestimate historical ocean thermal expansion. Geophys. Res. Lett., 40, 16001604, https://doi.org/10.1002/grl.50339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenfell, J. L., D. T. Shindell, D. Koch, and D. Rind, 2001: Chemistry-climate interactions in the Goddard Institute for Space Studies general circulation model: 2. New insights into modeling the pre-industrial atmosphere. J. Geophys. Res., 106, 33 43533 451, https://doi.org/10.1029/2000JD000090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, S., U. Blahak, F. Haenel, C. Kottmeier, T. Leisner, H. Muskatel, T. Storelvmo, and B. Vogel, 2019: A process study on thinning of Arctic winter cirrus clouds with high-resolved ICON-ART simulations. J. Geophys. Res. Atmos., 124, 58605888, https://doi.org/10.1029/2018JD029815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruner, P., and H. Kleinert, 1927: Die dammerung erscheinen. Probl. Kosm. Phys., 10, 1113.

  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, https://doi.org/10.5194/acp-6-3181-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, S., G. J. S. Bluth, W. I. Rose, I. M. Watson, and A. J. Prata, 2004a: Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem. Geophys. Geosyst., 5, Q04001, https://doi.org/10.1029/2003GC000654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, S., W. I. Rose, G. J. S. Bluth, and I. M. Watson, 2004b: Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice. Geochem. Geophys. Geosyst., 5, Q05003, https://doi.org/10.1029/2003GC000655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haagen-Smit, A. J., 1952: Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem., 44, 13421346, https://doi.org/10.1021/ie50510a045.

  • Haberreiter, M., M. Scholl, T. D. de Wit, M. Kretzschmar, S. Misios, K. Tourpali, and W. Schmutz, 2017: A new observational solar irradiance composite. J. Geophys. Res. Space Phys., 122, 59105930, https://doi.org/10.1002/2016JA023492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, P., E. J. Jensen, P. B. Russell, and J. J. Bauman, 1997: The life cycle of stratospheric aerosol particles. Bull. Amer. Meteor. Soc., 78, 13951410, https://doi.org/10.1175/1520-0477(1997)078<1395:TLCOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, D. S., and Coauthors, 2018: Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun., 9, 3182, https://doi.org/10.1038/s41467-018-05592-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampson, J., 1965: Chemiluminescent emission observed in the stratosphere and mesosphere. Les Problems Meteorologiques de la Stratosphere et de la Mesosphere, Presses Universitaires de France, 393–440.

  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497, https://doi.org/10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and A. A. Lacis, 1990: Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature, 346, 713719, https://doi.org/10.1038/346713a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101, 423428, doi:10.1073/pnas.2237157100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, 1981: Climate impact of increasing atmospheric carbon dioxide. Science, 213, 957966, https://doi.org/10.1126/science.213.4511.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., A. Lacis, and S. A. Lebedeff, 1982: Commentary on J. W. Chamberlain et al. (1982) “Climatic effects of minor atmospheric constituents.” Carbon Dioxide Review: 1982, W. Clark, Ed., Oxford University Press, 284–289.

  • Hansen, J. E., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163. https://doi.org/10.1029/GM029.

    • Crossref
    • Export Citation
  • Hansen, J. E., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, and P. Stone, 1988: Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res., 93, 93419364, https://doi.org/10.1029/JD093iD08p09341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., A. Lacis, R. Ruedy, M. Sato, and H. Wilson, 1993a: How sensitive is the world’s climate. Natl. Geogr. Res. Explor., 9, 142158.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., M. Sato A. Lacis, and R. Ruedy, 1993b: Climate impact of ozone change. Joint Workshop of IPCC Working Group I and the International Ozone Assessment Panel, Hamburg, Germany, IPCC.

