• Abbot, C. G., 1910: The solar constant of radiation. Smithson. Inst. Annu. Rep., 1910, 319328.

  • Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Crossref
    • Export Citation
  • Albers, J. R., and T. Birner, 2014: Relative roles of planetary and gravity waves in vortex preconditioning prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, https://doi.org/10.1175/JAS-D-14-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., 1997: A model of non-stationary gravity waves in the stratosphere and comparison to observations. Gravity Waves Processes: Their Parameterization in Global Climate Models, K. Hamilton, Ed., NATO ASI Series, Vol. 50, Springer, 153–168, https://doi.org/10.1007/978-3-642-60654-0_11.

    • Crossref
    • Export Citation
  • Alexander, M. J., 1998: Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res., 103, 86278640, https://doi.org/10.1029/97JD03325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., 2010: Gravity waves in the stratosphere. The Stratosphere: Dynamics, Chemistry, and Transport, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 109–121.

    • Crossref
    • Export Citation
  • Alexander, M. J., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb sounding temperatures. Geophys. Res. Lett., 42, 68606867, https://doi.org/10.1002/2015GL065234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/QJ.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. J., and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100, 13271350, https://doi.org/10.1029/94JD02688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrose, S. H., 1998: Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Hum. Evol., 34, 623651, https://doi.org/10.1006/jhev.1998.0219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., W. H. Brune, and M. H. Proffitt, 1989: Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO-O3 anticorrelation based on in situ ER-2 Data. J. Geophys. Res., 94, 11 46511 479, https://doi.org/10.1029/JD094ID09P11465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978a: An exact theory of nonlinear waves on a Lagrangian mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978b: On wave-action and its relatives. J. Fluid Mech., 89, 647664, https://doi.org/10.1017/S0022112078002785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978c: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, M. B., J. R. Knight, and L. Gray, 2015: A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009. Environ. Res. Lett., 10, 054022, https://doi.org/10.1088/1748-9326/10/5/054022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, M. B., J. R. Knight, A. A. Scaife, Y. Lu, T. Wu, L. J. Gray, and V. Schenzinger, 2019: Observed and simulated teleconnections between the stratospheric Quasi-Biennial Oscillation and Northern Hemisphere winter atmospheric circulation. J. Geophys. Res. Atmos., 124, 12191232, https://doi.org/10.1029/2018JD029368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angell, J. K., and J. Korshover, 1964: Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479492, https://doi.org/10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., T. G. Shepherd, and J. F. Scinocca, 2010: Influence of the quasi-biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J. Atmos. Sci., 67, 14021419, https://doi.org/10.1175/2009JAS3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., J. R. Holton, and K. H. Rosenlof, 1996: Seasonal variation of mass transport across the tropopause. J. Geophys. Res., 101, 15 07115 078, https://doi.org/10.1029/96JD00821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aquila, V., L. D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman, 2013: The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes. J. Atmos. Sci., 70, 894900, https://doi.org/10.1175/JAS-D-12-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, https://doi.org/10.1175/JCLI3774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and Coauthors, 2014: Stratospheric ozone changes and climate. Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project, Rep. 55, World Meteorological Organization, 4.1–4.57, https://www.esrl.noaa.gov/csd/assessments/ozone/2014/.

  • Arsenovic, P., and Coauthors, 2016: The influence of middle range energy electrons on atmospheric chemistry and regional climate. J. Atmos. Sol. Terr. Phys., 149, 180190, https://doi.org/10.1016/j.jastp.2016.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assmann, R., 1902: Über die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. (On the existence of a warmer airflow at heights from 10 to 15 km). Sitzungsber. K. Preuss. Akad. Wiss., 24, 495504.

