A Model for Solar Spectral Irradiance and Radiance at the Bottom and Top of a Cloudless Atmosphere

C. G. Justus School of Geophysical Sciences, Georgia Institute of Technology, Atlanta, GA 30332

Search for other papers by C. G. Justus in
Current site
Google Scholar
PubMed
Close
and
M. V. Paris School of Geophysical Sciences, Georgia Institute of Technology, Atlanta, GA 30332

Search for other papers by M. V. Paris in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple model is presented that, in a cloud-free atmosphere, calculates solar spectral direct and diffuse irradiance and directional radiance at the surface, spectral absorption within the atmosphere and the upward reflected spectral irradiance or directional radiance at the top of the atmosphere. The irradiance model, based on similar approaches by Brine and Iqbal and others, evaluates the spectral irradiances between 0.29 and 4.0 μm, with a resolution that varies from 0.005 to 0.1 μm. Absorption by water vapor, ozone and the uniformly mixed gases is included, as are both scattering and absorption by atmospheric aerosols, which are modeled with simple wavelength-dependent optical depth, single scattering albedo and asymmetry parameter functions. Comparisons are presented of the model results with spectral irradiance and radiance computed by other more sophisticated models and with measurements from both ground-based and satellite instruments. The reasonable accuracy and simplicity of the model make it suitable for a number of applications, especially those involving tests of the sensitivity of spectral irradiances or radiances to variations in water vapor, ozone and various aerosol parameters.

Abstract

A simple model is presented that, in a cloud-free atmosphere, calculates solar spectral direct and diffuse irradiance and directional radiance at the surface, spectral absorption within the atmosphere and the upward reflected spectral irradiance or directional radiance at the top of the atmosphere. The irradiance model, based on similar approaches by Brine and Iqbal and others, evaluates the spectral irradiances between 0.29 and 4.0 μm, with a resolution that varies from 0.005 to 0.1 μm. Absorption by water vapor, ozone and the uniformly mixed gases is included, as are both scattering and absorption by atmospheric aerosols, which are modeled with simple wavelength-dependent optical depth, single scattering albedo and asymmetry parameter functions. Comparisons are presented of the model results with spectral irradiance and radiance computed by other more sophisticated models and with measurements from both ground-based and satellite instruments. The reasonable accuracy and simplicity of the model make it suitable for a number of applications, especially those involving tests of the sensitivity of spectral irradiances or radiances to variations in water vapor, ozone and various aerosol parameters.

Save