Abbot, C. G., 1910: The solar constant of radiation. Smithson. Inst. Annu. Rep., 1910, 319–328.
Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.
Albers, J. R., and T. Birner, 2014: Relative roles of planetary and gravity waves in vortex preconditioning prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1.
Alexander, M. J., 1997: A model of non-stationary gravity waves in the stratosphere and comparison to observations. Gravity Waves Processes: Their Parameterization in Global Climate Models, K. Hamilton, Ed., NATO ASI Series, Vol. 50, Springer, 153–168, https://doi.org/10.1007/978-3-642-60654-0_11.
Alexander, M. J., 1998: Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res., 103, 8627–8640, https://doi.org/10.1029/97JD03325.
Alexander, M. J., 2010: Gravity waves in the stratosphere. The Stratosphere: Dynamics, Chemistry, and Transport, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 109–121.
Alexander, M. J., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb sounding temperatures. Geophys. Res. Lett., 42, 6860–6867, https://doi.org/10.1002/2015GL065234.
Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 4167–4182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.
Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 2212–2226, https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.
Alexander, M. J., and Coauthors, 2010: Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/QJ.637.
Allen, S. J., and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100, 1327–1350, https://doi.org/10.1029/94JD02688.
Ambrose, S. H., 1998: Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Hum. Evol., 34, 623–651, https://doi.org/10.1006/jhev.1998.0219.
Anderson, J. G., W. H. Brune, and M. H. Proffitt, 1989: Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO-O3 anticorrelation based on in situ ER-2 Data. J. Geophys. Res., 94, 11 465–11 479, https://doi.org/10.1029/JD094ID09P11465.
Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.
Andrews, D. G., and M. E. McIntyre, 1978a: An exact theory of nonlinear waves on a Lagrangian mean flow. J. Fluid Mech., 89, 609–646, https://doi.org/10.1017/S0022112078002773.
Andrews, D. G., and M. E. McIntyre, 1978b: On wave-action and its relatives. J. Fluid Mech., 89, 647–664, https://doi.org/10.1017/S0022112078002785.
Andrews, D. G., and M. E. McIntyre, 1978c: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.
Andrews, M. B., J. R. Knight, and L. Gray, 2015: A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960–2009. Environ. Res. Lett., 10, 054022, https://doi.org/10.1088/1748-9326/10/5/054022.
Andrews, M. B., J. R. Knight, A. A. Scaife, Y. Lu, T. Wu, L. J. Gray, and V. Schenzinger, 2019: Observed and simulated teleconnections between the stratospheric Quasi-Biennial Oscillation and Northern Hemisphere winter atmospheric circulation. J. Geophys. Res. Atmos., 124, 1219–1232, https://doi.org/10.1029/2018JD029368.
Angell, J. K., and J. Korshover, 1964: Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479–492, https://doi.org/10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2.
Anstey, J. A., T. G. Shepherd, and J. F. Scinocca, 2010: Influence of the quasi-biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J. Atmos. Sci., 67, 1402–1419, https://doi.org/10.1175/2009JAS3292.1.
Appenzeller, C., J. R. Holton, and K. H. Rosenlof, 1996: Seasonal variation of mass transport across the tropopause. J. Geophys. Res., 101, 15 071–15 078, https://doi.org/10.1029/96JD00821.
Aquila, V., L. D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman, 2013: The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes. J. Atmos. Sci., 70, 894–900, https://doi.org/10.1175/JAS-D-12-0143.1.
Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 2896–2905, https://doi.org/10.1175/JCLI3774.1.
Arblaster, J. M., and Coauthors, 2014: Stratospheric ozone changes and climate. Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project, Rep. 55, World Meteorological Organization, 4.1–4.57, https://www.esrl.noaa.gov/csd/assessments/ozone/2014/.
Arsenovic, P., and Coauthors, 2016: The influence of middle range energy electrons on atmospheric chemistry and regional climate. J. Atmos. Sol. Terr. Phys., 149, 180–190, https://doi.org/10.1016/j.jastp.2016.04.008.
Assmann, R., 1902: Über die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. (On the existence of a warmer airflow at heights from 10 to 15 km). Sitzungsber. K. Preuss. Akad. Wiss., 24, 495–504.