    • Search Google Scholar
    • Export Citation
  • Aubry, T. J., A. M. Jellinek, W. Degruyter, C. Bonadonna, V. Radic, M. Clyne, and A. Quainoo, 2016: Impact of global warming on the rise of volcanic plumes and implications for future volcanic aerosol forcing. J. Geophys. Res. Atmos., 121, 13 32613 351, https://doi.org/10.1002/2016JD025405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., S. Ineson, N. J. Dunstone, M. P. Baldwin, and A. A. Scaife, 2018a: Intraseasonal effects of El Niño–Southern Oscillation on North Atlantic climate. J. Climate, 31, 88618873, https://doi.org/10.1175/JCLI-D-18-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., and Coauthors, 2018b: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos. Chem. Phys., 18, 11 27711 287, https://doi.org/10.5194/acp-18-11277-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46, 21092134, https://doi.org/10.1175/1520-0469(1989)046<2109:BOVPTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1998: Quasi-biennial modulations of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25, 33433346, https://doi.org/10.1029/98GL02445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, https://doi.org/10.1029/2004GL022328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007a: How will the stratosphere affect climate change? Science, 316, 15761577, https://doi.org/10.1126/science.1144303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007b: The jet-stream conundrum. Science, 315, 467468, https://doi.org/10.1126/science.1131375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301327, https://doi.org/10.1029/JZ055i003p00301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgaertner, A. J. G., A. Seppälä, P. Joeckel, and M. A. Clilverd, 2011: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry-climate model: Modulation of the NAM index. Atmos. Chem. Phys., 11, 45214531, https://doi.org/10.5194/acp-11-4521-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2017: Mean-flow effects of thermal tides in the mesosphere and lower thermosphere. J. Atmos. Sci., 74, 20432063, https://doi.org/10.1175/JAS-D-16-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., and S. L. Vadas, 2018: Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model. J. Geophys. Res. Atmos., 123, 26052627, https://doi.org/10.1002/2017JD027460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bekki, S., and Coauthors, 2011: Future ozone and its impact on surface UV. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project Rep. 52, World Meteorological Organizatoin, 3.1–3.60, https://www.esrl.noaa.gov/csd/assessments/ozone/2010/report.html.

  • Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136, 11811190, https://doi.org/10.1002/QJ.633.

    • Search Google Scholar
    • Export Citation
  • Best, N., R. Havens, and H. LaGow, 1947: Pressure and temperature of the atmosphere to 120 km. Phys. Rev., 71, 915916, https://doi.org/10.1103/PhysRev.71.915.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122, 929944, https://doi.org/10.1002/qj.49712253207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., D. F. Heath, and A. J. Fleig, 1985: Observation of anomalously small ozone densities in South Polar Stratosphere during October 1983 and 1984. Symp. on Dynamics and Remote Sensing of the Middle Atmosphere, 5th Scientific Assembly, Prague, Czechoslovakia, International Association of Geomagnetism and Aeronomy.

  • Bhartia, P. K., R. D. McPeters, C. L. Mateer, L. E. Flynn, and C. G. Wellemeyer, 1996: Algorithm for the estimation of vertical ozone profile from the backscattered ultraviolet (BUV) technique. J. Geophys. Res., 101, 18 79318 806, https://doi.org/10.1029/96JD01165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, https://doi.org/10.1175/2010JAS3287.1.

  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.