  • Hansen, J. E., H. Wilson, M. Sato, R. Ruedy, K. Shah, and E. Hansen, 1995: Satellite and surface temperature data at odds? Climatic Change, 30, 103117, https://doi.org/10.1007/BF01093228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and Coauthors, 1997a: Forcings and chaos in interannual to decadal climate change. J. Geophys. Res., 102, 25 67925 720, https://doi.org/10.1029/97JD01495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., M. Sato, and R. Ruedy, 1997b: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., M. Sato, A. Lacis, R. Ruedy, I. Tegen, and E. Matthews, 1998: Climate forcings in the industrial era. Proc. Natl. Acad. Sci. USA, 95, 12 75312 758, https://doi.org/10.1073/pnas.95.22.12753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., M. Sato, R. Ruedy, A. Lacis, and V. Oinas, 2000: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA, 97, 98759880, https://doi.org/10.1073/pnas.170278997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and Coauthors, 2002: Climate forcing in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res., 107, J. Geophys. Res., https://doi.org/10.1029/2001JD001143.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Harshvardhan, 1979: Perturbation of the zonal radiation balance by a stratospheric aerosol layer. J. Atmos. Sci., 36, 12741285, https://doi.org/10.1175/1520-0469(1979)036<1274:POTZRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–218.

  • Haug, G. H., D. Günther, L. C. Peterson, D. M. Sigman, K. A. Hughen, and B. Aeschlimann, 2003: Climate and the collapse of Maya civilization. Science, 299, 17311735, https://doi.org/10.1126/science.1080444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauglustaine, D. A., and G. P. Brasseur, 2001: Evolution of tropospheric ozone under anthropogenic activities and associated radiative forcing of climate. J. Geophys. Res., 106, 32 33732 360, https://doi.org/10.1029/2001JD900175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauglustaine, D. A., C. Granier, G. P. Brasseur, and G. Mégie, 1994: The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. J. Geophys. Res., 99, 11731186, https://doi.org/10.1029/93JD02987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauglustaine, D. A., C. Granier, and G. P. Brasseur, 1995: Impact of increased methane emissions on the atmospheric composition and related radiative forcing on the climate system. Non-CO2 Greenhouse Gases: Why and How to Control? Springer-Verlag, 253–259, https://doi.org/10.1007/978-94-011-0982-6_29.

    • Crossref
    • Export Citation
  • Haywood, J. M., 2016: Atmospheric aerosols and their role in climate change. Climate Change: Observed Impacts on Planet Earth, 2nd ed. T. Letcher, Ed. Elsevier, 449–463.

    • Crossref
    • Export Citation
  • Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot aerosol on the clear-sky planetary radiation budget. Geophys. Res. Lett., 22, 603606, https://doi.org/10.1029/95GL00075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and K. P. Shine, 1997: Multi-spectral calculations of the direct radiative forcing of tropospheric sulfate and soot aerosols using a column model. Quart. J. Roy. Meteor. Soc., 123, 19071930, https://doi.org/10.1002/qj.49712354307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and V. Ramaswamy, 1998: Global sensitivity studies of the direct radiative forcing of sulfate and black carbon aerosol. J. Geophys. Res., 103, 60436058, https://doi.org/10.1029/97JD03426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513543, https://doi.org/10.1029/1999RG000078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., D. L. Roberts, A. Slingo, J. M. Edwards, and K. P. Shine, 1997: General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Climate, 10, 15621577, https://doi.org/10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., M. D. Schwarzkopf, and V. Ramaswamy, 1998: Estimates of radiative forcing due to modeled increases in tropospheric ozone. J. Geophys. Res., 103, 16 99917 007, https://doi.org/10.1029/98JD01348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., V. Ramaswamy, and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283, 12991305, https://doi.org/10.1126/science.283.5406.1299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., P. N. Francis, M. D. Glew, O. Dubovik, and B. N. Holben, 2003: Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and sun photometers during SAFARI-2000. J. Geophys. Res., 108, 8471, https://doi.org/10.1029/2002JD002250.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., L. J. Donner, A. Jones, and C. Golaz, 2009a: The global indirect radiative forcing due to aerosols: IPCC (2007) and beyond. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 451–467.