Aubry, T. J., A. M. Jellinek, W. Degruyter, C. Bonadonna, V. Radic, M. Clyne, and A. Quainoo, 2016: Impact of global warming on the rise of volcanic plumes and implications for future volcanic aerosol forcing. J. Geophys. Res. Atmos., 121, 13 326–13 351, https://doi.org/10.1002/2016JD025405.
Ayarzagüena, B., S. Ineson, N. J. Dunstone, M. P. Baldwin, and A. A. Scaife, 2018a: Intraseasonal effects of El Niño–Southern Oscillation on North Atlantic climate. J. Climate, 31, 8861–8873, https://doi.org/10.1175/JCLI-D-18-0097.1.
Ayarzagüena, B., and Coauthors, 2018b: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos. Chem. Phys., 18, 11 277–11 287, https://doi.org/10.5194/acp-18-11277-2018.
Bacmeister, J. T., and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46, 2109–2134, https://doi.org/10.1175/1520-0469(1989)046<2109:BOVPTD>2.0.CO;2.
Baldwin, M. P., and T. J. Dunkerton, 1998: Quasi-biennial modulations of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25, 3343–3346, https://doi.org/10.1029/98GL02445.
Baldwin, M. P., and T. J. Dunkerton, 1999: Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 937–30 946, https://doi.org/10.1029/1999JD900445.
Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584, https://doi.org/10.1126/science.1063315.
Baldwin, M. P., and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, https://doi.org/10.1029/2004GL022328.
Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073.
Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636–640, https://doi.org/10.1126/science.1087143.
Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007a: How will the stratosphere affect climate change? Science, 316, 1576–1577, https://doi.org/10.1126/science.1144303.
Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007b: The jet-stream conundrum. Science, 315, 467–468, https://doi.org/10.1126/science.1131375.
Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301.
Baumgaertner, A. J. G., A. Seppälä, P. Joeckel, and M. A. Clilverd, 2011: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry-climate model: Modulation of the NAM index. Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011.
Becker, E., 2017: Mean-flow effects of thermal tides in the mesosphere and lower thermosphere. J. Atmos. Sci., 74, 2043–2063, https://doi.org/10.1175/JAS-D-16-0194.1.
Becker, E., and S. L. Vadas, 2018: Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model. J. Geophys. Res. Atmos., 123, 2605–2627, https://doi.org/10.1002/2017JD027460.
Bekki, S., and Coauthors, 2011: Future ozone and its impact on surface UV. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project Rep. 52, World Meteorological Organizatoin, 3.1–3.60, https://www.esrl.noaa.gov/csd/assessments/ozone/2010/report.html.
Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136, 1181–1190, https://doi.org/10.1002/QJ.633.
Best, N., R. Havens, and H. LaGow, 1947: Pressure and temperature of the atmosphere to 120 km. Phys. Rev., 71, 915–916, https://doi.org/10.1103/PhysRev.71.915.2.
Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122, 929–944, https://doi.org/10.1002/qj.49712253207.
Bhartia, P. K., D. F. Heath, and A. J. Fleig, 1985: Observation of anomalously small ozone densities in South Polar Stratosphere during October 1983 and 1984. Symp. on Dynamics and Remote Sensing of the Middle Atmosphere, 5th Scientific Assembly, Prague, Czechoslovakia, International Association of Geomagnetism and Aeronomy.
Bhartia, P. K., R. D. McPeters, C. L. Mateer, L. E. Flynn, and C. G. Wellemeyer, 1996: Algorithm for the estimation of vertical ozone profile from the backscattered ultraviolet (BUV) technique. J. Geophys. Res., 101, 18 793–18 806, https://doi.org/10.1029/96JD01165.
Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 2582–2600, https://doi.org/10.1175/2010JAS3287.1.
Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.
Birner, T., and J. R. Albers, 2017: Sudden stratospheric warmings and anomalous upward wave activity flux. SOLA, 13A, 8–12, https://doi.org/10.2151/SOLA.13A-002.
Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 1700, https://doi.org/10.1029/2002GL015142.
Bittner, M., H. Schmidt, C. Timmreck, and F. Sienz, 2016a: Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys. Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587.
Bittner, M., C. Timmreck, H. Schmidt, M. Toohey, and K. Krüger, 2016b: The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions. J. Geophys. Res. Atmos., 121, 5281–5297, https://doi.org/10.1002/2015JD024603.