    • Search Google Scholar
    • Export Citation
  • Birner, T., and J. R. Albers, 2017: Sudden stratospheric warmings and anomalous upward wave activity flux. SOLA, 13A, 812, https://doi.org/10.2151/SOLA.13A-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 1700, https://doi.org/10.1029/2002GL015142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bittner, M., H. Schmidt, C. Timmreck, and F. Sienz, 2016a: Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys. Res. Lett., 43, 93249332, https://doi.org/10.1002/2016GL070587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bittner, M., C. Timmreck, H. Schmidt, M. Toohey, and K. Krüger, 2016b: The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions. J. Geophys. Res. Atmos., 121, 52815297, https://doi.org/10.1002/2015JD024603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, R. X., 2002: Stratospheric forcing of surface climate in the Arctic Oscillation. J. Climate, 15, 268277, https://doi.org/10.1175/1520-0442(2002)015<0268:SFOSCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccara, G., A. Hertzog, R. Vincent, and F. Vial, 2008: Estimation of gravity-wave momentum fluxes and phase speeds from long-duration stratospheric balloon flights. 1. Theory and simulations. J. Atmos. Sci., 65, 30423055, https://doi.org/10.1175/2008JAS2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and K. Hamilton, 2008: QBO influence on extratropical predictive skill. Climate Dyn., 31, 9871000, https://doi.org/10.1007/s00382-008-0379-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boering, K. A., S. C. Wofsy, B. C. Daube, H. R. Schneider, M. Loewenstein, J. R. Podolske, and T. J. Conway, 1996: Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide. Science, 274, 13401343, https://doi.org/10.1126/science.274.5291.1340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bönisch, H., A. Engel, T. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray, 2011: On the structural changes in the Brewer-Dobson circulation after 2000. Atmos. Chem. Phys., 11, 39373948, https://doi.org/10.5194/acp-11-3937-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booker, J., and F. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, https://doi.org/10.1017/S0022112067000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, K., C. G. Kruse, C. J. Heale, D. C. Fritts, B. P. Williams, J. B. Snively, P.-D. Pautet, and M. J. Taylor, 2017: Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 122, 78347850, https://doi.org/10.1002/2016JD026079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, A. E., A. Robock, W. J. Randel, T. Deshler, L. A. Rieger, N. D. Lloyd, E. J. Llewellyn, and D. A. Degenstein, 2012: Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport. Science, 337, 7881, https://doi.org/10.1126/science.1219371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41, 11321142, https://doi.org/10.1175/1520-0469(1984)041<1132:TIOTPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and D. P. Baumhefner, 1990: Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models. Mon. Wea. Rev., 118, 15171530, https://doi.org/10.1175/1520-0493(1990)118<1517:SFEACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships on eddy fluxes of energy, heat, and momentum. J. Atmos. Sci., 33, 22852291, https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., J. Luterbacker, J. Staehelin, T. M. Svendby, G. Hansen, and T. Svenøe, 2004: Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature, 431, 971974, https://doi.org/10.1038/nature02982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., and Coauthors, 2016: Multidecadal variations of the effects of the Quasi-Biennial Oscillation on the climate system. Atmos. Chem. Phys., 16, 15 52915 543, https://doi.org/10.5194/acp-16-15529-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browell, E. V., S. Ismail, and W. B. Grant, 1998: Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B, 67, 399410, https://doi.org/10.1007/s003400050523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1927: The period of simple vertical oscillations in the atmosphere. Quart. J. Roy. Meteor. Soc., 53, 3032, https://doi.org/10.1002/QJ.49705322103.

    • Search Google Scholar
    • Export Citation
  • Bui, H., S. Yoden, and E. Nishimoto, 2019: QBO-like oscillation in a three-dimensional minimal model framework of the stratosphere–troposphere coupled system. SOLA, 15, 6267, https://doi.org/10.2151/SOLA.2019-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunzel, F., and H. Schmidt, 2013: The Brewer–Dobson circulation in a changing climate: Impact of the model configuration. J. Atmos. Sci., 70, 14371455, https://doi.org/10.1175/JAS-D-12-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, 1995: Long term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophys. Res. Lett., 22, 26412644, https://doi.org/10.1029/95GL02635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Butchart, N., and E. E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 13191339, https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between stratosphere and troposphere in a changing climate. Nature, 410, 799802, https://doi.org/10.1038/35071047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dyn., 27, 727741, https://doi.org/10.1007/s00382-006-0162-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010a: Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374, https://doi.org/10.1175/2010JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010b: Stratospheric dynamics. SPARC report on the evaluation of chemistry-climate models, V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD-1526, 109–148.

  • Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in Phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 10091032, https://doi.org/10.5194/gmd-11-1009-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and Coauthors, 2016: The Climate-System Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 14131427, https://doi.org/10.1002/qj.2743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, S. T., and K. A. Small, 1963: The excitation of atmospheric oscillations. Proc. Roy. Soc. London, 274A, 91121, https://doi.org/10.1098/rspa.1963.0116.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, https://doi.org/10.1175/2008JCLI2549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., E. Manzini, P. G. Fogli, M. Vichi, and P. Davini, 2013: Role of stratospheric dynamics in the ozone–carbon connection in the Southern Hemisphere. Climate Dyn., 41, 30393054, https://doi.org/10.1007/s00382-013-1745-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196, https://doi.org/10.1175/2009JAS3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Climate, 23, 58105825, https://doi.org/10.1175/2010JCLI3575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930: A theory of upper atmospheric ozone. Mem. Roy. Meteor. Soc, 3, 103125.

  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides. D. Reidel, 200 pp.