  • Haywood, J. M., and Coauthors, 2009b: A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. J. Geophys. Res., 114, D24201, https://doi.org/10.1029/2009JD012650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660665, https://doi.org/10.1038/nclimate1857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., A. Jones, and G. S. Jones, 2014: The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett., 15, 9296, https://doi.org/10.1002/asl2.471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C., and D. Spracken, 2015: Land use change impacts on air quality and climate. Chem. Rev., 115, 44764496, https://doi.org/10.1021/cr500446g.

  • Heckendorn, P., and Coauthors, 2009: The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett., 4, 045108, https://doi.org/10.1088/1748-9326/4/4/045108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones, 1996: Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Climate, 9, 22812306, https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 1997: Multi-fingerprint detection and attribution of greenhouse-gas and aerosol-forced climate change. Climate Dyn., 13, 613634, https://doi.org/10.1007/s003820050186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, W. T. Hyde, and D. J. Frame, 2006: Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440, 10291032, https://doi.org/10.1038/nature04679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci., 2, 687691, https://doi.org/10.1038/ngeo604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hergesell, M., 1919: Die Strahlung der Atmosphäre unter Zungrundlegung bon Lindeberger Temperatur: Und Feuchtigkeits Messungen. Die Arbeiten des Preusslichen Aero-Nautischen Observatoriums bei Lindenberg, Vol. 13, Vieweg and Sohn, 1–24.

  • Heymsfield, A., D. Baumgardner, P. DeMott, P. Forster, K. Gierens, and B. Kärcher, 2010: Contrail microphysics. Bull. Amer. Meteor. Soc., 91, 465–472, https://doi.org/10.1175/2009BAMS2839.1.

    • Crossref
    • Export Citation
  • Hickey, J. R., L. L. Stowe, H. Jacobowitz, P. Pellegrino, R. H. Maschhoff, F. House, and T. H. Vonder Haar, 1980: Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science, 208, 281283, https://doi.org/10.1126/science.208.4441.281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S., and Y. Ming, 2012: Nonlinear climate response to regional brightening of tropical marine stratocumulus. Geophys. Res. Lett., 39, L15707, https://doi.org/10.1029/2012GL052064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodnebrog, Ø., M. Etminan, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, K. P. Shine, and T. J. Wallington, 2013: Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Rev. Geophys., 51, 300378, https://doi.org/10.1002/rog.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS). Geosci. Model Dev., 11, 369408, https://doi.org/10.5194/gmd-11-369-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., J. M. Rosen, T. J. Pepin, and R. G. Pinnick, 1975: Stratospheric aerosol measurements I: Time variations at northern midlatitudes. J. Atmos. Sci., 32, 14461456, https://doi.org/10.1175/1520-0469(1975)032<1446:SAMITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and Coauthors, 2015: Solar signals in CMIP-5 simulations: The ozone response. Quart. J. Roy. Meteor. Soc., 141, 26702689, https://doi.org/10.1002/qj.2553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höpfner, M., and Coauthors, 2013: Sulfur dioxide (SO2) as observed by MIPAS/Envisat: Temporal development and spatial distribution at 15–45 km altitude. Atmos. Chem. Phys., 13, 10 40510 423, https://doi.org/10.5194/acp-13-10405-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höpfner, M., and Coauthors, 2015: Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002–2012. Atmos. Chem. Phys., 15, 70177037, https://doi.org/10.5194/acp-15-7017-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hough, A. M., and R. G. Derwent, 1990: Changes in the global concentration of tropospheric ozone due to human activities. Nature, 344, 645648, https://doi.org/10.1038/344645a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., 1963: Absorption in the stratosphere by some water vapor lines in the v2 band. Quart. J. Roy. Meteor. Soc., 89, 332338, https://doi.org/10.1002/qj.49708938104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R., 2018: Interactions between land-use change and climate-carbon cycle feedbacks. Curr. Climate Change Rep., 4, 115127, https://doi.org/10.1007/s40641-018-0099-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., 1979: The Smithsonian Astrophysical Observatory solar constant program. Rev. Geophys. Space Phys., 17, 427458, https://doi.org/10.1029/RG017i003p00427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., and K. H. Schatten, 1997: The Role of the Sun in Climate Change. Oxford University Press, 288 pp.