Black, R. X., 2002: Stratospheric forcing of surface climate in the Arctic Oscillation. J. Climate, 15, 268–277, https://doi.org/10.1175/1520-0442(2002)015<0268:SFOSCI>2.0.CO;2.
Boccara, G., A. Hertzog, R. Vincent, and F. Vial, 2008: Estimation of gravity-wave momentum fluxes and phase speeds from long-duration stratospheric balloon flights. 1. Theory and simulations. J. Atmos. Sci., 65, 3042–3055, https://doi.org/10.1175/2008JAS2709.1.
Boer, G. J., and K. Hamilton, 2008: QBO influence on extratropical predictive skill. Climate Dyn., 31, 987–1000, https://doi.org/10.1007/s00382-008-0379-5.
Boering, K. A., S. C. Wofsy, B. C. Daube, H. R. Schneider, M. Loewenstein, J. R. Podolske, and T. J. Conway, 1996: Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide. Science, 274, 1340–1343, https://doi.org/10.1126/science.274.5291.1340.
Bönisch, H., A. Engel, T. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray, 2011: On the structural changes in the Brewer-Dobson circulation after 2000. Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011.
Booker, J., and F. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513–539, https://doi.org/10.1017/S0022112067000515.
Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, https://doi.org/10.1038/nature10946.
Bossert, K., C. G. Kruse, C. J. Heale, D. C. Fritts, B. P. Williams, J. B. Snively, P.-D. Pautet, and M. J. Taylor, 2017: Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 122, 7834–7850, https://doi.org/10.1002/2016JD026079.
Bourassa, A. E., A. Robock, W. J. Randel, T. Deshler, L. A. Rieger, N. D. Lloyd, E. J. Llewellyn, and D. A. Degenstein, 2012: Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport. Science, 337, 78–81, https://doi.org/10.1126/science.1219371.
Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41, 1132–1142, https://doi.org/10.1175/1520-0469(1984)041<1132:TIOTPN>2.0.CO;2.
Boville, B. A., and D. P. Baumhefner, 1990: Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models. Mon. Wea. Rev., 118, 1517–1530, https://doi.org/10.1175/1520-0493(1990)118<1517:SFEACD>2.0.CO;2.
Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships on eddy fluxes of energy, heat, and momentum. J. Atmos. Sci., 33, 2285–2291, https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.
Brewer, A. W., 1949: Evidence for a world circulation provided by measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603.
Brönnimann, S., J. Luterbacker, J. Staehelin, T. M. Svendby, G. Hansen, and T. Svenøe, 2004: Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature, 431, 971–974, https://doi.org/10.1038/nature02982.
Brönnimann, S., and Coauthors, 2016: Multidecadal variations of the effects of the Quasi-Biennial Oscillation on the climate system. Atmos. Chem. Phys., 16, 15 529–15 543, https://doi.org/10.5194/acp-16-15529-2016.
Browell, E. V., S. Ismail, and W. B. Grant, 1998: Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B, 67, 399–410, https://doi.org/10.1007/s003400050523.
Brunt, D., 1927: The period of simple vertical oscillations in the atmosphere. Quart. J. Roy. Meteor. Soc., 53, 30–32, https://doi.org/10.1002/QJ.49705322103.
Bui, H., S. Yoden, and E. Nishimoto, 2019: QBO-like oscillation in a three-dimensional minimal model framework of the stratosphere–troposphere coupled system. SOLA, 15, 62–67, https://doi.org/10.2151/SOLA.2019-013.
Bunzel, F., and H. Schmidt, 2013: The Brewer–Dobson circulation in a changing climate: Impact of the model configuration. J. Atmos. Sci., 70, 1437–1455, https://doi.org/10.1175/JAS-D-12-0215.1.
Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, 1995: Long term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophys. Res. Lett., 22, 2641–2644, https://doi.org/10.1029/95GL02635.
Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448.
Butchart, N., and E. E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 1319–1339, https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2.
Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between stratosphere and troposphere in a changing climate. Nature, 410, 799–802, https://doi.org/10.1038/35071047.
Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dyn., 27, 727–741, https://doi.org/10.1007/s00382-006-0162-4.
