Improved Cloud Motion Wind Vector and Altitude Assignment Using VAS

View More View Less
  • 1 University of Wisconsin. Madison, 53706
© Get Permissions
Restricted access

Abstract

A CO2 cloud tracking technique to determine simultaneous heights and velocities of cloud motion winds is presented. Using animated CO2 channel imagery from VAS, multi-level cloud situations are separated into high, middle and low level cloud motion wind vectors by the CO2 slicing method. The VAS CO2 channel radiometric values are used in the CO2 absorption method to assign quantitative heights to the cloud vectors; cloud top pressures are determined from the ratio of the deviations in cloud produced radiances and the corresponding clear air values for three CO2 channels in a radiative transfer equation formulation. Two case studies are presented that show CO2 cloud-motion wind vectors to be in good agreement with radiosonde wind observations and CO2 cloud heights to be within a 50 mb rms deviation of radiosonde, bispectral and stereo height determinations.

Abstract

A CO2 cloud tracking technique to determine simultaneous heights and velocities of cloud motion winds is presented. Using animated CO2 channel imagery from VAS, multi-level cloud situations are separated into high, middle and low level cloud motion wind vectors by the CO2 slicing method. The VAS CO2 channel radiometric values are used in the CO2 absorption method to assign quantitative heights to the cloud vectors; cloud top pressures are determined from the ratio of the deviations in cloud produced radiances and the corresponding clear air values for three CO2 channels in a radiative transfer equation formulation. Two case studies are presented that show CO2 cloud-motion wind vectors to be in good agreement with radiosonde wind observations and CO2 cloud heights to be within a 50 mb rms deviation of radiosonde, bispectral and stereo height determinations.

Save