    • Crossref
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings: Part I. Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., A. O’Neill, W. A. Lahoz, and A. C. Massacand, 2004: Sensitivity of tropospheric forecasts to stratospheric initial conditions. Quart. J. Roy. Meteor. Soc., 130, 17711792, https://doi.org/10.1256/qj.03.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., A. O’Neill, W. A. Lahoz, A. C. Massacand, and P. Berrisford, 2005: The impact of the stratosphere on the troposphere during the southern hemisphere stratospheric sudden warming, September 2002. Quart. J. Roy. Meteor. Soc., 131, 21712188, https://doi.org/10.1256/qj.04.43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 19241944, https://doi.org/10.1175/MWR-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chau, J. L., and Coauthors, 2012: Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci. Rev., 168, 385417, https://doi.org/10.1007/s11214-011-9797-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res., 100, 16 66116 673, https://doi.org/10.1029/95JD01264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders, and J. A. Pyle, 2015: Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun., 6, 7233, https://doi.org/10.1038/ncomms8233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005: Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res., 110, D14104, https://doi.org/10.1029/2004JD005431.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., and C. Covey, 2018: Stratospheric temperature [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99 (8), S18S20, https://doi.org/10.1175/2018BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., S. Po-Chedley, and C. Mears, 2018: Tropospheric temperature [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99 (8), S16S18, https://doi.org/10.1175/2018BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Chubachi, S., 1984: Preliminary result of ozone observations at Syowa station from February 1982 to January 1983. Mem. Nati. Inst. Polar Res. Japan, 34 (Special Issue), 1319.

    • Search Google Scholar
    • Export Citation
  • Chun, H., and J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornu, A., 1879: Sur la limite ultraviolette du spectre solaire. C. R. Acad. Sci., 88, 1101.

  • Coughlin, K., and K. K. Tung, 2001: QBO signal found at the extratropical surface through Northern Annular Modes. Geophys. Res. Lett., 28, 45634566, https://doi.org/10.1029/2001GL013565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320, https://doi.org/10.1002/qj.49709640815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211219, https://doi.org/10.1007/s10584-006-9101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., and F. Arnold, 1986: Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ozone hole. Nature, 324, 651, https://doi.org/10.1038/324651a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1959: The laminar structure of the atmosphere and its relation to the concept of a tropopause. Arch. Meteorol., Geophys. Bioklimatol., 11A, 293332, https://doi.org/10.1007/BF02247210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. N., J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell, 2013: The diurnal and semidiurnal tides over Ascension Island (8°S, 14°W) and their interaction with the stratospheric quasi-biennial oscillation: Studies with meteor radar, eCMAM and WACCM. Atmos. Chem. Phys., 13, 95439564, https://doi.org/10.5194/acp-13-9543-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., J. R. Albers, T. Birner, R. R. Garcia, P. Hitchcock, D. E. Kinnison, and A. K. Smith, 2017: Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci., 74, 28572877, https://doi.org/10.1175/JAS-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., E. J. Hintsa, E. M. Weinstock, J. G. Anderson, and K. R. Chan, 1995: Mechanisms controlling water vapor in the lower stratosphere: “A tale of two stratospheres.” J. Geophys. Res., 100, 23 16723 172, https://doi.org/10.1029/95JD02455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhomse, S., and Coauthors, 2018: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys., 18, 84098438, https://doi.org/10.5194/acp-18-8409-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diallo, M., B. Legras, and A. Chédin, 2012: Age of stratospheric air in the ERA-Interim. Atmos. Chem. Phys., 12, 12 13312 154, https://doi.org/10.5194/acp-12-12133-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave-guides. J. Atmos. Sci., 25, 9841002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1975: Solar variability and the lower atmosphere. Bull. Amer. Meteor. Soc., 56, 12401248, https://doi.org/10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1931: A photoelectric spectrometer for measuring the amount of atmospheric ozone. Proc. Phys. Soc. London, 43, 324, https://doi.org/10.1088/0959-5309/43/3/308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of polyatomic molecules in the atmosphere. Proc. Roy. Soc. London, 236A, 187193, https://doi.org/10.1098/rspa.1956.0127.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1963: Exploring the Atmosphere. Clarendon Press, 228 pp.

  • Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1929: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, 122A, 456486, https://doi.org/10.1098/rspa.1929.0034.