    • Crossref
    • Export Citation
  • Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2006: Deep Blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens., 44, 31803195, https://doi.org/10.1109/TGRS.2006.879540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, H. S., S. Silva, M. Woodard, and R. C. Willson, 1982: The effects of sunspots on solar irradiance. Sol. Phys., 76, 211219, https://doi.org/10.1007/BF00170984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulburt, E. O., 1931: The temperature of the lower atmosphere of the earth. Phys. Rev., 38, 18761890, https://doi.org/10.1103/PhysRev.38.1876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphreys, W. J., 1913: Volcanic dust and other factors in the production of climatic changes, and their possible relation to ice ages. J. Franklin Inst., 176, 131172, https://doi.org/10.1016/S0016-0032(13)91294-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphreys, W. J., 1940: Physics of the Air. McGraw-Hill, 676 pp.

  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117, https://doi.org/10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husar, R. B., J. M. Prospero, and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer optical thickness operational product. J. Geophys. Res., 102, 16 88916 909, https://doi.org/10.1029/96JD04009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husson, N., B. Bonnet, N. A. Scott, and A. Chédin, 1992: Management and study of spectroscopic information: The GEISA program. J. Quant. Spectrosc. Radiat. Transfer, 48, 509518, https://doi.org/10.1016/0022-4073(92)90116-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, https://doi.org/10.1002/grl.50502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., R. Frouin, and R. C. Somerville, 1999: Direct climate forcing by biomass-burning aerosols: Impact of correlations between controlling variables. J. Geophys. Res., 104, 12 03112 045, https://doi.org/10.1029/1999JD900001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iles, C. E., G. C. Hegerl, A. P. Schurer, and X. Zhang, 2013: The effect of volcanic eruptions on global precipitation. J. Geophys. Res. Atmos., 118, 87708786, https://doi.org/10.1002/jgrd.50678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1990: Climate Change 1990: The Intergovernmental Panel on Climate Change Scientific Assessment, J. T. Houghton, B. A. Callander, and S. K. Varney, Eds., Cambridge University Press, 365 pp.

  • IPCC, 1992: Climate Change 1992: The Supplementary Report to the Intergovernmental Panel on Climate Change Scientific Assessment, J. T. Houghton, B. A. Callander, and S. K. Varney, Eds., Cambridge University Press, 100 pp.

  • IPCC, 1994: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, J. T. Houghton et al., Eds., Cambridge University Press, 339 pp.

  • IPCC, 1996: Climate Change 1995: The Science of Climate Change. J. T. Houghton et al., Eds., Cambridge University Press, 572 pp.

  • IPCC, 1999: Intergovernmental Panel on Climate Change Special Report on Aviation and the Global Atmosphere. J. E. Penner et al., Eds., Cambridge University Press, 373 pp.

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. J. T. Houghton et al., Eds., Cambridge University Press, 881 pp.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • IPCC, 2013IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Isaksen, I. S. A., J. S. Fuglestvedt, Y.-P. Lee, C. Johnson, R. Atkinson, J. Lelieveld, H. Sidebottom, and A. M. Thompson, 1991: Tropospheric processes: Observations and interpretation. Scientific assessment of ozone depletion: 1991, WMO Global Ozone Research and Monitoring Project Rep. 25, 5.1–5.25.

  • Isaksen, I. S. A., V. Ramaswamy, H. Rodhe, and T. M. L. Wigley, 1992: Radiative forcing of climate. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, J. T. Houghton, B. A. Callander, and S. K. Varney, Eds., Cambridge University Press, 47–67.

  • Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate-chemistry interactions. Atmos. Environ., 43, 51385192, https://doi.org/10.1016/j.atmosenv.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iversen, T., A. Kirkevåg, J. E. Kristjansson, and Ø. Seland, 2000: Climate effects of sulfate and black carbon estimated in a global climate model. Air Pollution Modeling and Its Application XIV, S.-E. Gryning and F.A. Schiermeier, Eds. Kluwer/Plenum Publishers, 335–342.