Butchart, N., and Coauthors, 2010a: Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 5349–5374, https://doi.org/10.1175/2010JCLI3404.1.
Butchart, N., and Coauthors, 2010b: Stratospheric dynamics. SPARC report on the evaluation of chemistry-climate models, V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD-1526, 109–148.
Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in Phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018.
Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.
Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1.
Butler, A. H., and Coauthors, 2016: The Climate-System Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413–1427, https://doi.org/10.1002/qj.2743.
Butler, S. T., and K. A. Small, 1963: The excitation of atmospheric oscillations. Proc. Roy. Soc. London, 274A, 91–121, https://doi.org/10.1098/rspa.1963.0116.
Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 1223–1238, https://doi.org/10.1175/2008JCLI2549.1.
Cagnazzo, C., E. Manzini, P. G. Fogli, M. Vichi, and P. Davini, 2013: Role of stratospheric dynamics in the ozone–carbon connection in the Southern Hemisphere. Climate Dyn., 41, 3039–3054, https://doi.org/10.1007/s00382-013-1745-5.
Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 3184–3196, https://doi.org/10.1175/2009JAS3085.1.
Camargo, S. J., and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Climate, 23, 5810–5825, https://doi.org/10.1175/2010JCLI3575.1.
Chapman, S., 1930: A theory of upper atmospheric ozone. Mem. Roy. Meteor. Soc, 3, 103–125.
Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides. D. Reidel, 200 pp.
Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings: Part I. Climatology and modeling benchmarks. J. Climate, 20, 449–469, https://doi.org/10.1175/JCLI3996.1.
Charlton, A. J., A. O’Neill, W. A. Lahoz, and A. C. Massacand, 2004: Sensitivity of tropospheric forecasts to stratospheric initial conditions. Quart. J. Roy. Meteor. Soc., 130, 1771–1792, https://doi.org/10.1256/qj.03.167.
Charlton, A. J., A. O’Neill, W. A. Lahoz, A. C. Massacand, and P. Berrisford, 2005: The impact of the stratosphere on the troposphere during the southern hemisphere stratospheric sudden warming, September 2002. Quart. J. Roy. Meteor. Soc., 131, 2171–2188, https://doi.org/10.1256/qj.04.43.
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083.
Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 1924–1944, https://doi.org/10.1175/MWR-D-11-00097.1.
Chau, J. L., and Coauthors, 2012: Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci. Rev., 168, 385–417, https://doi.org/10.1007/s11214-011-9797-5.
Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res., 100, 16 661–16 673, https://doi.org/10.1029/95JD01264.
Chipperfield, M. P., S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders, and J. A. Pyle, 2015: Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun., 6, 7233, https://doi.org/10.1038/ncomms8233.
Christiansen, B., 2005: Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res., 110, D14104, https://doi.org/10.1029/2004JD005431.
Christy, J. R., and C. Covey, 2018: Stratospheric temperature [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99 (8), S18–S20, https://doi.org/10.1175/2018BAMSStateoftheClimate.1.
Christy, J. R., S. Po-Chedley, and C. Mears, 2018: Tropospheric temperature [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99 (8), S16–S18, https://doi.org/10.1175/2018BAMSStateoftheClimate.1.
Chubachi, S., 1984: Preliminary result of ozone observations at Syowa station from February 1982 to January 1983. Mem. Nati. Inst. Polar Res. Japan, 34 (Special Issue), 13–19.
Chun, H., and J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.
Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 2552–2568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.
Cornu, A., 1879: Sur la limite ultraviolette du spectre solaire. C. R. Acad. Sci., 88, 1101.
Coughlin, K., and K. K. Tung, 2001: QBO signal found at the extratropical surface through Northern Annular Modes. Geophys. Res. Lett., 28, 4563–4566, https://doi.org/10.1029/2001GL013565.
Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320, https://doi.org/10.1002/qj.49709640815.
Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211–219, https://doi.org/10.1007/s10584-006-9101-y.
Crutzen, P. J., and F. Arnold, 1986: Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ozone hole. Nature, 324, 651, https://doi.org/10.1038/324651a0.
Danielsen, E. F., 1959: The laminar structure of the atmosphere and its relation to the concept of a tropopause. Arch. Meteorol., Geophys. Bioklimatol., 11A, 293–332, https://doi.org/10.1007/BF02247210.