    • Search Google Scholar
    • Export Citation
  • Dosser, H. V., and B. R. Sutherland, 2011: Weakly nonlinear non-Boussinesq internal gravity wavepackets. Physica D, 240, 346356, https://doi.org/10.1016/j.physd.2010.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1983: Laterally-propagating Rossby waves in the easterly acceleration phase of the quasi-biennial oscillation. Atmos.–Ocean, 21, 5568, https://doi.org/10.1080/07055900.1983.9649155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1984: Inertia–gravity waves in the stratosphere. J. Atmos. Sci., 41, 33963404, https://doi.org/10.1175/1520-0469(1984)041<3396:IWITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasibiennial oscillation. J. Geophys. Res., 102, 26 05326 076, https://doi.org/10.1029/96JD02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. Delisi, 1985: Climatology of the equatorial lower stratosphere. J. Atmos. Sci., 42, 11991208, https://doi.org/10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skillful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dütsch, H. U., 1970: Atmospheric ozone: A short review. J. Geophys. Res., 75, 1707, https://doi.org/10.1029/JC075i009p01707.

  • Dütsch, H. U., 1978: Vertical ozone distribution on a global scale. Pure Appl. Geophys., 116, 511529, https://doi.org/10.1007/BF01636904.

  • Ebdon, R. A., 1960: Notes on the wind flow at 50 mb in tropical and sub-tropical regions in January 1957 and January 1958. Quart. J. Roy. Meteor. Soc., 86, 540542, https://doi.org/10.1002/qj.49708637011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebdon, R. A., 1975: The quasi-biennial oscillation and its association with tropospheric circulation patterns. Meteor. Mag., 104, 282297.

    • Search Google Scholar
    • Export Citation
  • Ebdon, R. A., and R. G. Veryard, 1961: Fluctuations in equatorial stratospheric winds. Nature, 189, 791793, https://doi.org/10.1038/189791a0.

  • Ebel, A., H. Hass, H. J. Jakobs, M. Laube, M. Memmesheimer, A. Oberreuter, H. Geiss, and Y.-H. Kuo, 1991: Simulation of ozone intrusion caused by a tropopause fold and cut-off low. Atmos. Environ., 25A, 21312144, https://doi.org/10.1016/0960-1686(91)90089-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehard, B., and Coauthors, 2017: Horizontal propagation of large-amplitude mountain waves into the polar night jet. J. Geophys. Res. Atmos., 122, 14231436, https://doi.org/10.1002/2016JD025621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 221, 123.