    • Crossref
    • Export Citation
  • Jacob, D. J., and D. A. Winner, 2009: Effect of climate change on air quality. Atmos. Environ., 43, 5163, https://doi.org/10.1016/j.atmosenv.2008.09.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106, 15511568, https://doi.org/10.1029/2000JD900514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquinet-Husson, N., and Coauthors, 2016: The 2015 edition of the GEISA spectroscopic database. J. Mol. Spectrosc., 327, 3172, https://doi.org/10.1016/j.jms.2016.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 15251529, https://doi.org/10.1126/science.1180353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, J. G., A. M. Fiore, V. Naik, L. W. Horowitz, and J. P. Dunne, 2012: Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100. Atmos. Chem. Phys., 12, 12 02112 036, https://doi.org/10.5194/acp-12-12021-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 14071422, https://doi.org/10.1256/qj.03.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, C. E., and R. G. Derwent, 1996: Relative radiative forcing consequences of global emissions of hydrocarbons, carbon monoxide and NOx from human activities estimated with a zonally-averaged two-dimensional model. Climatic Change, 34, 439462, https://doi.org/10.1007/BF00139301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, C. E., J. Henshaw, and G. Mclnnes, 1992: Impact of aircraft and surface emissions of nitrogen oxides on tropospheric ozone and global warming. Nature, 355, 6971, https://doi.org/10.1038/355069a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517522, https://doi.org/10.1126/science.173.3996.517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of the indirect radiative forcing by anthropogenic sulfate aerosols. Nature, 370, 450453, https://doi.org/10.1038/370450a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulfate aerosol forcing in a climate model with an interactive sulfur cycle. J. Geophys. Res., 106, 20 29320 310, https://doi.org/10.1029/2000JD000089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., J. Haywood, O. Boucher, B. Kravitz, and A. Robock, 2010: Geoengineering by stratospheric SO2 injection: Results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmos. Chem. Phys., 10, 59996006, https://doi.org/10.5194/acp-10-5999-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A. C., J. M. Haywood, A. Jones, and V. Aquila, 2016a: Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study. J. Geophys. Res. Atmos., 121, 68926908, https://doi.org/10.1002/2016JD025001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A. C., J. M. Haywood, and A. Jones, 2016b: Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection. Atmos. Chem. Phys., 16, 28432862, https://doi.org/10.5194/acp-16-2843-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A. C., J. M. Haywood, N. Dunstone, K. Emanuel, M. K. Hawcroft, K. I. Hodges, and A. Jones, 2017: Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nat. Commun., 8, 1382, https://doi.org/10.1038/s41467-017-01606-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A. L., D. R. Feldman, S. Freidenreich, D. Paynter, V. Ramaswamy, W. D. Collins, and R. Pincus, 2017: A new paradigm for diagnosing contributions to model aerosol forcing error. Geophys. Res. Lett., 44, 12 00412 012, https://doi.org/10.1002/2017GL075933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P., and M. Mann, 2004: Climate over past millennia. Rev. Geophys., 42, RG2002, https://doi.org/10.1029/2003RG000143.

  • Joshi, M. M., and K. P. Shine, 2003: A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Climate, 16, 35253534, https://doi.org/10.1175/1520-0442(2003)016<3525:AGSOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2017: The PMIP4 contribution to CMIP6—Part 3: The last millennium, scientific objective and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev., 10, 40054033, https://doi.org/10.5194/gmd-10-4005-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, C. E., 1962: Global ozone budget and exchange between stratosphere and troposphere. Tellus, 14, 363377, https://doi.org/10.3402/tellusa.v14i4.9563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, C. E., and J. E. Manson, 1961: Stratospheric aerosol studies. J. Geophys. Res., 66, 21632182, https://doi.org/10.1029/JZ066i007p02163.