Davis, R. N., J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell, 2013: The diurnal and semidiurnal tides over Ascension Island (8°S, 14°W) and their interaction with the stratospheric quasi-biennial oscillation: Studies with meteor radar, eCMAM and WACCM. Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013.
de la Cámara, A., J. R. Albers, T. Birner, R. R. Garcia, P. Hitchcock, D. E. Kinnison, and A. K. Smith, 2017: Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci., 74, 2857–2877, https://doi.org/10.1175/JAS-D-17-0136.1.
Dessler, A. E., E. J. Hintsa, E. M. Weinstock, J. G. Anderson, and K. R. Chan, 1995: Mechanisms controlling water vapor in the lower stratosphere: “A tale of two stratospheres.” J. Geophys. Res., 100, 23 167–23 172, https://doi.org/10.1029/95JD02455.
Dhomse, S., and Coauthors, 2018: Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018.
Diallo, M., B. Legras, and A. Chédin, 2012: Age of stratospheric air in the ERA-Interim. Atmos. Chem. Phys., 12, 12 133–12 154, https://doi.org/10.5194/acp-12-12133-2012.
Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave-guides. J. Atmos. Sci., 25, 984–1002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.
Dickinson, R. E., 1975: Solar variability and the lower atmosphere. Bull. Amer. Meteor. Soc., 56, 1240–1248, https://doi.org/10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2.
Dobson, G. M. B., 1931: A photoelectric spectrometer for measuring the amount of atmospheric ozone. Proc. Phys. Soc. London, 43, 324, https://doi.org/10.1088/0959-5309/43/3/308.
Dobson, G. M. B., 1956: Origin and distribution of polyatomic molecules in the atmosphere. Proc. Roy. Soc. London, 236A, 187–193, https://doi.org/10.1098/rspa.1956.0127.
Dobson, G. M. B., 1963: Exploring the Atmosphere. Clarendon Press, 228 pp.
Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1929: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, 122A, 456–486, https://doi.org/10.1098/rspa.1929.0034.
Dosser, H. V., and B. R. Sutherland, 2011: Weakly nonlinear non-Boussinesq internal gravity wavepackets. Physica D, 240, 346–356, https://doi.org/10.1016/j.physd.2010.09.008.
Dunkerton, T. J., 1983: Laterally-propagating Rossby waves in the easterly acceleration phase of the quasi-biennial oscillation. Atmos.–Ocean, 21, 55–68, https://doi.org/10.1080/07055900.1983.9649155.
Dunkerton, T. J., 1984: Inertia–gravity waves in the stratosphere. J. Atmos. Sci., 41, 3396–3404, https://doi.org/10.1175/1520-0469(1984)041<3396:IWITS>2.0.CO;2.
Dunkerton, T. J., 1997: The role of gravity waves in the quasibiennial oscillation. J. Geophys. Res., 102, 26 053–26 076, https://doi.org/10.1029/96JD02999.
Dunkerton, T. J., and D. Delisi, 1985: Climatology of the equatorial lower stratosphere. J. Atmos. Sci., 42, 1199–1208, https://doi.org/10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2.
Dunstone, N., D. Smith, A. A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skillful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809–814, https://doi.org/10.1038/ngeo2824.
Dütsch, H. U., 1970: Atmospheric ozone: A short review. J. Geophys. Res., 75, 1707, https://doi.org/10.1029/JC075i009p01707.
Dütsch, H. U., 1978: Vertical ozone distribution on a global scale. Pure Appl. Geophys., 116, 511–529, https://doi.org/10.1007/BF01636904.
Ebdon, R. A., 1960: Notes on the wind flow at 50 mb in tropical and sub-tropical regions in January 1957 and January 1958. Quart. J. Roy. Meteor. Soc., 86, 540–542, https://doi.org/10.1002/qj.49708637011.
Ebdon, R. A., 1975: The quasi-biennial oscillation and its association with tropospheric circulation patterns. Meteor. Mag., 104, 282–297.
Ebdon, R. A., and R. G. Veryard, 1961: Fluctuations in equatorial stratospheric winds. Nature, 189, 791–793, https://doi.org/10.1038/189791a0.