  • Engel, A., and Coauthors, 2006: Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: An overview. Atmos. Chem. Phys., 6, 283301, https://doi.org/10.5194/acp-6-283-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 2831, https://doi.org/10.1038/ngeo388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, S. L., 2012: A review of the effects of non-migrating atmospheric Tides on the Earth’s low-latitude ionosphere. Space Sci. Rev., 168, 211236, https://doi.org/10.1007/s11214-011-9842-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, S. L., T. J. Immel, J. D. Huba, M. E. Hagan, A. Maute, and R. DeMajistre, 2010: Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res., 115, A05308, https://doi.org/10.1029/2009JA014894.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, S. Kalisch, M. Kaufmann, and M. Riese, 2013: Role of gravity waves in the forcing of quasi two day waves in the mesosphere: An observational study. J. Geophys. Res. Atmos., 118, 34673485, https://doi.org/10.1029/2012JD018208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., Q. T. Trinh, P. Preusse, J. C. Gille, M. G. Mlynczak, J. M. Russell III, and M. Riese, 2018: GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth Syst. Sci. Data, 10, 857892, https://doi.org/10.5194/essd-10-857-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2005: A strategy for process-oriented validation of coupled chemistry–climate models. Bull. Amer. Meteor. Soc., 86, 11171133, https://doi.org/10.1175/BAMS-86-8-1117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, https://doi.org/10.1029/2006JD007327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W., K. K. Kelly, S. R. Kawa, A. F. Tuck, M. Loewenstein, K. R. Chan, and L. E. Heidt, 1990: Observations of denitrification and dehydration in the winter polar stratospheres. Nature, 344, 321324, https://doi.org/10.1038/344321a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W., and Coauthors, 2001: The detection of large HNO3-containing particles in the winter Arctic stratosphere. Science, 291, 10261031, https://doi.org/10.1126/science.1057265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., R. Tomas, S. Stevenson, B. Otto-Bliesner, E. Brady, and E. Wahl, 2017: The amplifying influence of increased ocean stratification on a future year without a summer. Nat. Commun., 8, 1236, https://doi.org/10.1038/s41467-017-01302-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., 1984: The radiative damping of short vertical scale waves in the mesosphere. J. Atmos. Sci., 41, 17551764, https://doi.org/10.1175/1520-0469(1984)041<1755:TRDOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 2000: Tracer correlations in the northern high latitude lowermost stratosphere: Influence of cross-tropopause mass exchange. Geophys. Res. Lett., 27, 97100, https://doi.org/10.1029/1999GL010879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., and D. Wu, 2006: Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J. Atmos. Sci., 63, 17761797, https://doi.org/10.1175/JAS3724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., M. E. Hagan, X. Zhang, and K. Hamilton, 1997: Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere. Ann. Geophys., 15, 11651175, https://doi.org/10.1007/s00585-997-1165-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, L. S., A. J. McDonald, G. E. Bodeker, K. E. Cooper, J. Lewis, and A. J. Paterson, 2017: A comparison of Loon balloon observations and stratospheric reanalysis products. Atmos. Chem. Phys., 17, 855866, https://doi.org/10.5194/acp-17-855-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys., 22, 275308, https://doi.org/10.1029/RG022i003p00275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., B. Laughman, T. S. Lund, and J. B. Snively, 2015: Self-acceleration and instability of gravity wave packets: 1. Effects of temporal localization. J. Geophys. Res. Atmos., 120, 87838803, https://doi.org/10.1002/2015JD023363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, https://doi.org/10.1029/2005JD006019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, https://doi.org/10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, J. P., and G. L. Garnham, 1962: Australian ozone observations and a suggested 24 month cycle. Tellus, 14, 378382, https://doi.org/10.3402/tellusa.v14i4.9564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, https://doi.org/10.1175/2008JAS2712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., F. Stordal, S. Solomon, and J. T. Kiehl, 1992: A new numerical model of the middle atmosphere: 1. Dynamics and transport of tropospheric source gases. J. Geophys. Res., 97, 12 96712 991, https://doi.org/10.1029/92JD00960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., R. S. Lieberman, J. M. Russell III, and M. G. Mlynczak, 2005: Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J. Atmos. Sci., 62, 43844399, https://doi.org/10.1175/JAS3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. Kinnison, and D. Marsh, 2012: “World avoided” simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, D23303, https://doi.org/10.1029/2012JD018430.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 78557866, https://doi.org/10.1029/2018JD028724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garny, H., T. Birner, H. Bönisch, and F. Bunzel, 2014: The effects of mixing on age of air. J. Geophys. Res. Atmos., 119, 70157034, https://doi.org/10.1002/2013JD021417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and J. C. Alpert, 1980: Planetary wave coupling between the troposphere and the middle atmosphere as a possible sun-weather mechanism. J. Atmos. Sci, 37, 11971215, https://doi.org/10.1175/1520-0469(1980)037<1197:PWCBTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2011: New gravity wave treatments for GISS climate models. J. Climate, 24, 39894002, https://doi.org/10.1175/2011JCLI4013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, https://doi.org/10.1175/JCLI-D-12-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2016: Modeling the QBO—Improvements resulting from higher model vertical resolution. J. Adv. Model. Earth Syst., 8, 10921105, https://doi.org/10.1002/2016MS000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845859, https://doi.org/10.1175/BAMS-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, J. C., and J. M. Russell III, 1984: The Limb Infrared Monitor of the Stratosphere: Experiment description, performance, and results. J. Geophys. Res., 89, 51255140, https://doi.org/10.1029/JD089iD04p05125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glaisher, J., 1871: Travels in the Air. Bentley, 398 pp.

    • Crossref
    • Export Citation
  • Gong, J., J. Yue, and D. L. Wu, 2015: Global survey of concentric gravity waves in AIRS images and ECMWF analysis. J. Geophys. Res. Atmos., 120, 22102228, https://doi.org/10.1002/2014JD022527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Götz, F. W. P., A. R. Meetham, and G. M. B. Dobson, 1934: The vertical distribution of ozone in the atmosphere. Proc. Phys. Soc. London, A145, 416, https://doi.org/10.1098/rspa.1934.0109.

