Mt. St. Helens' Aerosols: Some Tropospheric and Stratospheric Effects

J. J. Michalsky Pacific Northwest Laboratory, Richland, WA 99352

Search for other papers by J. J. Michalsky in
Current site
Google Scholar
PubMed
Close
and
G. M. Stokes Pacific Northwest Laboratory, Richland, WA 99352

Search for other papers by G. M. Stokes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Aerosol optical depth measurements based on the attenuation of direct solar radiation before and after the six major explosive eruptions of Mt. St. Helens during 1980 are presented. These automated measurements are from a site 200 km mostly cut and slightly north of the volcano. From the analysis it was concluded that in several cases the conversion of sulfur gases to sulfates proceeded much more rapidly (hours) than is usually found for tropospheric conditions. A possible explanation may be the greater availability of OH due to the presence of substantial water in the plume. The second major result of the analysis was that there was no evidence of a residual aerosol burden. Turbidity data taken between eruptions in 1980 were virtually identical in terms of magnitude and wavelength dependence to 1979 turbidity.

Abstract

Aerosol optical depth measurements based on the attenuation of direct solar radiation before and after the six major explosive eruptions of Mt. St. Helens during 1980 are presented. These automated measurements are from a site 200 km mostly cut and slightly north of the volcano. From the analysis it was concluded that in several cases the conversion of sulfur gases to sulfates proceeded much more rapidly (hours) than is usually found for tropospheric conditions. A possible explanation may be the greater availability of OH due to the presence of substantial water in the plume. The second major result of the analysis was that there was no evidence of a residual aerosol burden. Turbidity data taken between eruptions in 1980 were virtually identical in terms of magnitude and wavelength dependence to 1979 turbidity.

Save