The Infrared Radiation Temperature Correction for Spherical Temperature Sensors

Claude E. Duchon The University of Texas

Search for other papers by Claude E. Duchon in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The steady-state radiation temperature correction for a spherical temperature sensor, defined as the difference between the observed sensor temperature and the true air temperature, is computed for clear nighttime conditions in terms of five meteorological and physical parameters: sphere diameter, wind speed, observed sensor temperature, total incident radiation, and the absorptivities and emissivity of the sphere. The range of values encompassed by these parameters are, respectively, 0.001 to 0.1 cm, 0 to 400 cm set−1, 270 to 300K, 0.009 to 0.020 cal sec−1 cm−2, and 0 to 1.

The infrared radiation incident on a sphere in the boundary layer of the atmosphere is related matic- matically to the radiation observed by a flat plate type of radiometer. The derived relationship is based on previous measurements of the spatial distribution of the intensity of infrared sky radiation.

Numerically, the radiation temperature correction is determined by using a sequence of three graphs in-corporating the various parameters. The correction, to be added to the observed sensor temperature, varies from less than 0.01K to 3K.

Abstract

The steady-state radiation temperature correction for a spherical temperature sensor, defined as the difference between the observed sensor temperature and the true air temperature, is computed for clear nighttime conditions in terms of five meteorological and physical parameters: sphere diameter, wind speed, observed sensor temperature, total incident radiation, and the absorptivities and emissivity of the sphere. The range of values encompassed by these parameters are, respectively, 0.001 to 0.1 cm, 0 to 400 cm set−1, 270 to 300K, 0.009 to 0.020 cal sec−1 cm−2, and 0 to 1.

The infrared radiation incident on a sphere in the boundary layer of the atmosphere is related matic- matically to the radiation observed by a flat plate type of radiometer. The derived relationship is based on previous measurements of the spatial distribution of the intensity of infrared sky radiation.

Numerically, the radiation temperature correction is determined by using a sequence of three graphs in-corporating the various parameters. The correction, to be added to the observed sensor temperature, varies from less than 0.01K to 3K.

Save