    • Search Google Scholar
    • Export Citation
  • Grant, W. B., and Coauthors, 1994: Aerosol-associated changes in the tropical stratospheric ozone following the eruption of Mount Pinatubo. J. Geophys. Res., 99, 81978211, https://doi.org/10.1029/93JD03314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and J. A. Pyle, 1986: The semi-annual oscillation and equatorial tracer distributions. Quart. J. Roy. Meteor. Soc., 112, 387407, https://doi.org/10.1002/qj.49711247207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and J. A. Pyle, 1989: A two-dimensional model of the quasi-biennial oscillation in ozone. J. Atmos. Sci., 46, 203220, https://doi.org/10.1175/1520-0469(1989)046<0203:ATDMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and M. P. Chipperfield, 1990: On the interannual variability of trace gases in the middle atmosphere. Geophys. Res. Lett., 17, 933936, https://doi.org/10.1029/GL017i007p00933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and T. J. Dunkerton, 1990: The role of the seasonal cycle in the quasi-biennial oscillation of ozone. J. Atmos. Sci., 47, 24292451, https://doi.org/10.1175/1520-0469(1990)047<2429:TROTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.

  • Gray, L. J., and Coauthors, 2013: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos., 118, 405420, https://doi.org/10.1002/2013JD020062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., T. J. Woollings, M. Andrews, and J. Knight, 2016: 11-year solar cycle signal in the NAO and Atlantic / European blocking. Quart. J. Roy. Meteor. Soc., 142, 18901903, https://doi.org/10.1002/qj.2782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys., 18, 82278247, https://doi.org/10.5194/acp-18-8227-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 16691683, https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graystone, P., 1959: Meteorological Office discussion on tropical meteorology. Meteor. Mag., 88, 113119.

  • Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292, https://doi.org/10.1175/2009JCLI3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurubaran, S., R. Rajanaran, T. Nakamura, and T. Tsuda, 2005: Interannual variability of diurnal tide in the tropical mesopause region: A signature of the El Nino-Southern Oscillation (ENSO). Geophys. Res. Lett., 32, L13805, https://doi.org/10.1029/2005GL022928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, 2007: Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett., 34, L20109, https://doi.org/10.1029/2007GL030142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., 1994: The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544546, https://doi.org/10.1038/370544a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 10591070, https://doi.org/10.1029/93JD03192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1981: Latent heat release as a possible forcing mechanism for atmospheric tides. Mon. Wea. Rev., 109, 317, https://doi.org/10.1175/1520-0493(1981)109<0003:LHRAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1984: Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J. Atmos. Sci., 41, 21132125, https://doi.org/10.1175/1520-0469(1984)041<2113:MWETTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1993: A general circulation model simulation of El Niño effects in the extratropical Northern Hemisphere stratosphere. Geophys. Res. Lett., 20, 18031806, https://doi.org/10.1029/93GL01782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., and R. Garcia, 1984: Long period variations in the solar semidiurnal atmospheric tide. J. Geophys. Res., 89, 11 70511 710, https://doi.org/10.1029/JD089iD07p11705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., and L. Yuan, 1992: Experiments on tropical stratospheric mean wind variations in a spectral general circulation model. J. Atmos. Sci., 49, 24642483, https://doi.org/10.1175/1520-0469(1992)049<2464:EOTSMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvement in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56, 38293846, https://doi.org/10.1175/1520-0469(1999)056<3829:MASWHV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., A. Hertzog, F. Vial, and G. Stenchikov, 2004: Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 61, 383402, https://doi.org/10.1175/1520-0469(2004)061<0383:LVOTSQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampson, J., and P. Haynes, 2004: Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci., 61, 26272637, https://doi.org/10.1175/JAS3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., W.-C. Wang, and A. A. Lacis, 1978: Mount Agung provides a test of a global climatic perturbation. Science, 199, 10651068, https://doi.org/10.1126/science.199.4333.1065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and P. H. Haynes, 2008: Dynamical sensitivity of the stratospheric circulation and downward influence of upper level perturbations. J. Geophys. Res., 113, D23103, https://doi.org/10.1029/2008JD010168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, T. J. Hinton, S. M. Osprey, and L. J. Gray, 2012: The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model. J. Climate, 25, 70837099, https://doi.org/10.1175/JCLI-D-11-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical Structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 28722894, https://doi.org/10.1175/1520-0469(2001)058<2872:TEORSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., 1976: The distribution of water vapor in the stratosphere. Rev. Geophys., 14, 565575, https://doi.org/10.1029/RG014i004p00565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harshvardhan, and R. D. Cess, 1976: Stratospheric aerosols: Effect upon atmospheric temperature and global climate. Tellus, 28, 110, https://doi.org/10.1111/J.2153-3490.1976.TB00645.X.