Ebel, A., H. Hass, H. J. Jakobs, M. Laube, M. Memmesheimer, A. Oberreuter, H. Geiss, and Y.-H. Kuo, 1991: Simulation of ozone intrusion caused by a tropopause fold and cut-off low. Atmos. Environ., 25A, 2131–2144, https://doi.org/10.1016/0960-1686(91)90089-P.
Ehard, B., and Coauthors, 2017: Horizontal propagation of large-amplitude mountain waves into the polar night jet. J. Geophys. Res. Atmos., 122, 1423–1436, https://doi.org/10.1002/2016JD025621.
Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 221, 1–23.
Engel, A., and Coauthors, 2006: Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: An overview. Atmos. Chem. Phys., 6, 283–301, https://doi.org/10.5194/acp-6-283-2006.
Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 28–31, https://doi.org/10.1038/ngeo388.
England, S. L., 2012: A review of the effects of non-migrating atmospheric Tides on the Earth’s low-latitude ionosphere. Space Sci. Rev., 168, 211–236, https://doi.org/10.1007/s11214-011-9842-4.
England, S. L., T. J. Immel, J. D. Huba, M. E. Hagan, A. Maute, and R. DeMajistre, 2010: Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res., 115, A05308, https://doi.org/10.1029/2009JA014894.
Ern, M., P. Preusse, S. Kalisch, M. Kaufmann, and M. Riese, 2013: Role of gravity waves in the forcing of quasi two day waves in the mesosphere: An observational study. J. Geophys. Res. Atmos., 118, 3467–3485, https://doi.org/10.1029/2012JD018208.
Ern, M., Q. T. Trinh, P. Preusse, J. C. Gille, M. G. Mlynczak, J. M. Russell III, and M. Riese, 2018: GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018.
Eyring, V., and Coauthors, 2005: A strategy for process-oriented validation of coupled chemistry–climate models. Bull. Amer. Meteor. Soc., 86, 1117–1133, https://doi.org/10.1175/BAMS-86-8-1117.
Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, https://doi.org/10.1029/2006JD007327.
Fahey, D. W., K. K. Kelly, S. R. Kawa, A. F. Tuck, M. Loewenstein, K. R. Chan, and L. E. Heidt, 1990: Observations of denitrification and dehydration in the winter polar stratospheres. Nature, 344, 321–324, https://doi.org/10.1038/344321a0.
Fahey, D. W., and Coauthors, 2001: The detection of large HNO3-containing particles in the winter Arctic stratosphere. Science, 291, 1026–1031, https://doi.org/10.1126/science.1057265.
Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207, https://doi.org/10.1038/315207a0.
Fasullo, J., R. Tomas, S. Stevenson, B. Otto-Bliesner, E. Brady, and E. Wahl, 2017: The amplifying influence of increased ocean stratification on a future year without a summer. Nat. Commun., 8, 1236, https://doi.org/10.1038/s41467-017-01302-z.
Fels, S. B., 1984: The radiative damping of short vertical scale waves in the mesosphere. J. Atmos. Sci., 41, 1755–1764, https://doi.org/10.1175/1520-0469(1984)041<1755:TRDOSV>2.0.CO;2.
Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 2265–2297, https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.
Fischer, H., and Coauthors, 2000: Tracer correlations in the northern high latitude lowermost stratosphere: Influence of cross-tropopause mass exchange. Geophys. Res. Lett., 27, 97–100, https://doi.org/10.1029/1999GL010879.
Forbes, J. M., and D. Wu, 2006: Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J. Atmos. Sci., 63, 1776–1797, https://doi.org/10.1175/JAS3724.1.
Forbes, J. M., M. E. Hagan, X. Zhang, and K. Hamilton, 1997: Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere. Ann. Geophys., 15, 1165–1175, https://doi.org/10.1007/s00585-997-1165-0.
Friedrich, L. S., A. J. McDonald, G. E. Bodeker, K. E. Cooper, J. Lewis, and A. J. Paterson, 2017: A comparison of Loon balloon observations and stratospheric reanalysis products. Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017.
Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720–733, https://doi.org/10.1175/JCLI-D-11-00116.1.
Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys., 22, 275–308, https://doi.org/10.1029/RG022i003p00275.
Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.