  • Junge, C. E., C. W. Chagnon, and J. E. Manson, 1961: A world-wide stratospheric aerosol layer. Science, 133, 14781479, https://doi.org/10.1126/science.133.3463.1478-a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben, 2005: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res., 110, D10S04, https://doi.org/10.1029/2004JD004706.

    • Search Google Scholar
    • Export Citation
  • Kang, S., I. Held, D. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, L. D., 1952: On the pressure dependence of radiative heat transfer in the atmosphere. J. Meteor., 9, 112, https://doi.org/10.1175/1520-0469(1952)009<0001:OTPDOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, L. D., 1960: The influence of carbon dioxide variations on the atmospheric heat balance. Tellus, 12, 204208, https://doi.org/10.3402/tellusa.v12i2.9364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., 2018: Formation and radiative forcing of contrail cirrus. Nat. Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0.

  • Kaufman, Y. J., D. Tanre, and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215223, https://doi.org/10.1038/nature01091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200203, https://doi.org/10.3402/tellusa.v12i2.9366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, A., and J. M. Haywood, 2003: Solar radiative forcing by biomass aerosol particles over marine clouds during SAFARI-2000: A case study based on measured aerosol and cloud properties. J. Geophys. Res., 108, 8467, https://doi.org/10.1029/2002JD002315.

    • Search Google Scholar
    • Export Citation
  • Keith, D. W., and H. Dowlatabadi, 1992: A serious look at geoengineering. Eos, Trans. Amer. Geophys. Union, 73, 289293, https://doi.org/10.1029/91EO00231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and B. A. Boville, 1988: The radiative–dynamical response of a stratospheric–tropospheric general circulation model to changes in ozone. J. Atmos. Sci., 45, 17981817, https://doi.org/10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311314, https://doi.org/10.1126/science.260.5106.311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and H. Rodhe, 1995: Modeling geographical and seasonal forcing due to aerosols. Aerosol Forcing of Climate, R. J. Chaarlson and J. Heintzenberg, Eds., Wiley, 281–296.

  • Kiehl, J. T., T. L. Schneider, R. W. Portmann, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res., 104, 31 23931 254, https://doi.org/10.1029/1999JD900991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, https://doi.org/10.5194/acp-6-1815-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchner, I., G. Stenchikov, H. Graf, A. Robock, and J. Antuña, 1999: Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 104, 19 03919 055, https://doi.org/10.1029/1999JD900213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschke, S., and Coauthors, 2013: Three decades of global methane sources and sinks. Nat. Geosci., 6, 813823, https://doi.org/10.1038/ngeo1955.

  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 952–1028.

  • Kloster, S., and Coauthors, 2010: Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 7, 1877–1902, https://doi.org/10.5194/bg-7-1877-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G.-K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416, 719–723, https://doi.org/10.1038/416719a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, M. K. W., and Coauthors, 1995: Model simulations of stratospheric ozone. Scientific assessment of ozone depletion: 1994, WMO Global Ozone Research and Monitoring Project Rep. 37, 6.1–6.41.

  • Koffi, B., and Coauthors, 2012: Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. J. Geophys. Res., 117, D10201, https://doi.org/10.1029/2011JD016858.

    • Search Google Scholar
    • Export Citation
  • Kohfeld, K. E., and S. P. Harrison, 2001: DIRTMAP: The geological record of dust. Earth-Sci. Rev., 54, 81114, https://doi.org/10.1016/S0012-8252(01)00042-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kok, J. F., and Coauthors, 2017: Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci., 10, 274278, https://doi.org/10.1038/ngeo2912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondratiev, K. Y., and H. I. Niilisk, 1960: On the question of carbon dioxide heat radiation in the atmosphere. Geofis. Pura Appl., 46, 216230, https://doi.org/10.1007/BF02001111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., and G. Lawrence, 2005: The Total Irradiance Monitor (TIM): Instrument design. Sol. Phys., 230, 91109, https://doi.org/10.1007/s11207-005-7446-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, G., and J. L. Lean, 2011: A new low value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777.

    • Crossref
    • Search Google Scholar
    • Export Citation