Fritts, D. C., B. Laughman, T. S. Lund, and J. B. Snively, 2015: Self-acceleration and instability of gravity wave packets: 1. Effects of temporal localization. J. Geophys. Res. Atmos., 120, 8783–8803, https://doi.org/10.1002/2015JD023363.
Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, https://doi.org/10.1029/2005JD006019.
Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, https://doi.org/10.1029/2004JD005516.
Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.
Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017.
Funk, J. P., and G. L. Garnham, 1962: Australian ozone observations and a suggested 24 month cycle. Tellus, 14, 378–382, https://doi.org/10.3402/tellusa.v14i4.9564.
Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731–2739, https://doi.org/10.1175/2008JAS2712.1.
Garcia, R. R., F. Stordal, S. Solomon, and J. T. Kiehl, 1992: A new numerical model of the middle atmosphere: 1. Dynamics and transport of tropospheric source gases. J. Geophys. Res., 97, 12 967–12 991, https://doi.org/10.1029/92JD00960.
Garcia, R. R., R. S. Lieberman, J. M. Russell III, and M. G. Mlynczak, 2005: Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J. Atmos. Sci., 62, 4384–4399, https://doi.org/10.1175/JAS3612.1.
Garcia, R. R., D. Kinnison, and D. Marsh, 2012: “World avoided” simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, D23303, https://doi.org/10.1029/2012JD018430.
Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 7855–7866, https://doi.org/10.1029/2018JD028724.
Garny, H., T. Birner, H. Bönisch, and F. Bunzel, 2014: The effects of mixing on age of air. J. Geophys. Res. Atmos., 119, 7015–7034, https://doi.org/10.1002/2013JD021417.
Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225–264, https://doi.org/10.1080/03091927208236082.
Geller, M. A., and J. C. Alpert, 1980: Planetary wave coupling between the troposphere and the middle atmosphere as a possible sun-weather mechanism. J. Atmos. Sci, 37, 1197–1215, https://doi.org/10.1175/1520-0469(1980)037<1197:PWCBTT>2.0.CO;2.
Geller, M. A., and Coauthors, 2011: New gravity wave treatments for GISS climate models. J. Climate, 24, 3989–4002, https://doi.org/10.1175/2011JCLI4013.1.
Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1.
Geller, M. A., and Coauthors, 2016: Modeling the QBO—Improvements resulting from higher model vertical resolution. J. Adv. Model. Earth Syst., 8, 1092–1105, https://doi.org/10.1002/2016MS000699.
Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845–859, https://doi.org/10.1175/BAMS-D-11-00145.1.
Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355.
Gille, J. C., and J. M. Russell III, 1984: The Limb Infrared Monitor of the Stratosphere: Experiment description, performance, and results. J. Geophys. Res., 89, 5125–5140, https://doi.org/10.1029/JD089iD04p05125.
Glaisher, J., 1871: Travels in the Air. Bentley, 398 pp.
Gong, J., J. Yue, and D. L. Wu, 2015: Global survey of concentric gravity waves in AIRS images and ECMWF analysis. J. Geophys. Res. Atmos., 120, 2210–2228, https://doi.org/10.1002/2014JD022527.
Götz, F. W. P., A. R. Meetham, and G. M. B. Dobson, 1934: The vertical distribution of ozone in the atmosphere. Proc. Phys. Soc. London, A145, 416, https://doi.org/10.1098/rspa.1934.0109.
Grant, W. B., and Coauthors, 1994: Aerosol-associated changes in the tropical stratospheric ozone following the eruption of Mount Pinatubo. J. Geophys. Res., 99, 8197–8211, https://doi.org/10.1029/93JD03314.
Gray, L. J., and J. A. Pyle, 1986: The semi-annual oscillation and equatorial tracer distributions. Quart. J. Roy. Meteor. Soc., 112, 387–407, https://doi.org/10.1002/qj.49711247207.
Gray, L. J., and J. A. Pyle, 1989: A two-dimensional model of the quasi-biennial oscillation in ozone. J. Atmos. Sci., 46, 203–220, https://doi.org/10.1175/1520-0469(1989)046<0203:ATDMOT>2.0.CO;2.
Gray, L. J., and M. P. Chipperfield, 1990: On the interannual variability of trace gases in the middle atmosphere. Geophys. Res. Lett., 17, 933–936, https://doi.org/10.1029/GL017i007p00933.
Gray, L. J., and T. J. Dunkerton, 1990: The role of the seasonal cycle in the quasi-biennial oscillation of ozone. J. Atmos. Sci., 47, 2429–2451, https://doi.org/10.1175/1520-0469(1990)047<2429:TROTSC>2.0.CO;2.
Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.
Gray, L. J., and Coauthors, 2013: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos., 118, 405–420, https://doi.org/10.1002/2013JD020062.
Gray, L. J., T. J. Woollings, M. Andrews, and J. Knight, 2016: 11-year solar cycle signal in the NAO and Atlantic / European blocking. Quart. J. Roy. Meteor. Soc., 142, 1890–1903, https://doi.org/10.1002/qj.2782.
Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018.
Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 1669–1683, https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2.
Graystone, P., 1959: Meteorological Office discussion on tropical meteorology. Meteor. Mag., 88, 113–119.
Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 2275–2292, https://doi.org/10.1175/2009JCLI3369.1.
Gurubaran, S., R. Rajanaran, T. Nakamura, and T. Tsuda, 2005: Interannual variability of diurnal tide in the tropical mesopause region: A signature of the El Nino-Southern Oscillation (ENSO). Geophys. Res. Lett., 32, L13805, https://doi.org/10.1029/2005GL022928.
Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, 2007: Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett., 34, L20109, https://doi.org/10.1029/2007GL030142.
Haigh, J. D., 1994: The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544–546, https://doi.org/10.1038/370544a0.
Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 1059–1070, https://doi.org/10.1029/93JD03192.
Hamilton, K., 1981: Latent heat release as a possible forcing mechanism for atmospheric tides. Mon. Wea. Rev., 109, 3–17, https://doi.org/10.1175/1520-0493(1981)109<0003:LHRAAP>2.0.CO;2.
Hamilton, K., 1984: Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J. Atmos. Sci., 41, 2113–2125, https://doi.org/10.1175/1520-0469(1984)041<2113:MWETTQ>2.0.CO;2.
Hamilton, K., 1993: A general circulation model simulation of El Niño effects in the extratropical Northern Hemisphere stratosphere. Geophys. Res. Lett., 20, 1803–1806, https://doi.org/10.1029/93GL01782.
Hamilton, K., and R. Garcia, 1984: Long period variations in the solar semidiurnal atmospheric tide. J. Geophys. Res., 89, 11 705–11 710, https://doi.org/10.1029/JD089iD07p11705.
Hamilton, K., and L. Yuan, 1992: Experiments on tropical stratospheric mean wind variations in a spectral general circulation model. J. Atmos. Sci., 49, 2464–2483, https://doi.org/10.1175/1520-0469(1992)049<2464:EOTSMW>2.0.CO;2.
Hamilton, K., R. J. Wilson, and R. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvement in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56, 3829–3846, https://doi.org/10.1175/1520-0469(1999)056<3829:MASWHV>2.0.CO;2.
Hamilton, K., A. Hertzog, F. Vial, and G. Stenchikov, 2004: Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 61, 383–402, https://doi.org/10.1175/1520-0469(2004)061<0383:LVOTSQ>2.0.CO;2.
Hampson, J., and P. Haynes, 2004: Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci., 61, 2627–2637, https://doi.org/10.1175/JAS3276.1.
Hansen, J. E., W.-C. Wang, and A. A. Lacis, 1978: Mount Agung provides a test of a global climatic perturbation. Science, 199, 1065–1068, https://doi.org/10.1126/science.199.4333.1065.
Hardiman, S. C., and P. H. Haynes, 2008: Dynamical sensitivity of the stratospheric circulation and downward influence of upper level perturbations. J. Geophys. Res., 113, D23103, https://doi.org/10.1029/2008JD010168.
Hardiman, S. C., N. Butchart, T. J. Hinton, S. M. Osprey, and L. J. Gray, 2012: The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model. J. Climate, 25, 7083–7099, https://doi.org/10.1175/JCLI-D-11-00579.1.
Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical Structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 2872–2894, https://doi.org/10.1175/1520-0469(2001)058<2872:TEORSO>2.0.CO;2.
Harries, J. E., 1976: The distribution of water vapor in the stratosphere. Rev. Geophys., 14, 565–575, https://doi.org/10.1029/RG014i004p00565.